untitled

Similar documents
Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

untitled

untitled

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

資源と素材

PALL NEWS vol.126 November 2017

Report of Special Research from the National Institute for Environmental Studies, Japan NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES

橡96-07.PDF

橡H10タイ第2章..doc

ONS60409_gencyo.indd

研究成果報告書

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

00) îSìyçzï®äwÇÃäÓëb-1.pdf

第1章 溶接法および機器


Microsoft Excelを用いた分子軌道の描画の実習

CH 2 CH CH 2 CH CH 2 CH CH 2 CH 2 COONa CH 2 N CH 2 COONa O Co 2+ O CO CH 2 CH N 2 CH 2 CO 9 Change in Ionic Form of IDA resin with h ph CH 2 NH + COO

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

RAA-05(201604)MRA対応製品ver6


放射線化学, 92, 39 (2011)

Analysis of Hypoxia Dynamics Using Pelagic and Benthic Biogeochemical Model: Focus on the Formation and Release of Hydrogen Sulfide Masayasu IRIE, Shu

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

IP Management Within Universities: Experiences in the US

J. Jpn. Inst. Light Met. 65(6): (2015)

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio


1 WSV SIR m/z Analyte RT (Min) SIR m/z Cone voltage (V) Ascorbic Acid (C) Thiamine (B1) Nicotinic Acid (B3) Pyridoxal (

平成26年度 化学物質分析法開発報告書

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

i

X線分析の進歩36 別刷


LCMS14003:UHPLC-Orbitrap質量分析計による環境汚染物質のターゲット分析、ノンターゲット分析


CAS NC(CH 2 ) 4 CN 1,4- C 6 H 8 N c.c d = Pa

SEJulyMs更新V7

平成26年度 化学物質分析法開発報告書

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

untitled

研究成果報告書(基金分)

食糧 その科学と技術 No.46( )

DENBAA+ArialMT Adobe Identity 0



03J_sources.key

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

プラズマ核融合学会誌11月【81‐11】/小特集5

平成26年度 化学物質分析法開発報告書

第2章 有機物汚濁指標の概要と問題点

表紙1

untitled

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

The Plasma Boundary of Magnetic Fusion Devices

untitled

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

_先端融合開発専攻_観音0314PDF用

charpter0.PDF

51-4特-10.indd

δδ 1 2 δ δ δ δ μ H 2.1 C 2.5 N 3.0 O 3.5 Cl 3.0 S μ

第6章_田辺.PDF

3, ,104 t mg/l 30 mg/l BOD mg 14 C 8, /kg 11 8, 1 11 OH = cm 3 / sec 11 OH /cm ppm

報告書 H22-2A-09


,977 t 157,977 t mg l mg l BOD 9398 % OH = cm 3 / sec 11 = cm 3 / sec OH = /

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

Hansen 1 2, Skinner 5, Augustinus 6, Harvey 7 Windle 8 Pels 9 1 Skinner 5 Augustinus 6 Pels 9 NL Harvey ML 11 NL

Isolation and Characterization of Microorganisms Capable of Degrading (Ethylenediaminetetraacetato) Ferrate (III) Complex Hideo MIYAZAKI*, Seiji SUZUK


4703ALL01

untitled

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

空力騒音シミュレータの開発

98-02.PDF

CRA3689A

H1-H4

% 1% SEM-EDX - X Si Ca SEM-EDX SIMS ppm % M M T 100 % 100 % Ba 1 % 91 % 9 % 9 % 1 % 87 % 13 % 13 % 1 % 64 % 36 % 36 % 1 % 34 46

,, X Handy Type X Ray Fluorescence Element Analyzer Jun Kawai Department of Materials Science and Engineering, Kyoto University Handy X r

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

t 492 t mg/l 30 mg/l BOD 95 OH = cm 3 / sec 25 8 OH /cm 3 12 = ph ph

Fig. 1 Experimental apparatus.

dsample.dvi

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

untitled

地球環境研究センターニュース2016年8月号


Complexing capacity in a hypereutrophic lake Abstract The mechanism of phosphate release from lake sediments in aerobic condition was investigated fro

Vol. 48 No. 3 Mar PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Indus

橡A PDF

untitled

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

橡フタル酸ブチルベンジル.PDF

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Fig. 1 Structure of a Sebaceous Follicle (Ref.1).

