(PV: Photovoltaics) PV (CCT: Critical Clearing Time) PV P-δ CCT CCT PV PV CCT P-δ CCT PV CCT P-δ PV PV PV : CCT[s] PV

Similar documents
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u

c 2009 i

Gmech08.dvi

5. 5.1,, V, ,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 3-1, 2-2, 1-3,,, L1, L3, L2, ,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

85 4

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

JIS Z803: (substitution method) 3 LCR LCR GPIB

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

i


Wide Scanner TWAIN Source ユーザーズガイド

untitled

CV CV CV --

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =


x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

0.1 I I : 0.2 I

The Physics of Atmospheres CAPTER :

- 1 -

( ) ,

LD

28 Horizontal angle correction using straight line detection in an equirectangular image

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

SICE東北支部研究集会資料(2012年)


LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

DC-DC Control Circuit for Single Inductor Dual Output DC-DC Converter with Charge Pump (AKM AKM Kenji TAKAHASHI Hajime YOKOO Shunsuke MIWA Hiroyuki IW

-1-

70 : 20 : A B (20 ) (30 ) 50 1

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

振動と波動

Mott散乱によるParity対称性の破れを検証


S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

i


ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

mt_4.dvi

untitled

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

untitled

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Untitled

main.dvi

4‐E ) キュリー温度を利用した消磁:熱消磁

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

I

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

「産業上利用することができる発明」の審査の運用指針(案)

main.dvi

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

振動工学に基礎

B

1).1-5) - 9 -

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re



I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

高等学校学習指導要領

高等学校学習指導要領

LM150/LM350A/LM350 3A 可変型レギュレータ

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

数学の基礎訓練I

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

生活設計レジメ

I II III 28 29



<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

S1C60N05データシート

charpter0.PDF

all.dvi

Transcription:

3 9 37-9646

(PV: Photovoltaics) PV (CCT: Critical Clearing Time) PV P-δ CCT CCT PV PV CCT P-δ CCT PV CCT P-δ PV PV PV : CCT[s].37.363.337.36.87..47.7 PV.37.33.33.94.87.58.4 - PV.39.4.6.6.6.9.9...36.7 -.34.369.4.68.737.77.8.5.87.87.7.9 PV.8.5.9.6.37.75.37.5 PV.9.7.7.7.9.7.7.7 PV.47.69.97.95.37.44.37.4 i

............................................. PV.......................................................................... 4......................................... 5.3....................................... 7 PV 8. PV.................................... 8........................................ 8.. PV............................. PV.............................................................................. 3 3 3....................................... 3 3......................................... 4 3.................................... 4 3................................. 7 3..3................................. 8 3.3....................................... 8 3.3..................................... 9 3.3.................................... 9 3.3.3................................... 9 3.3.4................................... 9 3.3.5.................................. 3.3.6........................ 3.3.7................................. 3.4........................................ 3.4.................................. 3.5....................................... 4 CCT 5 4........................................... 5 4.. δ 3.............................. 5 4.. v 3................................ 7 4..3 P............................ 7 4..4 PV P.............................. 7 4..5 P 3................................ 8 ii

4........................................ 8 4.. δ 3.............................. 9 4.. v 3................................ 9 4..3 P............................... 9 4..4 PV P................................ 9 4..5 P 4................................ 9 4..6................................. 3 4..7...................................... 3 4..8............................. 3 5 3 5. PV................................... 3 5.. PV................................ 33 5.. PV.............................. 35 5..3 PV............................. 36 5..4 PV............................. 37 5................................... 4 5........................... 4 5................................... 4 5..3............................... 4 5.3................................ 45 5.3............................. 45 5.3. PV.......................... 46 5.4.................................. 48 5.4........................... 48 5.4.............................. 49 5.5....................... 5 5.5..................................... 5 5.5. PV.................. 54 6 Y 58 6. PV................................... 58 6.. PV................................ 58 6.. PV.............................. 59 6..3 PV............................. 6 6................................... 6 6........................... 6 6................................... 63 6..3............................... 65 6.3................................ 65 6.3........................... 66 6.3............................. 67 6.3.3 PV............................. 68 6.4.................................. 69 6.4........................... 7 6.4.............................. 7 iii

6.4.3....................................... 7 7 74 7........................................ 74 7......................................... 74 A P-δ 8 B CCT 8 iv

PV PV PV 3. (PV: Photovoltaics) PV.. PV [] 974 997 CO [] CO (I) PV PV 99 8. [3] 997 PV 8 [GW] PV 5 4[GW] (.4) [4] 6[GW] (9 ) [5] PV 8 9 68..[%] PV (II) PV PV. [6] 8GW 3 53GW 8[GW] 3 95[GW] (.) 58[GW] 3 88[GW] (.) 83[GW] 3 33[GW] (.3) [4] PV 3 9 53 6.33 33[%] ( GW ) PV

Cumulative installed PV power [MW] 5 5 5 99 994 996 998 4 6 8 year.: PV [3] PV introduce power [GW] 53 8 4 estimate in 8/7 estimate in 9/4 3 or 4 years earlier.4 5 5 5 3 year.:.: [GW] [4] 3 5 8% 5 7% 38 49% 4% 6 % 63 % 33 % 6 % 8 96

.: [GW] [4] 3 49 9% 5 7% 39 54% 4 49% 6 3% 63 % 4% 33 % 58 88.3: [GW] [4] 3 49 7% 49 5% 63 58% 86 56% 6 % 63 9% 3% 33 % 83 88.4: [GW] [4] 99 5 36 % 46 9% 4 6% 43 59% 3 8% 5 % % 3 % 7 4 (III) PV PV ( ) [7] PV PV.3 [8] km.5.3..5 4 ( 8 3 ) (IV).4 [9] ITIC. 3

.35.3 aerial cable fault underground cable fault fault rate [num/km].5..5..5 999 3 4 5 6 7 8 year.3: 6%. % IEEE346 Information Technology Industry Council (ITIC) SEMI(Semiconductor Equipment and Materials International) SEMI F47 Cheng-Chieh Shen IEC6-4- 3 PLC(Programmable Logic Controller) PLC 3..3.7... (I) [] Tan MPPT PV.5 PV I r PV P pv I pv V ac I ac V pv I pv MPPT MPPT(Maximum Power Point Tracking) PV MPPT V pv.6 PV.6[s] % % (.6(a)) PV [W] 6[W] 5.5[s] 4

.4: ITIC and SEMI F47 curves, and three PLC s voltage sags tolerance test results. IV A 4% B MPPT V P V C (.6(c)).7 PV.6[s] % 4% (.7(a)) PV 6[W] 5[W].5[s] 5[W] IV A 4% B MPPT V P V C (.7(c)). PV PV PV 5

Ir PV array I pv Inverter V ac V pv V ref I ac MPPT.5: PV [] (a) (a) (b) (b) (c) IV.6: PV [] (c) IV.7: PV [] PV PV PV ( ) 6

.3 PV PV PV PV PCS P-δ..PV 3. 4. 6. 5. 7..8: 7

PV PV PV PV.[pu] (.4).[pu] PV PV PV PV PV PV PV PV PV PV PV (PV ) PV. PV... PV PV module PV V P V I P V. PV VI [] PV V P V V P V MPPT PV V P V Boost Converter PV V P V V DC S V DC C DC Grid Converter V DC V AC PV PV 3 PV MPPT 8

.: [] Boost Converter Grid Converter I AC Q Q 3 I PV L B D V DC V AC Grid PV module V PV S C DC Q Q 4.: PV [] 9

.. PV.3 PV [] Active Power Control MPPT ACL MPPT(Maximum Power Point Tracking) ACL(Active Current Limit) PV PV Boost Converter PV V pv PV PV module V pv Grid converter PLL(Phase Locked Loop). PV PV (.4).[pu] ACL.[pu] /..83[pu] [3].[pu] Y [4] PV. PV PV PV.. PV 4 PV PV PV PV ( 3.8) PV.5[pu] PV π

Active Power Control Boost converter PV module MPPT ACL V DC V DC select max V DC k. V pv P Ir V P pv IEEE 547 I max P PV V DC I AC =(I Pdes +I Qdes ) / θ I =θ V -θ PLL -atan(i Qdes /I Pdes ) I AC θ I Voltage Control + V AC * V AC - PI + - I Qmax -I Qmax Active AntiIlanding NBP Phase Locked Loop V AC θ V dq V D V Q G PLL (s) /ω ω /s ω PLL.3: PV []

.4 available area. P const Voltage[p.u.].8.6.4 I const...4.6.8..4 Power [p.u.].4: PV PV PV PV PV

3 3. 3. x d P-δ Y 3. PV PV 3.3 PV PV 3.4 PV PV PV PV PV PV 3.: Y 3.: PV PV 3.3: PV PV 3

3.4: sn PV PV PV 3 PV 4 (.4) 5 6 (.54[pu]) 6 7 PV PV.5[pu] 8 PV PV 9 PV PV 3. PV PV 3.. ( ) PV ( 3.) (I) [6] 3. / (II) ( ) 3.(a) n 4

v g G v t δ xl v synchronous generator I 3.: r l infinite bus n 3.(b) x P x = P = n k= x k.......................... (3.) n P k............................ (3.) k= (3.) (3.) x P P x x P (3.3) (3.4) x = P = n k= x k = n x = x n....................... (3.3) n P k = np......................... (3.4) k= n (3.3) (3.4) δ v x P G x P G... δ3 v 3 δ v x P G δ3 v 3 P n G x n (a) n (b) 3.: (III) ( 3.3(a)) ( 3.3(b)) ( 3.3(c)) 5

(3.5) (3.6) x 3 = x 3c = x 3 + x 3 + x 3 = x 3 + x 3................... (3.5) x 3 + x 3 + x 3 = x 3 + x 3................... (3.6) δ3 v 3 x 3 v δ3 v 3 x 3f x 3 x 3 v x 3 x 3 CB x 3 CB x 3 CB CB (a) (b) δ3 v 3 x 3c v x 3 x 3 (c) 3.3: (IV) PV 3.4 PV pu [MVA] 5[kV] (3.5) (3.6).4[pu].57[pu] v 3.[pu] v P P 3.[pu] synchronous generator δ v G P δ3 v 3 P 3 CB.34[pu].34[pu] x 3 v CB.3[pu] infinite bus 3.4: PV (MVA ) 6

(V) PV PV PV [7] PV (VI) 3.5 PV 3.5 ( 3.3) ( 3.) ( 3.4) x x 3.4[pu].57[pu] ((III) ) P m = P PV (. ) G synchronous generator δ v P x P PV δ+δ3 i δ3 v 3 P 3 CB.34[pu].34[pu] x 3 v CB.3[pu] infinite bus 3.5: 3.5: x ([MVA] )[pu] x ( ) x ( ) x ( ) x ( ).64.497.4.73.5...38..38.5.49 3.. 3.6 [MVA] 5[Hz] 3.6 x,x 3 ( x =.5[pu] x 3 3.6 ) 3.6 ( 3.3) ( 3.) ( 3.4) x x 3.6[pu] (CB:Circuit Breaker) 7

.8[pu] 3.3 3.4 P 3 =.[pu] PV P =.5[pu] P 4 =.9[pu] ( ) x 3.3.6 P v x G δ synchronous generator P PV δ +δ 3 i x 3 δ 3 v 3.4[pu] v P 3 CB.4[pu] CB.4[pu] infinite bus P 4 Load i 4 δ 3 3.6: (MVA ) 3.6: x ([MVA] )[pu] x ( ) x ( ) x ( ) x ( ).64.78.84.4 3.57.99.5.333...5.8..5.8.5..364 3..3 P δ CCT PV PV 3.3 AVR [8] PSS 8

P PSS PV ( 3.8(c))(Lpt=) [4] 3.3. xl ra xl xlmd xmd xld xlfd xlmd xlf xld xmd rkd rfd (a) (b) (d ) 3.7: 3.7(a) [5] 3.7(b) x d x d = x l +...................... (3.7) x md + x lmd +x lfd x l x md x lmd 3.3. (+ ) ( 3.) x d AVR&PSS d q ( ) (Lgt=5) 3.3.3 AVR(Automatic Voltage Regulator) PSS(Power System Stabilizer) AVR [8] ( 3.8(a)) PSS P PSS ( 3.8(b))(LAT=53) [4] 3.3.4 9

PV PV PV ( ) P-δ ( 5 ) 6 Y ( 3.8(c))(Lpt=) [4] PV.5 CV U.5[pu].[pu] EA EAS + - G PSS EFS/G5 UL + G +T 3 s + + +T s - +T 4 s + LL G6 s +T 6 s G5 +T 5 s G=., G=5., T =.3, UL=., LL=-., T 3=., T 4=.5, G5=., T 5=.3, UL=5.5, LL=-4.8, G6=., T 6=. (a) AVR Pg EA VC Pgs +D UL + T s +T s +T 4 s +T 6 s G - +T +T 5 s +T 8 s Vs s +T 3 s +T 7 s -D LL D=., T =., T =.7, T 3 =.5, T 4 =., T 5 =., T 6 =., T 7 =., G=., T 8 =., UL=., LL=-. (b) PSS UL LL EA EF W CV W HT S g - δ +Gs +T s TQTS PLM X SR + + + LVG - /T 3 T /T 6 VM U s L P TH +T 4 s +T 4 s cross Sec -K + TP + K δ=4.,k=.3,t =.,T =.,T 3 =.,T 4 =5.,T 5 =.5,T 6 =9.,U=.,L=.,G=. (c) 3.8: AVR PSS 3.3.5 3.9 [9] P m P e P m P e > P m P e < P m P e =