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

! " # Engineering First

7章 構造物の応答値の算定

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Transcription:

13 01.04.01 -

13... 6... 7 1. ィC... 15 1.1.... 16 1.1.1.. 16 1.1.2.... 18 1.1.3.... 24 1.1.4.... 26 1.1.5.... 29 1.1.6.... 30 1.1.7.... 31 1.1.8.... 32 1.1.9. -... 34 1.1.10.... 35 1.2.... 37 1.2.1.... 37 2

131.2.2.... 43 1.3.... 44 2.... 48 2.1.... 48 2.2.... 50 2.3.... 54 2.4.... 58 2.4.1. 58 2.4.2.... 61 2.4.3.... 64 2.5.... 67 2.5.1.... 67 2.5.2.... 69 2.6.... 71 2.7.... 75 2.8.... 79 3

133.... 80 3.1.... 80 3.1.1.... 80 3.1.2.... 87 3.1.3.... 104 3.1.4.... 112 3.1.5.... 115 3.2.... 116 3.2.1.... 117 3.2.2. -... 120 3.2.3.... 125 3.2.4.... 129 3.3.... 130 4

134.... 131 4.1.... 131 4.2. -... 134... 136... 139... 152... 153... 154... 155 5

13 ィC ィC - ィC ィC ィC - - ィC ィC ィC ィC ィC AOP ィC Advanced Oxidation Processes CFD - Computational Fluid Dynamics DNS - Direct Numerical Simulation EDC - Endocrine Disrupting Compounds ESI - ElectroSpray Ionization IDA - LES - Large Eddy Simulation NP1EC - NTA - PhACs - Pharmaceutically Active Compounds PCP - Personal Care Products RANS - Reynolds-Averaged Navier-Stokes equations SST - Shear Stress Transport TT - 6

13 254 7

13 ィC 8

13 1. 2. 3. 4. 1. - 2. 9

133. 2 2 4. 5. 1. 2. - 3. 1. 10

13-2. - 3. - - 2 O 2 - - -4 - -3 11

13-3 - -30%, -- - 137 60 4. - 12

13 Microsoft Office Excel 2010. - - - -SME 00InPULSe - Integrated Pulsed ULtraviolet - 2014-202003. 13

13 - (2013), 00 03`(2014), XLII. 14

131. ィC, AOP - Advanced Oxidation Processes) ィC, 15

131.1. 1.1.1. - [1] - [2]. [3]. [1,2,4,5], 16

13 [6]. 00 03..,,, (). ィC - [7] 17

13 60 (-1) [8,9]. 1.1.2. [10] [11] [10], H 2 O 2 [12], Na 2 S 2 O 8, NaClO, NaBrO [13] [14] [15]. 18

13 [16]., 60 Co ( 50%) [3]., 137 Cs 90 Sr [11]. - ph = 1. [8] - ィC 238, 239, 240 74ィC87 %, 241 ィC95 %, 244 ィC95 %. [17]. [13] [12, 18, 19] KMnO 4 [3]., [20]. - [21], [22]. [23, 24]. 19

13. [24, 25]: 6ヲ1 ), - ph 12-13, - 60-80 [12] 20

13 60 Co 54 Mn [12, 26, 27] ( -2 50 [22]. [3] - ィC [28] 21

13 6ヲ1 6ヲ1 6ヲ1 2 2 [29],, -3). - ; [30]. [31] 2 2 [32]., -- ィC [33] [34]. [35, 36, 37]. 22

13 [3] - - [38] NィCH C=N) [39] 23

13 15. [40] (V-UV UV- UV- 315 UV- [41] [3] [7]. 1.1.3. AOP-AOP ィC - [42] [38] ( -1 [41] 10 9 ィC 10 11 6ヲ1 ( - 3 6ヲ1[43]). [44] 24

13 - [14] [45]. 3.06 2.25 2.80 2.05 2.42 1.78 2.07 1.52 1.77 1.30 1.49 1.10 1.36 1.00 1.07 0.74 0.95 0.69 0.5 0.37 95 2 O 2 2 2 O 2 2 [46] [44] 2 2 O 2 2 O 2 2 O 2 ; 2 2 -, 2 2-25

13 2 O 2 AOP (-4). 1.1.4. [47], [48]. [49]. AOP 26

13 [50]: Endocrine Disrupting Compounds (EDC) ィC Pharmaceutically Active Compounds (PhACs) ィC Personal Care Products (PCP) ィC [51], : NP1EC (TT) -,, [43]. 27