3.9: 3.3.6 PV ( 3.3) PV PV 3.7 (3.4 ) [MVA].54[pu].[pu].64[pu].64[pu].64[pu] PV.5[pu].4[pu].4[pu] (3..3 ).[pu] PV.5[pu].5[pu].5[pu].[pu].5[pu] PV.5[pu].[pu].[pu].5[pu] x (4.4) 3.5 3.6 3.7: ([MVA] )[pu].64.4.5...5

3.3.7 ( 3.3) PV PV ( 3.8) PV PV PV (3.3.6 ) PV PV PV PV (.5[pu] ) 3.4..83[pu].83[pu].9[pu] 6 (.54[pu]) 3.4. (. ).9[pu] 6 (.54[pu]) 3.5 AVR [8] PSS

P PSS PV ( 3.8(c))(Lpt=) [4] PV ( ) PV.9[pu] 6 (.54[pu]) PV PV PV ( ) PV PV PV PV 3. 3.: 3.8 c 3

3.8: sn PV P mc + = P / PV δ c = π/ 3 P = P 3 + P 4 4 if(v 3 >.83) P 4 = P 4 else P 4 =.v 3 5 P 4 =.54[pu] 6 P 4c =[pu] 7 PV P =.5[pu] 8 PV P =[pu] 9 PV P c =P P m c: P : PV δ c : PV P : P 4 : P 4 : P : PV P c : PV 4

4 CCT PV 4.: ( ) v x d v 3=. - v 3 (4.).[pu] v.[pu] δ - δ PV [rad]( π/[rad]) [rad] δ 3 (4.9) - δ 4 [rad] [rad] P (4.5) P P PV (4.9) P P 3 (4.) P 3 P 4 (4.39) P 4 x.38 x 3.4 *)v 3 =.[pu] 6 **) δ c = π/[rad] 4. 4. δ P v 3 4.. δ 3 v e jδ v 3 e jδ 3 jx + i e j(δ +δ 3 ) = v 3e jδ 3 v jx 3................ (4.) (4.) v 3 v 3 (x + x 3 ) = x 3 v e j(δ δ 3 ) + jx x 3 i e jδ + x v e jδ 3........... (4.) 5

P G δ v synchronous generator x.385 [pu] δ3 v 3 CB P 3.6 [pu].6 [pu] x 3 CB v.7 [pu] infinite bus 4.: ( ) (4.) v 3 (4.3) v 3 = x 3v e j(δ δ 3 ) + jx x 3 i e jδ + x v e jδ 3 x + x 3.............. (4.3) (4.3) v 3 x 3 v sin (δ δ 3 ) + x x 3 i cos δ x v sin δ 3 = x 3 v (sin δ cos δ 3 cos δ sin δ 3 ) + x x 3 i cos δ x v sin δ 3 = (i)δ (x 3 v sin δ ) cos δ 3 (x 3 v cos δ + x v ) sin δ 3 = x x 3 i cos δ.. (4.4) (4.4) δ 3 Z cos (δ 3 α) = x x 3 i cos δ..................... (4.5) Z = (x 3 v sin δ ) + (x 3 v cos δ + x v ).............. (4.6) tan α = x 3v cos δ + x v x 3 v sin δ..................... (4.7) (a) x x 3 i cos δ Z (x x 3 i cos δ ) (x 3 v sin δ ) + (x 3 v cos δ + x v ) (x3 v sin δ ) i + (x 3 v cos δ + x v )......... (4.8) x x 3 cos δ δ 3 = cos ( x x 3 i cos δ Z (b) x x 3 i cos δ Z <- < x x 3 i cos δ Z (ii) δ = (4.4) δ = ) + α.................... (4.9) θ - cos θ (x 3 v + x v ) sin δ 3 = x x 3 i cos δ.................. (4.) 6

(a) x x 3 i cos δ x 3 v + x v ( ) δ 3 = sin x x 3 i cos δ x 3 v + x v..................... (4.) δ 3 (4.5) P (b) x x 3 i cos δ x 3 v + x v θ - sin θ δ 3 4.. v 3 v 3 (4.3) v 3 = x 3v cos (δ δ 3 ) x x 3 i sin δ + x v cos δ 3 x + x 3............ (4.) δ 3 (4.9) v 3 4..3 P P + jq P + jq = V Ī = v e jδ v e jδ v 3 e δ3 jx = v jx + v v 3 e j(δ δ3) jx................... (4.3) v 3 v 3 = v 3 (4.3) (4.3) P + jq = v + v e j(δ δ3) x 3 v e j(δ δ3) jx x 3 i e jδ + x v e jδ3.. (4.4) jx jx x + x 3 = v x 3 v jx jx (x + x 3 ) j v jx x 3 i e j(δ δ δ3) + x v e jδ x x + x 3 P P = v x x x 3 i cos (δ δ δ 3 ) + x v sin δ x + x 3 P = v v sin δ i x 3 v cos (δ δ δ 3 ) x + x 3.............. (4.5) P 4..4 PV P P + jq P + jq = V Ī.......................... (4.6) = v 3 e jδ3 i e j(δ+δ3).................... (4.7) = v 3 i e jδ........................ (4.8) P P = v 3 i cos δ........................... (4.9) (4.) v 3 P 7

4..5 P 3 P 3 P PV P P loss (4.) P 3 = P + P + P loss........................ (4.) P loss =............................. (4.) (4.) (4.) P 3 = P + P........................... (4.) P 3 4. 4. δ P v 3 P v x G δ synchronous generator P PV δ +δ 3 i x 3 δ 3 v 3.4[pu] v P 3 CB.4[pu] CB.4[pu] infinite bus P 4 Load i 4 δ 3 4.: ( ) ( 3.6) P 4 ( 3.6) 3 PV I 4t I 4t = i e j(δ+δ3).......................... (4.3) 4. 3 PV I 4l I 4l = i e j(δ +δ 3 ) + i 4 e j(δ 4+δ 3 ).................... (4.4) I 4t I 4l............................. (4.5) 8

e jφ I 4t e jφ I 4l e jφ....................... (4.6) i e j(δ +δ 3 +φ) i e j(δ +δ 3 +φ) + i 4 e j(δ 4+δ 3 +φ)............. (4.7) i cos δ + δ 3 + φ i cos δ + δ 3 + φ i 4 cos(δ 4 + δ 3 + φ)......... (4.8) i sin δ + δ 3 + φ i sin δ + δ 3 + φ i 4 sin(δ 4 + δ 3 + φ)......... (4.9) 4.. δ 3 (4.8) (4.9) δ 3 = cos ( x x 3 (i cos δ i 4 cos δ 4 ) Z ) + α............... (4.3) Z = (x 3 v sin δ ) + (x 3 v cos δ + x v ).............. (4.3) tan α = x 3v cos δ + x v x 3 v sin δ..................... (4.3) 4.. v 3 (4.9) (4.) v 3 = x 3v cos (δ δ 3 ) x x 3 (i sin δ i 4 cos δ 4 ) + x v cos δ 3 x + x 3....... (4.33) 4..3 P (4.8) (4.5) P = v v sin δ x 3 v (i cos (δ δ δ 3 ) i 4 cos (δ δ 4 δ 3 )) x + x 3...... (4.34) 4..4 PV P (4.9) P = v 3 i cos δ........................... (4.35) 4..5 P 4 P 4 + jq 4 P 4 + jq 4 = V 4 Ī 4.......................... (4.36) = v 3 e jδ3 i 4 e j(δ4+δ3).................... (4.37) = v 3 i 4 e jδ4........................ (4.38) P 4 P 4 = v 3 i 4 cos δ 4........................... (4.39) (4.) v 3 P 9

4..6 S A x A [pu] S B x B [pu] S A = V X A............................ (4.4) S B = V X B............................ (4.4) x B = x A S B S A........................... (4.4) x A =.35[pu] S A = [MVA] S B = [MVA] x B x x =.35 = 7.38[pu]................... (4.43) x B 3 x.5[pu] x (4.44) x =.5.35 =.8[pu]................. (4.44) x 3.5 3.6 4..7 [5] ω S g s ds g dt = δ............................. (4.45) = T M............................ (4.46) S g ([s]) M ([s]) ω ([rad/s]) δ ([rad/s]) T ( - ) s S g d ds g dt (S g) = S g dt ω MS g = = T dδ ω M dt..................... (4.47) T dδ......................... (4.48) P c (δ e ) > P c (δ e ) < 3

P c (δ e ) = T c (CCT: Critical Clearing Time) 4. P-δ δ c δ s T c 4..8 δ c δ s T c M d δ ω dt = P m.......................... (4.49) T c δ c δ c = δ s + Tc P m ω M dtdt = δ s + P mω M T c............... (4.5) ω = πf M(δ c δ s ) T c =......................... (4.5) πf P m f : (5[Hz]) P m : 3

5 P-δ CCT PV CCT PV PV PV PV PV PV PV PV PV PV PV (PV ) PV.9[pu] 6 (.54[pu]) PV PV PV ( ) PV PV PV PV PV ( ) PV PV P-δ 5. PV PV 4 (.. ) PV PV PV PV ( 3.8) 3

PV.5[pu] PV 5.. PV PV PV ( 3.8) PV.5[pu] CCT (I) 5. PV CCT PV PV.5[pu] PV.[pu] ( [MVA]) CCT PV PV CCT CCT ( ) 5.: PV CCT [s].363.5.36.7 PV.7 (II) P-δ PV P-δ 5. P-δ 5.(a) CCT.363[s] 5.(b) PV P.5[pu].[pu] δ s P m CCT.7[s] 5. P-δ.36[s] CCT PV.7[s] PV PV.5[pu] ( ) CCT 33

.5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P m..5 CCT=.7[s] cap=.[pu] v =.[pu] P c P c P 3c v 3c -.5 -.5-3 9 56 8 δ s δ [deg] δ c δ e - 453 7 8 δ s δ c δ [deg] δ e (a) (b) PV 5.: PV.5 Pm.5 CCT=.36[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c.5 P m..5 CCT=.7[s] cap=.[pu] v =.[pu] P c P c P 3c P 4c v 3c -.5 -.5-7 76 5 8 δ s δ c δ [deg] δ e - 34 8 8 δ s δ c δ [deg] δ e (a) (b) PV 5.: PV 34

5.. PV PV PV.5[pu] ( 3.8) PV CCT ( 5.) PV CCT (I) 5. PV CCT PV PV.5[pu](PV ).5[pu].5[pu].75[pu] CCT PV CCT 5.: PV CCT [s] PV PV.363.5.5.75.7.36.6.7.5 (II) P-δ PV P-δ 5.3 P-δ 5.3(a) CCT.363[s] 5.3(b) PV P.5[pu].75[pu] P m CCT.5[s].5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P m.75.5 CCT=.5[s] cap=.[pu] v =.9[pu] P c P c P 3c v 3c -.5 -.5-3 9 56 8 δ s δ [deg] δ c δ e - 36 7 4 8 δ s δ c δ [deg] δ e (a) ( ) (b) PV 5.3: PV 5.4 PV P-δ 5.4(a) CCT.5[s] 5.4(b) PV P P m CCT.75[s] 35

.5 P m.5 CCT=.[s] cap=.5[pu] v =.8[pu] P c P c P 3c v 3c.5 P m.75.5 CCT=.75[s] cap=.75[pu] v =.3[pu] P c P c P 3c v 3c -.5 -.5-39 83 49 8 δ s δ c δ [deg] δ e - 4 67 39 8 δ s δ c δ [deg] δ e (a) (b) PV 5.4: PV P-δ 5..3 PV PV PV ( 3.8) PV CCT ( 5.3) (I) 5.3 PV CCT PV P CCT 5.3: PV CCT [s] PV.363.69.5.44.36.95.7.4 (II) P-δ PV P-δ 5.5 P-δ 5.5(a) CCT.363[s] 5.5(b) PV P c CCT.69[s] 5.5(a) (P-δ ) P c P 3c PV 5.5(b) PV P c δ 7[deg].5[pu] PV 36

PV δ 5.5 4. PV (4.5) PV i P P = v v sin δ i x 3 v cos (δ δ δ 3 ) x + x 3............... (5.) P δ δ δ 3 δ PV δ = δ δ 3 (4.9) (4.6) (4.7) δ 3 = cos ( x x 3 i cos δ Z ) + α................... (5.) Z = (x 3 v sin δ ) + (x 3 v cos δ + x v ).............. (5.3) tan α = x 3v cos δ + x v x 3 v sin δ..................... (5.4) δ = π PV /.(PV PV.[pu] ) PV i =..5=.6[pu] Z = (x 3 v ) + (x v ) = (.57.8) + (.38.).693. (5.5) tan α = x 3v cos δ + x v =.38.57......... (5.6) x 3 v sin δ.57.8 ( ) δ 3 = cos x x 3 i cos δ + α................ (5.7) Z cos (.38.57.6.693 ) + tan (.57).......... (5.8) cos (.57) + tan (.57).89[rad].......... (5.9) δ δ 3 = π.89 =.39................. (5.) cos(δ δ 3 ) cos(.39).945................. (5.) i x 3 v cos (δ δ δ 3 ) x + x 3 =.6.57..945.38 +.57.4[pu]......... (5.) δ =9[deg].4[pu] 5.6 PV P-δ 5.6(a) CCT.5[s] 5.6(b) PV P c CCT.44[s] PV CCT 5..4 PV PV PV PV ( 3.8) CCT 37