13 ; ; EDC, -70% [49] -95% [52] [53]. ), [54]. ェ ェ ィC - [49] 28

13 - ィC [55] [56]. AOP ph [57]. 1.1.5., 29

13 [58]. 1.1.6. -. ; 4 ィC - - 0,3 2. [59]Light Sources, Inc 16 30

13[60]. - -5). 1-61-6.,,,, 10 ィC 1 000. 2.. [62] 1.1.7. -. - 31

13 0 2 [63][64], ィC 900 1-7. 1.1.8. )., [65] - [66]. - 32

13, [67]. 0-15 [68] [69], ( -8). 33

13 1-9. 1.1.9. - ), - 000 ) - [70] [71] [72, 73].,,, 34

13 [74]. -10. 1.1.10. ) ィC -300 000 2 ). [15].. (-11). 35

13-2 ) ィC.. ィC - 36

13 ィC [53,75-82]. 1.2.,, ィC 1.2.1. [84] [85], 37

13 DNS) - 1 [86]: u i ィC t ィC x i ィC ィC 3 ; p ィC ィC g ィC 2. [87] Tflops/s. [88] DNS [89] RANS). LES) 1 38

13 - [89]: ィC - [89]: u i ィC t ィC x i ィC ィC 3 ; p ィC ィC g ィC 2. LES LES-DNS [90] DNS[88]. (RANS) 39

13 [91]: ィC - u i ィC t ィC x i ィC ィC 3 ; p ィC ィC g ィC 2., [92], 40

13 ィC ィC. k [91]: ; ; ; ; [91]. [91]. 41

13 ; ; ; ;,,,, CFD) [91]. (SST) k- k- [93, 94]. k- k-k. k- k- F 1 k- k- (1-F 1 ) F 1 [94]: 42

13 (RANS). DNS LES 1.2.2. 1.2.2.1. [95] i- [96]: i ィC i ィC D i ィC 43

13 D t [97]: [96]: d 1 ィC ィC r ィC - F j ィC 1.3. 44

13-2. - % % 2 85-90 0,5 ィC 1 000 15 ィC 20 1 ィC 10 10 ィC 15 0.2 ィC 0,4 0,1 ィC 0,01-50...70 15ィC 50 100-10 000 4 000 ィC 16 000 1 000 ィC 2 000 1 000-10 000 000 2 2 2 2 ィC 45

13 ィC 3, 190-300.. 1., ; 46

13 2. :, ; 3.. 47

132.,,.. 2.1. 2 ) ( 2 ) [98]. - - 48

13 [98] 278 t - S - L - Q- 3 [49] Technologies, Inc, [99].,, 49

13-1. : (DO, k- ィC 2.2., DNS 50

13 [90].,, RANS ィC [100] LES ィC [101]. [101] LES ィC (-2). RANS.,, RANS. RANS 51

13-4 k-k-, k- k-, k- 50- [91], k-., -3 ( [102]). 52

13 53

13, k-. 2.3. - ィC 3 ィC ィC ィC ANSYS v 54

13 [101] [100], k- CFX-Mesh No Slip, [103] ANSYS CFX ィC Streamline ィC ), Time on Streamline [103]) -5-2-8. - -9 2-1), -9-55

13 -. - - 2-1). 56

13-10 -7,, 57

13. 2.4..,, [104] [105] U 0 C, L, R 0 d l p 0 ) 2.4.1. 2-11 U 0. R p U p., L. R 0. U l U r 58

13 : : ; ; [106] [107]: - 59

13 [108] ): ィC ) [108]. [104] 60

13 ィC [104] : 2.4.2. ィC ィC - ィC ィC [105] ィC 20 (2-15) 61

13 2 0,, 15 2 0 4,9 10 3/ exp ィC 3 ; ィC - 0 0 ィC 1 Xe 0 12, 6 (11594) 23 1,38 10 ィC 1 (1 ) ィC ィC 16 3,3 10 0 3 2 2 2 (1 ) 1 exp ィC j- ィC j- 0 ). 0 62

13 -: 1/2 8 0 2,110 2 1 2 0 3 / 2 15 0 0 4,9 10 exp 2 2 4 10 50 10 18 20 ィC 1 0 3 1 3 0 ィC ( ) (1 ) [109]: 63