.5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P m.5 CCT=.69[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c -.5 -.5-3 9 56 8 δ s δ [deg] δ c δ e - 3 65 3 8 δ s δ c δ [deg] δ e (a) ( ) (b) PV 5.5: PV P-δ.5 P m.5 CCT=.[s] cap=.5[pu] v =.8[pu] P c P c P 3c v 3c.5 P m.5 CCT=.44[s] cap=.5[pu] v =.8[pu] P c P c P 3c v 3c -.5 -.5-39 83 49 8 δ s δ c δ [deg] δ e - 39 58 9 8 δ s δ c δ [deg] δ e (a) ( ) (b) PV 5.6: PV P-δ 38

(I) 5.4 PV CCT PV CCT 5.4: PV CCT [s] PV.363.39.5.53.36.4.7.6 (II) P-δ PV P-δ 5.7(a) P-δ CCT.363[s] 5.7(b) 5.7(a) PV P-δ PV P Q PV δ π P-δ (4.) v 3 = x 3v cos (δ δ 3 ) x x 3 i sin δ + x v cos δ 3 x + x 3............ (5.3) PV δ π v 3 P v 3 P = v v 3 sin(δ δ 3 ) x........................ (5.4) v 3 P CCT.39[s].5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P m.5 CCT=.39[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c -.5 -.5-3 9 56 8 δ s δ [deg] δ c δ e - 3 68 δ s δ [deg] δ c δ e (a) ( ) (b) PV 5.7: PV P-δ 39

5. 3 (3.4 ) ( 3.8) 5...83[pu].83[pu] ( 3.8) CCT CCT (I) 5.5 CCT CCT 5.5: CCT [s].36.369.7.68 (II) P-δ P-δ 5.8(a) P-δ CCT.36[s] 5.8(b) 5.8(a) P-δ P 4 CCT.369[s] 5.9 P-δ 5.9(a) CCT.7[s] 5.9(b) ( 5.4 ) CCT.68[s] 5.. 6 (.54[pu]) ( 3.8) P P m CCT 4

.5 Pm.5 CCT=.36[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c.5 Pm.5 CCT=.369[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c -.5 -.5-7 76 5 8 δ s δ c δ [deg] δ e - 7 79 54 8 δ s δ c δ [deg] δ e (a) ( ) (b) 5.8: P-δ.5 Pm.5 CCT=.7[s] cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c.5 Pm.5 CCT=.68[s] cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c -.5 -.5-3 57 6 8 δ s δ c δ [deg] δ e - 3 55 8 δ s δ c δ [deg] δ e (a) (b) 5.9: P-δ 4

(I) 5.6 CCT P P m CCT 5.6: CCT [s].36.77.7.5 (II) P-δ P-δ 5. P-δ 5.(a) CCT.36[s] (.[pu]) ( ).5[pu].4[pu] 5.(b) CCT.77[s].5 Pm.5 CCT=.36[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c.5.5 P m.4 CCT=.77[s] cap=.64[pu] v =.[pu] P c P c P 3c P 4c v 3c -.5 -.5-7 76 5 8 δ s δ c δ [deg] δ e - 4 678 δ s δ [deg] δ c δ e (a) ( ) (b) 5.: P-δ 5. P-δ 5.(a) CCT.7[s] 5.(b) v 3 CCT.5[s] 5..3 CCT 4

.5 Pm.5 CCT=.7[s] cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c.5.5 P m.4 CCT=.5[s] cap=.4[pu] v =.3[pu] P c P c P 3c P 4c v 3c -.5 -.5-3 57 6 8 δ s δ c δ [deg] δ e - 3 67 3 8 δ s δ c δ [deg] δ e (a) ( ) (b) 5.: P-δ (I) 5.7 CCT sin P 3c CCT PV CCT (.7[s]) 5.7: CCT [s].36.87.7.9 (II) P-δ P-δ 5. P-δ 5.(a) CCT.36[s] 5.(b) P c P-δ CCT.87[s] PV P c P 3c P c P-δ (4.34) i 4 P = v v sin δ x 3 v (i cos (δ δ δ 3 ) i 4 cos (δ δ 4 δ 3 ) x + x 3...... (5.5) 5.3 P-δ 5.3(a) CCT.7[s] 5.3(b) P-δ P-δ.6[pu] P m (.5[pu]) CCT.9[s] PV ( 5.(b)).7[s] 43

.5 Pm.5 CCT=.36[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c.5 Pm.5 CCT=.87[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c -.5 -.5-7 76 5 8 δ s δ c δ [deg] δ e - 7 55 4 8 δ s δ c δ [deg] δ e (a) ( ) (b) 5.: P-δ.5 Pm.5 CCT=.7[s] cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c.5 Pm.5 CCT=.9[s] cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c -.5 -.5-3 57 6 8 δ s δ c δ [deg] δ e - 3 4 7 8 δ s δ c δ [deg] δ e (a) ( ) (b) 5.3: P-δ 44

5.3 (.. ) PV PV ( 3.8) 5.3. PV (3.3.6 ) PV PV ([MVA]) P-δ CCT (I) 5.8 CCT CCT 5.8: CCT [s].363.5.35.7 PV.94 -. - (II) P-δ P-δ 5.4(a) P-δ 5.4(b) 5.4(a) P-δ (II-) P-δ.[pu].5[pu] ([MVA]) x.38[pu].636[pu] δ s 34[deg] 4[rad] P c δ e 55[deg] 48[deg] 45

(II-) [s] 5[s] (4.5) CCT M M(δ c δ s ) T c =......................... (5.6) πf P m ( ) (δ c δ s ) P m CCT.5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P m.5 CCT=.[s] cap=.5[pu] v =.8[pu] P c P c P 3c v 3c -.5 -.5-3 9 56 8 δ s δ [deg] δ c δ e - 39 83 49 8 δ s δ c δ [deg] δ e (a) ( ) (b) 5.4: P-δ 5.3. PV PV PV ( ) LFC( ) PV P-δ PV (.5[pu]) CCT (I) 5.9 PV CCT PV CCT (II) P-δ PV P-δ PV 46

5.9: PV CCT [s] PV.363.33.5.58.36.94.7 - (II-) 5.5(a) P-δ 5.5(b) PV P-δ 5.5(a) 5.5(b) PV.5[pu] CCT.5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P mc.75 P m.5 CCT=.33[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c -.5 -.5-3 9 56 8 δ s δ [deg] δ c δ e - 3 76 4 8 δ s δ c δ [deg] δ e (a) ( ) (b) PV 5.5: PV P-δ (II-) 5.6(a) PV P-δ 5.6(b) 5.5(a) P-δ P-δ.5 P mc.75 P m.5 CCT=.58[s] cap=.5[pu] v =.8[pu] P c P c P 3c v 3c.5 P mc.75 Pm.5 no CCT cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c -.5 -.5-39 6 3 8 δ s δ c δ [deg] δ e - 3 84 8 δ s δ e δ [deg] (a) (b) 5.6: PV P-δ 47

5.4 (.. ) PV ( 3.8) 5.4. P δ CCT (I) 5. CCT 5.: CCT[s].363.36.5.7 (II) P-δ P-δ 5.7 P-δ 5.7(a) 5.7(b).5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 Pm.5 CCT=.36[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c -.5 -.5-3 9 56 8 δ s δ [deg] δ c δ e - 7 76 5 8 δ s δ c δ [deg] δ e (a) (b) 5.7: P-δ 48

P P (4.5) P = v v sin δ i x 3 v cos (δ δ δ 3 ) x + x 3............... (5.7) P (4.34) P = v v sin δ x 3 v (i cos (δ δ δ 3 ) i 4 cos (δ δ 4 δ 3 ) x + x 3...... (5.8) (II-) δ =[deg] PV P i 4 (.9[pu]) PV i (.5[pu]) P δ P P (II-) P v x +x 3 x =.38[pu] x 3 =.57[pu] v =.[pu] 3 x =.5[pu] x 3 =.8[pu] v =.3[pu] P-δ. P max =.4[pu]................... (5.9).38 +.57 P max =.3.79[pu]..................... (5.).5 +.8 δ =75[deg] P-δ.[pu] CCT (II-3) 5.8 P-δ 5.8(a) 5.8(b) CCT P-δ CCT 5.4. PV PV ( 3.8) P P m CCT (I) 5. CCT CCT 49

.5 P m.5 CCT=.[s] cap=.5[pu] v =.8[pu] P c P c P 3c v 3c.5 Pm.5 CCT=.7[s] cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c -.5 -.5-39 83 49 8 δ s δ c δ [deg] δ e - 3 57 6 8 δ s δ c δ [deg] δ e (a) (b) 5.8: P-δ 5.: CCT [s].363.9.5.36.36..7 - (II) P-δ P-δ P (II-) P 5.9(a) P-δ CCT.363[s] 5.9(b) P.[pu] PV P (.5[pu]) PV.[pu].5[pu] M ([MVA]) [s] 5[s] P m.5[pu].[pu] (4.5) CCT M P m M(δ c δ s ) T c =......................... (5.) πf P m CCT.5/.87 ( CCT.3[s]) δ s δ c δ s CCT.9[s] (II-) P.[pu].[pu] P-δ δ =8[deg].97[pu].[pu] P-δ 5.(b) P-δ.37[pu] 5

.5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P m..5 CCT=.9[s] cap=.5[pu] v =.3[pu] P c P c P 3c v 3c -.5 -.5-3 9 56 8 δ s δ [deg] δ c δ e - 48 69 36 8 δ s δ c δ [deg] δ e (a) ( ) (b) 5.9: P-δ.5 Pm.5 CCT=.36[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c.5 P m..5 CCT=.36[s] cap=.[pu] v =.[pu] P c P c P 3c v 3c -.5 -.5-7 76 5 8 δ s δ c δ [deg] δ e - 5 69 3 8 δ s δ c δ [deg] δ e (a) ( ) (b) 5.: P-δ 5

5.5 5. 5.4 PV PV 5.5. CCT 5. PV CCT PV 5. 5. Case No. 5. sn(scenario number) trans. const. trans. reduce load const. load reduce PV CCT.7[s] 5.: CCT[s] sn.363.36.5.7 PV.33.94.58 - PV.39.4.53.6 3.9..36-4.369.68 5.77.5 6.87.9 7 PV.5.6.75.5 8 PV.7 9 PV.69.95.44.4 (I) PV PV CCT CCT PV PV PV ( 3.8) PV PV.5[pu] CCT PV PV.5[pu] ( 3.8) PV PV CCT ( 5.) PV CCT 5

.8.7.6 CCT[s].5.4.3.. 3 4 5 6 7 8 9 Case No. trans. const. load const. trans. reduce load reduce 5.: CCT[s] PV PV ( 3.8) PV CCT ( 5.3) PV PV ( 3.8) CCT (II) CCT.83[pu].83[pu] ( 3.8) CCT CCT 6 (.54[pu]) ( 3.8) P P m CCT CCT (III) CCT 53

PV (3.3.6 ) PV PV P-δ CCT PV PV (.5[pu]) CCT (IV) CCT P δ CCT PV PV ( 3.8) P P m CCT 5.5. PV PV PV ( 3.8) PV PV CCT ( 5.3) CCT (I) 5.3 PV CCT PV 5. PV CCT PV PV PV CCT PV CCT PV 54

5.3: PV CCT[s] sn PV.363.36.5.7 PV.33.94.58 - PV *.39.4.53.6 3.9..36-4.369.68 PV 5.77.5 6.87.9 7 PV.5.6.75.5 8 PV.7 99 PV.69.95.44.4 93 -.73 - - 94.33.65 PV 95.667.5 96 - - 97 PV.63.78.6. *: -:CCT ( ) CCT[s].8.7.6.5.4.3.. 9 9 9 93 94 95 96 97 98 99 Case No. trans. const. load const. trans. reduce load reduce 5.: PV 55

(II) P-δ PV CCT 5.3 PV P-δ 5.3(a) CCT.5[s] 5.3(b) CCT.5[s] PV P 3c PV PV P c CCT.5.5 P m.4 CCT=.5[s] cap=.4[pu] v =.3[pu] P c P c P 3c P 4c v 3c.5.5 P m.4 CCT=.5[s] cap=.4[pu] v =.3[pu] P c P c P 3c P 4c v 3c -.5 -.5-3 67 3 8 δ s δ c δ [deg] δ e - 3 75 57 8 δ s δ c δ [deg] δ e (a) sn 5 (b) sn 95 PV 5.3: P-δ (III) PV P-δ (4.33) PV v 3 = x 3v cos (δ δ 3 ) x x 3 (i sin δ i 4 cos δ 4 ) + x v cos δ 3 x + x 3....... (5.) PV i δ 3 PV i (4.9) (4.6) (4.7) δ 3 = cos ( x x 3 i cos δ Z ) + α................... (5.3) Z = (x 3 v sin δ ) + (x 3 v cos δ + x v ).............. (5.4) tan α = x 3v cos δ + x v x 3 v sin δ..................... (5.5) 5.4(a) δ =9[deg] PV i v 3 5.4(b) 5.(b) 5.4(a) PV i v 3 5.4(b) PV i.5[pu] v 3 PV i v 3 56