137,55 10 (1 ) 4 0 0 ィC 2.4.3. [110] -[111]: ィC Z ィC ィC ; ィC ィC ィC - ィC [105] - -- [112]: (2-28) 64

13 ィC [104]; ィC [112]). 12600 20000 50 600 [109]: 0 7 9 1,4410 2 6, 4810 121 exp 1000 0 1 ィC 0ィC 300.,, 65

13 190220, 0.57, 2201500, 0.9. 190 ( 190) 0 1500 ( ) [104]: 15 2 11,9 10 ' 0,9 1 exp( ) 5 7 1,44 10 exp 1 : 15 11,9 10 ' 0,9 1 exp( ) 2 5 7 1,44 10 exp 1 15 11,9 10 1 ' 0,9 1 exp( ) 2 5 7 1,44 10 exp 1 ィC 66

134 1.4410 11.9 ln 1000 ( ) 1000 5 1,, 5%.. 2.5. 2.5.1. [100] 67

13. -12). ィC ィC,, 68

13 (2-34) -,, ; -,, : 2.5.2. [113]: 69

13 ィC, ィC ィC ィC ィC. : ィC, [113].,. [114],,,, [113]: 70

13 -,, ィC ィC, [113] [115]:, 2.6.,, 71

13., ィC, ィC,, (. 2.4, 5) -,, [101] [100], - 72

13. c ( ). c. 2-13., 73

13,, [49] [100]. [114]., 74

13, 2.7. -14,, -14,,,, 75

13. ). -15-16: -1 ), 2 2 ), -17-18 - -- 76

13 77

13-35%. -22 78

13 ( -23). 35% 2.8.,... 79

133. 3.1. 3.1.1. - PURITEC - -1 80

13-2 ; 81

13 3 ; V8 G1);, ィC ィC,, 3 82

13,, ィC ィC, - - 83

13 - - - - - 72- ( -, 8,6-10,0. 84

13 Fe(III) Ti(IV). -202003.. 60 4,, -4. 4 85

13 -ィC 0,5 (0,4 - - - ィC - ィC ィC ィC - 2 2 ;, -50 60 86

133.1.2.,,, - Osram PURITEC HNS 15W - 25. 2 - -300 2. -l 2 2-002-25665344-2008 - NaOH. [116] [117], 87

13, - - - - [76] - [117] - Bi(NO 3 ) 3 *5H 2 O. 3-5-3.17 88

13 0 ィC ィC t ィC k ィC ln(c 0 /C) ィCt. 89

13 90

13-1. 2 2 0,0281-0,0497 - - 0,0026-0,0302 2 2 0,0071 0,0211 0,0144 0,0524 - - 0,0002-0,0045-2 2 0,0019 0,0274 0,0041 0,0445 - -1 91

13 ィC -2. -1. t 10 30 50 0,72 (7,1) 0,66 (6,5) 0,82 (8,1) 0,92 (9,1) 0,88 1,11 (8,7) (11,0) - -3. t, 10 30 50 0,16 (1,55) 0,20 (1,96) 0,24 (2,4) 0,22 (2,2) 0,31 (3,1) 0,42 (4,1) 92

13 -. 2 2 2 2-2 2 2 2 ) - 5 [118, 119] 93

13 17.. - - ィC ESI). LabSolutions LCMS Ver NIST MS Search 2.0f, MassBank service METLIN Metabolite Search ), (1 ィC 2-3 - 4 - ) -ィC -8). -7 94

13, ィC -, - - NaNO 3 4-3 NaNO 3 2 2 2,2`,2``- - - [31]. 95

13 3 - [120] NaNO 3 ィC 300 96

13 1 NaNO 3 502 - : - 2 ), N- S- 3-10. - - NaNO 3 97

13-4. 10 20 30 40 50 60 70 80 90 10 0 3 NaNO 3 ( 0,6 0,9 1,2 1,5 1,7 1,8 1,9 2 2,1 2,2 NaNO 3 ( 1,5 2,6 3,5 4,3 4,9 5,5 6,1 6,9 7,5 7,9 98

13 7 ィC -2, 0,4; 0,08-7) ィC 2 2 - -10) ィC 2 2-13) ィC 2 2 - - - - - -- -14. 99

13 100

13 - -17 101

13 60 5 60 - ィC 3 ). 60-60, ィC 60 60-60 5 102

13-60 60%. 2 2-2 2-60 0 60 240 480 960 26,9 29,2 28,4 24,7 35,4 26,9 28,6 39,7 35,6 60,0, IDA,, 103

133.1.3. 1.1.2,, - 2 2-3 - 3 6 - - - [121]. - -193-19: 6 104

13 3-20 4. -19, 105

13-21. - (-22-3-24). -6.. 106

13 107

13-6 - -6 - - - 40,6). m/z 173,5 [EDTA- 4H+Co(II)]2, / m/z 346,9 [EDTA- 4H+Co(III)], / m/z 347,9 [EDTA- 3H+Co(II)], / O 3 2,63 7,09 2,98 O 3 1,46 7,13 1,84 O 3 0,76 5,50 1,24 O 3 0,45 4,10 0,8 O 3 0,24 2,10 0,4 O 3 0,07 1,00 0,1 UV/ O 3 0,63 8,24 1,01 UV/ O 3 0,27 4,10 0,23 UV/ O 3 0,08 0,87 0,05 UV/ O 3 0,02 0,03 0,003 108

13, - -26- - 2 2-109

13 - -, 9,5- Na + ィC 6,4; K + ィC 3,9; Mg 2+ ィC 14,0; Ca 2+ ィC 50,0; Cl - ィC 5,7; SO 2-4 ィC 35,0; HCO - 3 ィC 192; - 305- ), - Fe(III) Ti(IV). -202003. -200003. -7-27. 110

13. - 2 2, NaNO 3, 1 7,0 100 4000 2 2 119,5 100 4000 3 3 8,2 100-3 1 111

133.1.4. - 2600- ィC 3,8--0,6--10,2-10,4. -(1,6-2,0) チ104, 134 Cs- (1,0-4,3) チ10 3, 60 Co-(1,4-3,8) チ10 3 --(2,1-3,5) チ10 4. - 137 Cs, 134 ( 10%). 112

13 2-2 2 1 2 3 4 5 6 137 Cs 60 Co I 50 2,2 II >190 1,5 I + II >9450 3,3 I 14 2,6 II >570 1,6 I + II >7900 4,3 I 11 2,6 II >695 1,6 I + II >7900 4,2 I 14 2,6 II >720 1,9 I + II >9900 5,0 I 12 2,0 II 202 1,4 I + II 2329 2,9 I 14 1,7 II >695 1,4 I + II >9900 2,3 113

13 - - -29 137-14 (2-137 - 60-114

133.1.5. 3 2 2-60 ィC -; - - ; 115

13-3.2.. 116

133.2.1. -30. 1 ィC ィC ィC ィC ィC - 8500 タ500-30 (200 ュ300-3. 117

13 - Fe(IIIAl(III). 2 ィC ィC 120 ィC ィC - [122]. --40 ア. -30 0 1. 2. 3. - 118

134. 5. 6. - em -31. 119

13 em em 3.2.2. - [123] - Al(III) ィC -Fe(III). Fe(III 120

13-32, ィC 8,0. - NaOH 121

13[122] -33 ィC Al 2 (OH) 5 Cl -33 Fe(III). Fe (III 122

13,, ィC ィC = 7,0, [HemFe(III)] = 0,5, -33). ィC ィC W ィC ィC,, 1,17%. 0-0 ィC - NaOH 123

13-100 ィC,, -34. -34 Fe(III),, 124

133.2.3. - [53, 106] CO 2 H 2 O - ィC 125

13(3-10) RH ィC ィC, ィC e 3 ィC -35 -- ィC -30 126

13 2 2. 0 0 em 0-3 3-2 2 2, 2 2 2 2 2 127

13 ィC -36 2 3 - ) 3-128

13 2 3 0 = 2 3 3 3.2.4.,, ィC 8,0; ィC ィC 3 3. 129

133.3.., 60., 5 130

134. 4.1. -1 3 3. V 3 3 3 V 3 V 3 V 3 ), - - Fe (III ィC FeCl 3 *6H 2 O V 3 - ィC 200 - -1. ィC 8,0 - ィC 20 - -1. 131

13V = 3 - - - 3-10, 11 (V 3 0 ィC 3 V 3-2 2 (10%). - - - - ィC 132

1316 1 4 5 6 12 20 9 14 8 7 1 2 11 13 15 18 3 10 16 17 21 22 1- V 3 8 - - 15-2- 9 - - 16 ィC 3- V 3 10 - ィC. 3 17-4- Fe (III) V 11- V 3 18-5- V 12-19 ィC ph 6- V 13 ィC - 20,21 ィC 3 7- - 14 - - 22 ィC 3 133