.745.875.87.74.865.735.86.855 v 3 [s].73 v 3 [s].85.845.75.84.835.7.83.85.75..4.6.8.8..4.6.8 i [pu] i [pu] (a) sn 5 (b) sn 95 5.4: δ =9[deg] PV i v 3 (IV) PV CCT 5.4 PV ( ) PV ( ) PV PV PV PV 5.4: CCT CCT PV * PV *: 57

6 Y Y CCT 5 AVR PSS PV Y Y CCT PV CCT Y P EF v EF ( / ) pu [pu] δ [deg] 6. PV PV 3 (.. ) PV PV PV ( 3.8) PV.5[pu] PV PV Y 6.. PV PV PV ( 3.8) PV.5[pu] CCT (I) 6. PV CCT 58

PV PV.5[pu] PV.[pu] ( [MVA]) CCT PV PV CCT CCT ( ) 6.: PV CCT [s].37.87.337.47 PV.9.7 (II) Y PV Y 6.(a) Y CCT.37[s] 6.(b) PV P.5[pu].[pu] δ s P m δ P m CCT.9[s].5 CCT=.37[s] 8 35.5 CCT=.9[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.37 3 4 5-9 time [s] δ P e t e g - -.9 3 4 5-9 time [s] δ P e t e g EF/ (a) (b) PV 6.: PV 6.. PV PV PV.5[pu] ( 3.8) PV CCT ( 6.) PV CCT 59

(I) 6. PV CCT PV PV.5[pu](PV ).5[pu].5[pu].75[pu] CCT PV CCT 6.: PV CCT [s] PV PV.37.8.87.37.9.337.9.47.37.7 (II) Y PV Y 6.(a) Y CCT.37[s] 6.(b) PV P.5[pu].75[pu] P m CCT.8[s].5 CCT=.37[s] 8 35.5 CCT=.8[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.37 3 4 5-9 time [s] δ P e t e g - -.8 3 4 5-9 time [s] δ P e t e g EF/ (a) (b) PV 6.: PV 6..3 PV PV PV ( 3.8) PV CCT ( 6.3) 6

(I) 6.3 PV CCT PV P CCT 6.3: PV CCT [s] PV.37.47.87.37.337.97.47.37 (II) Y PV Y 6.3(a) Y CCT.37[s] 6.3(b) PV Y PV P.88[pu].76[pu] CCT.47[s].5 CCT=.3[s] 8 35.5 CCT=.47[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.3 3 4 5-9 time [s] δ P e t e g P - -.47 3 4 5-9 time [s] δ P e t e g P (a) (b) PV 6.3: PV 6. 3 (3.4 ) ( 3.8) 6

6...83[pu].83[pu] ( 3.8) CCT CCT (I) 6.4 CCT CCT 6.4: CCT [s].337.34.47.4 (II) Y PV Y 6.4(a) Y CCT.3[s] 6.4(b) 6.4(a) P 4 P CCT.34[s].5 CCT=.337[s] 8 35.5 CCT=.34[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.337 3 4 5-9 time [s] δ P e t e g P 4 - -.34 3 4 5-9 time [s] δ P e t e g P 4 (a) (b) 6.4: 6.5(a) Y CCT.47[s] 6.5(b) 6.5(a) 6.5(a) δ 9[deg](t=.9[s]).75[pu] δ 9[deg](t=.[s]).7[pu] CCT.4[s] 6

.5 CCT=.47[s] 8 35.5 CCT=.4[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.47 3 4 5-9 time [s] δ P e t e g P 4 - -.4 3 4 5-9 time [s] δ P e t e g P 4 (a) (b) 6.5: 6.. 6 (.54[pu]) ( 3.8) P P m CCT (I) 6.5 CCT P P m CCT 6.5: CCT [s].337.737.47.8 (II) Y Y 6.6(a) Y CCT.337[s] 6.6(b) P δ CCT.737[s] 6.7(a) Y CCT.47[s] 6.7(b) e g CCT.8[s] 63

.5 CCT=.33[s] 8 35.5 CCT=.737[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.33 3 4 5-9 time [s] δ P e t e g - -.737 3 4 5-9 time [s] δ P e t e g (a) (b) 6.6:.5 CCT=.47[s] 8 35.5 CCT=.8[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.47 3 4 5-9 time [s] δ P e t e g - -.8 3 4 5-9 time [s] δ P e t e g (a) (b) 6.7: 64

6..3 CCT (I) 6.6 CCT CCT 6.6: CCT [s].337.87.47.7 (II) Y PV Y 6.8(a) Y CCT.337[s] 6.8(b) Y P P-δ CCT.87[s].5 CCT=.337[s] 8 35.5 CCT=.87[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.337 3 4 5-9 time [s] δ P e t e g P 4 - -.87 3 4 5-9 time [s] δ P e t e g EF/ (a) (b) 6.8: 6.3 (.. ) PV PV ( 3.8) 65

6.3. AVR&PSS (3.3. ) x d CCT (I) 6.7 CCT δ q e g x d AVR PSS.[pu] CCT PV CCT 6.7: CCT [s].363.37..87.36.337.7.47 PV.7.7 (II) Y Y 6.9(a) CCT.363[s] 6.9(b) Y e g P CCT.3[s] 6.9 PV Y TP ( ) ( ) CCT.7[s] 66

.5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5.5 CCT=.37[s] 8 35 9 45 δ [deg] -.5 -.5-45 - 3 9 56 8 δ s δ [deg] δ c δ e - -.37 3 4 5-9 time [s] δ P e t e g (a) P-δ (b) Y.5 CCT=.7[s] 8 35.5 -.5 9 45-45 δ [deg] - -.7 3 4 5-9 time [s] δ P e t e g TP 6.9: PV Y 6.3. PV (3.3.6 ) PV PV ([MVA]) P-δ CCT (I) 6.8 CCT CCT Y 6.8: CCT [s].37.87.337.47 PV.33.4.9.7 67

(II) Y PV Y 6.(a) Y CCT.37[s] 6.(b) P-δ Y P.43[s].88[pu].8[s].8[pu] [s] 5[s] CCT.87[s].5 CCT=.37[s] 8 35.5 CCT=.87[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.37 3 4 5-9 time [s] δ P e t e g - -.87 3 4 5-9 time [s] δ P e t e g (a) (b) 6.: 6.(a) Y 6.(b) P-δ CCT.47[s].8[pu].7[pu].5 CCT=.33[s] 8 35.5 CCT=.47[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.33 3 4 5-9 time [s] δ P e t e g - -.47 3 4 5-9 time [s] δ P e t e g (a) (b) 6.: 6.3.3 PV PV PV ( ) LFC( ) 68