134.2. -, -, 190-, 5-1. 6 5-134

13 135

13 - -. 136

13-3 2 2 ) - - -30%, - 137

13-8 ィC 2016-2017. 138

13 1. - 2. - - 3. 4. - - 5. -019-2000 // 6. 7. 8. - 9. 10. Seliverstov A.F., Lagunova Y.O., and Ershov B.G. Recovery of Radioactive Cobalt from Aqueous EDTA Solutions Using Concentrated Ozone // 139

13Radiochemistry. 2009. Vol. 51. No. 3. pp. 326-328. 11. -146. 12. - 13. Garnov A.Y., Gogolev A.V., and Shilov V.P. Catalytic Decomposition of Organic Anions in Alkaline Radioactive Waste: 1. EDTA Oxidation // Radiochemistry. 2002. Vol. 44. No. 5. pp. 482-488. 14. Venkatadri R., Peters R.W. Chemical Oxidation Technologies: Ultraviolet Light/Hydrogen Peroxide, Fenton's Reagent, and Titanium Dioxide-Assisted Photocatalysis // Hazardous Waste & Hazardous Materials. 1993. Vol. 10. No. 2. pp. 107-149. 15. Seliverstov A.F., Ershov B.G., and Kamrukov A.S. Oxidative Degradation of EDTA in Aqueous Solutions under UV Irradiation // Radiochemistry. 2008. Vol. 50. No. 1. pp. 70-74. 16. 17. 18. - 140

1319. -440-20. - - 21. - -35. 22. -37. 23. Hoigne J. In Progress Technologies for water treatment. Ed. Plenum. Press, 1988. 24. 25. Masschelein W.J. Processes unitaixes du treatmeut de l esu potable. Ed. CEBEIOC. Hiege., 1996. 26. - 27. 28. Wang J., Wang X., and Li G. Degradation of EDTA in aqueous solution by using ozonolysis and ozonolysis combined with sonolysis // Journal of Hazardous Materials, 2009, V.176, P. 333-338. 2009. Vol. 176. pp. 333-338. 141

1329. Appaw C., Adewuyi Y.G. Destruction of carbon disulfide in aqueous solutions by sonochemical oxidation // J. Hazard. Mater. 2002. No. 90. pp. 237ィC249. 30. William H.G., Joon-Wun Kang, and Douglas H.C. The chemistry of water treatment processes involving Ozone, Hydrogen Peroxide and ultraviolet radiation. // Ozone science & engineering. 1987. Vol. 9. pp. 335-352. 31. Ku Y., Wang L., and Shen Y. Decomposition of EDTA in aqueous solution by UV/H2O2 process // J. Hazard. Mater. 1998. Vol. 60. pp. 41-55. 32. 33. 34. Avramenko V.A., Zheleznov V.V., and Kaplun E.V. Sorption-reagent method in liquid radioactive waste management // : Materials Research Society Symposium - Proceedings Scientific Basis for Nuclear Waste Management XXV. Boston. 2002. 35. Avramenko V., Mayorov V., and Marinin D. Macroporous catalysts for hydrothermal oxidation of metallorganic complexes at liquid radioactive waste treatment // : Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation, ICEM. "ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management ICEM2010". 2010. 36. Braehler G., Rieck R., and Avramenko V.A. Nuclide separation by hydrothermal treatment and ion exchange: a highly effective method for treatment of liquid effluents // : Proceedings of the International Conference on Radioactive Waste Management and Environmental 142

13Remediation, ICEM. "ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management, ICEM 2011". 2011. 37. 38. - 39. Block SS, editor. Disinfection, Sterilization, and Preservation. 5th ed. Philadelphia: Lippincott Williams & Wilkins, 2001. 1481 pp. 40. ISO 21348 Process for Determining Solar Irradiances. 2007. 41. Novikov D.O., Lagunova Y.O., and Kamrukov A.S. Photo-oxidative degradation of oxalate ions with concentrated ozone using high-intensity pulsed continuum UV radiation // High Energy Chemistry. 2014. Vol. 48. No. 6. pp. 389-390. 42. Beltran F.J. Ozone Reaction Kinetics for Water and Wastewater Systems. CRC Press, 2003. 384 pp. 43. - /www.xenozone.ru/support/ 44. Rekab K., Lepeytre C., and Dunanda M. H2O2 and/or photocatalysis under UV-C irradiation for the removal of EDTA, a chelating agent present in nuclear waste waters // Applied Catalysis A: General. 2014. Vol. 488. pp. 103-110. 45. Seshadri H., Sinha P.K. Efficient decomposition of liquid waste containing EDTA by advanced oxidation nanotechnology // J. Radioanal. Nucl. Chem. 2012. Vol. 292. pp. 829-835. 46. Rekab K., Lepeytre C., Goettmann F., and Dunand M. Degradation of a 143