PV P-δ PV (.5[pu]) CCT (I) 6.9 PV CCT PV CCT 6.9: PV CCT [s] PV.37.37.87.87.337.33.47.4 (II) Y PV Y 6.(a) Y CCT.37[s] 6.(b) PV CCT.37[s] PV T P 6.4(a) T P.75[pu] 5[s] CCT Y 6.3(a) Y CCT.87[s] 6.3(b) PV CCT.87[s] 6.4(b) T P.75[pu] 5[s] T P 6.4 (.. ) PV ( 3.8) 69

.5 CCT=.3[s] 8 35.5 CCT=.3[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.3 3 4 5-9 time [s] δ P EA v TP - -.3 3 4 5-9 time [s] δ P EA v TP (a) (b) PV 6.: PV.5 CCT=.9[s] 8 35.5 CCT=.9[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.9 3 4 5-9 time [s] δ P EA v TP - -.9 3 4 5-9 time [s] δ P EA v TP (a) (b) PV 6.3: PV.5 CCT=.37[s] 8 35.5 CCT=.87[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 -.37 5 5 5-9 time [s] -.87 5 5 5-9 time [s] δ P e t e g TP δ P e t e g TP (a) (b) 6.4: PV Y 7

6.4. P δ CCT (I) 6. CCT PV CCT 6.: CCT[s].37.337.87.47 PV.9.7 (II) Y PV Y 6.5(a) Y CCT.37[s] 6.5(b) EF.4[pu] CCT.337[s].5 CCT=.37[s] 8 35.5 CCT=.33[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.37 3 4 5-9 time [s] δ P e t e g - -.33 3 4 5-9 time [s] δ P e t e g (a) (b) 6.5: 6.4. PV PV ( 3.8) 7

P P m CCT (I) 6. CCT CCT 6.: CCT [s].37.6.87..337.9.47.7 (II) Y PV Y 6.6(a) Y CCT.37[s] 6.6(b).5 [MVA] 65[MVA] P P.5[pu].[pu] δ 7[deg] CCT.6[s].5 CCT=.37[s] 8 35.5 CCT=.6[s] 8 35.5 9 45 δ [deg].5 9 45 δ [deg] -.5-45 -.5-45 - -.37 3 4 5-9 time [s] δ P e t e g - -.6 3 4 5-9 time [s] δ P e t e g EF/ (a) (b) 6.6: 6.4.3 Y PV CCT CCT 6. 7

CCT PV CCT CCT Y CCT ( 5.4) 6.: CCT[s].37.363.337.36.87..47.7 PV.37.33.33.94.87.58.4 - PV.39.4.6.6.6.9.9...36.7 -.34.369.4.68.737.77.8.5.87.87.7.9 PV.8.5.9.6.37.75.37.5 PV.9.7.7.7.9.7.7.7 PV.47.69.97.95.37.44.37.4 73

7 7. PV P-δ CCT CCT PV PV CCT P-δ CCT PV CCT P-δ PV PV PV 7. PV PV PCS 74

75

TA C 76

4 77

[] Wikipedia, - Wikipedia, http://ja.wikipedia.org/wiki/%e5%a4%aa%e9%99 %BD%E9%9B%BB%E6%B%A, 3 [] Wikipedia, - Wikipedia, http://ja.wikipedia.org/wiki/%e5%9c%b%e7%9 %83%E6%B8%A9%E6%9A%96%E5%8C%96, 3 [3] IEA INTERNATIONAL ENERGY AGENCY, Trends in photovoltaic applications. Survey report of selected IEAcountries between 99 and 8, Report IEA-PVPS T-8, p5, 9 [4],, 9-8 [5], ( ), 9 [6], 3,, 9 [7],, VOL.3, No., [8],, p., 8 [9] Cheng-Chieh Shen, A Voltage Sag Index Considering Compatibility Between Equipment and Supply, IEEE TRANSACTIONS ON POWER DELIVERY, VOL., NO., APRIL 7 [] Tan Tiam Yun, A model of PV generation suitable for stability analysis, IEEE Transactions on Energy Conversion, v 9, n 4, p748-755, December 4 [] Minwon Park, a novel simulation method for PV power generation systems using real weather conditions, ISIE. IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.TH857), p 56-3 vol., [] S. Achilles, Transmission System Performance Analysis for High-Penetration Photoboltaics, NREL/SR-58-43, 8 [3],,, R95, [4], - -L Y S (H9 ), 9 [5], - -,, ISBN978-4-74-748-8, p. 9, 9 [6],,, ISBN4-88686-3-, pp. 65-66, [7],,,,,, (-3) ( ) 78

[8],,, vol 536, p5 (995-) [9], - -,, ISBN978-4-74-748-8, p. 49, 9 79

.,,,, K. M. Liyanage, - -, (-9).,,,, K. M. Liyanage, - -,, PE--3 PSE-- (-9) 3.,,,,,, PSE--3 (-) 4.,,,,, / /, PE--3/PSE- -4/SPC--77 (-3) ( ) 5.,,,,, (-3) ( ).,,,,,, (-3) ( ) 8

A P-δ A. P-δ x.38[pu] P δ s =3[deg].5[pu] PV P.5[pu] P 3 P P.[pu] v 3.[pu] v.8[pu] P P m P c P m δ e P c PV P 3c PV P c v 3c v 3 δ c 76[deg] CCT.33[s].5 P mc.75 P m.5 CCT=.33[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c -.5-3 76 4 8 δ s δ c δ [deg] δ e A.: P-δ 8

B CCT synchronous generator δ v G P δ3 v 3 P 3 CB.34[pu].34[pu] x 3 v CB.3[pu] infinite bus B.: (-) P-δ A. PV i = P v v δ P = v v sin δ x + x 3.......................... (B.) P-δ ( B.) x 3 =.3 x t =.4 δ P c P (-) δ s δ e P 3 = P............................. (B.) P P m P 3 (=.[pu]) P = P m =.[pu]......................... (B.3) δ s P =.[pu] δ (B.) ( B.3) ( ) δ s = sin (x + x 3 )P m...................... (B.4) v v (B.4) 4[deg] 8

.5 P P c P [pu].5 -.5-8 δ [deg] B.: P-δ (PV ) δ e P c =.[pu] δ δ e ( δ s = sin (x + x ) 3)P m...................... (B.5) v v δ e 7[deg].5 P P c P m. P [pu].5 -.5-4 7 8 δ s δ [deg] δ e B.3: P-δ δ s δ e (PV ) (-3) δ c δ c 83

( ) ( ) δ δ c CCT c (P m )dδ e s c (P c P m )dδ =................. (B.6) (B.6) 6 δ c NR δ c 53[deg] P [pu].5 P m..5 up down P P c -.5-453 7 8 δ s δ c δ [deg] δ e B.4: P-δ δ s (PV ) (-4) T c P m δ s δ c (B.7) T c M(δ c δ s ) T c =......................... (B.7) πf P m M [s] f 5[Hz].7[s] 84