13cobalt(II)ィCEDTA complex by photocatalysis and H2O2/UV-C. Application to nuclear wastes containing 60Co // J. Radioanal. Nucl. Chem. 2014. 47. Janssens I., Tanghe T., and Verstraete W., "Micropollutants: A bottleneck in sustainable wastewater treatment," // Water Science and Technology, Vol. 35, No. 10, 1997. pp. 13-26. 48. Worthington, "Organic Micropollutants in the Aqueous Environment," // Studies in Environmental Science, Vol. 29, 1986. pp. 235ィC244. 49. 50. Wennmalm, Gunnarsson, "Public Health Care Management of Water Pollution with Pharmaceuticals: Environmental Classification and Analysis of Pharmaceutical Residues in Sewage Water," // Therapeutic Innovation & Regulatory Science, Vol. 39, No. 5, 3005. pp. 291-297. 51. Insa, Petrovic, and Barcelィョ, "Occurrence and spatial distribution of EDCs and related compounds in waters and sediments of Iberian rivers," // Science of The Total Environment, Vol. 503-504, 2015. pp. 69-86. 52. Baranda A., Fundazuri O., and Martィェnez I., "Photodegradation of several triazidic and organophosphorus pesticides in water by pulsed light technology," // Journal of Photochemistry and Photobiology A: Chemistry, Vol. 286, 2014. pp. 29-39. 53. -44. 54. - 144

1355. Kinne M., Poraj-Kobielska M., and Ralph S.A., "Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase," // The Journal of Biological Chemistry, Vol. 284, 2009. pp. 29343ィC29349. 56. Office of Environmental Health Hazard Assessment. Proposition 65 List of Chemicals. California: OEHHA, 2015. 57. Vescovia, Colemanb H.M., and Amala, "The effect of ph on UV-based advanced oxidation technologies ィC 1,4-Dioxane degradation," // Journal of Hazardous Materials, Vol. 182, No. 1-3, 2010. pp. 75-79. 58. Koutchma T. Preservation and Shelf Life Extension UV Applications for Fluid Foods. Academic Press, 2014. 50 pp. 59. Schalk S., Volker A., and Erich A. UV-Lamps for Disinfection and Advanced Oxidation - Lamp Types, Technologies and Applications. Heraeus Noblelight GmbH, 2013. 60. Light Sources, Inc. 2013. 61. 62. 63. Liua X.L., Wua F., and Denga N.S. Photodegradation of 17-ethynylestradiol in aqueous solution exposed to a high-pressure mercury lamp (250 W) // Environmental Pollution. 2013. Vol. 126. No. 3. pp. 393-398. 64. Jin S., Sharpless C., and Linden K. Aging evaluation of medium-pressure mercury lamps under typical operating conditions for drinking water disinfection applications // Proceedings of the Water Environment Federation, Disinfection 2007. 2007. 65. ェ -217. 145

1366. Kogelschatz U. Silent-discharge driven excimer UV sources and their applications // J. Appl. Surface Science. 1992. No. 54. pp. 410-423. 67. 68. Izyumov S.V., Chabak A.F., and Shchekotov E.Y. Optimization of Integrated Advanced VUV/UV/O3/H2O2 Destruction of Organic Matter and Degasification of Dissolved Oxygen in Industrial Condensate Water // "The 19th International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil". San Diego. 2013. 69. 70. 71. Charter C. Master degree thesis: "UV-LED irradiation technology for pointof-use water desinfection in developing communities". Colorado. 2009. 75 pp. 72. Korovina E., Selishcheva D., and Besova A. UV-LED TiO2 photocatalytic oxidation of acetone vapor: Effect of high frequency controlled periodic illumination // Applied Catalysis B: Environmental. 2015. Vol. 163. pp. 143-149. 73. Mohammadhossein R., Mostafa F. Kinetic study for photocatalytic degradation of Direct Red 23 in UVィCLED/nano-TiO2/S2O82? process: Dependence of degradation kinetic on operational parameters // Journal of Industrial and Engineering Chemistry. 2014. Vol. 20. No. 5. pp. 3695-3702. 74. - 146

13 75. 76. -2003. 2003. 77. -96. 1996. 78. - 7. 79. --32. 80. 81. -80. 147

1382. - 83. 84. Vartanian GM, editor. Ultraviolet Disinfection Guidelines for Drinking Water and Water Reuse. 3rd ed. Fountain Valley, CA: National Water Research Institute, 2012. 100 pp. 85. -58. 86. - 87. Menter. Methoden, Moglichkeiten, Grenzen numerischer Stromungsberechnungen. Kurzlehrgang NUMET 2002: Numerishe Methoden zur Berechnung von Stromungs- und Warmeiibertragungs-problemen. Erlangen. 2002. 180 pp. 88. Spalart P.R., "Strategies for turbulence modeling and simulation," // Int. J. Heat Fluid Flow, Vol. 21, 2000. pp. 252-263. 89. - - 2007. 90. - 91. Wilcox D. Turbulence Modeling for CFD. 2nd ed. Anaheim: DCW Industries, 148

131998. 174 pp. 92. Boussinesq J., "Theorie de l ッ Ecoulemen Tourbillant.," // Mem. Presentes par Divers Savants Acad. Sci. Inst. Fr., Vol. 23, 1877. pp. 46-50. 93. Menter F.R. Zonal Two Equation k- Turbulence Models for Aerodynamic Flows // AIAA Paper. 1993. pp. 93-2906. 94. Menter F.R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," // AIAA Journal, Vol. 32, No. 8, 1994. pp. 1598-1605. 95. - - 96. - 97. 98. - - 99. - / www.lightstreamuv.com/ 100. Ho C., Khalsa S., Wright H., and Wicklein E. Computational Fluid Dynamics Based Models for Assessing UV Reactor Design and Installation. Water Research Foundation, 2011. 166 pp. 101. Wols B.A. CFD in drinking water treatment. Gildeprint drukkerijen, 2010. 176 pp. 102. 2]. URL: http:// habrahabr.ru/company/intel/blog/ 103. Ansys corp. Manual ANSYS CFX, Release 12.0. 2012. 149

13104. 2010. 222 pp. 105. 106. 107. Goncz J.H., "Resistivity of Xenon Plasma," // Journal of Applied Physics, Vol. 36, No. 3, Jan 1965. pp. 742-743. 108. Markiewicz J.P., Emmett L., "Design of Flashlamp Driving Circuits," // IEEE Journal of Quantum Electronics, Vol. 2, No. 11, Dec 1966. pp. 707-711. 109. 110. -991. 111. - 246. 112. 113. M.F. M. Radiative Heat Transfer. 2nd ed. San Diego: Academic Press, 2003. 842 pp. 114. COMSOL. Heat Transfer Module User's Guide. 2014. 374 pp. 115. Fiveland W., "The Selection of Discrete Ordinate Quadrature Sets for Anisotropic Scattering," // Fundamentals of Radiation Transfer, Vol. 160, 1991. pp. 89-96. 116. 150

131958. 117. - 118. S02rensen M., Frimmel F.H., "Photochemical degradation of hydrophilic xenobiotics in the UV/H 2 O 2 process: Influence of nitrate on the degradation rate of EDTA, 2-amino-1-naphthalenesulfonate, diphenyl-4-sulfonate and -diaminostilbene--disulfonate," // Water Research, Vol. 31, No. 11. pp. 2885-2891. 119. Jiraroja, Unoba F., and Hagege A., "Degradation of PbィCEDTA complex by a H2O2/UV process.," // Water Research, Vol. 40, 2006. pp. 107-112. 120. 121. Chen Z., Sun Q., Xi, and Owens G., "Speciation of metalィcedta complexes by flow injection analysis with electrospray ionization mass spectrometry and ion chromatography with inductively coupled plasma mass spectrometry.," // J. Sep. Sci., Vol. 31, 2008. pp. 3796 ィC 3802. 122. 123. 124. 1161-1166. 151

13 152

13 153

13 154

13 155