宋元明代数学書と「阿蘭陀符帳」 : 蘇州号碼の日本伝来 (数学史の研究)

Similar documents
42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$

数学月間活動から見た教育数学

06’ÓŠ¹/ŒØŒì

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Wolfram Alpha と数学教育 (数式処理と教育)

作図ツール GC/html5 ビューア版の開発と iPad を使った教育実践 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)



立命館21_川端先生.indd

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}



Vol.60 No.3 December JACAR Ref. A - -

表紙4_1/山道 小川内 小川内 芦塚


110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

01ⅢⅣⅤⅥⅦⅧⅨⅩ一二三四五六七八九零壱弐02ⅢⅣⅤⅥⅦⅧⅨⅩ一二三四五六七八九零壱弐03ⅢⅣⅤⅥⅦⅧⅨⅩ一二三四五六七八九零壱弐04ⅢⅣⅤⅥⅦⅧⅨⅩ一二三四五六七八九零壱弐05ⅢⅣⅤⅥⅦⅧⅨⅩ一二三四五六七八九零壱弐06ⅢⅣⅤⅥⅦⅧⅨⅩ一二三四五六

第85 回日本感染症学会総会学術集会後抄録(I)


Core Ethics Vol.

04-“²†XŒØ‘�“_-6.01

8y4...l

fromdaikyo_h1


橡点検記録(集約).PDF

<30312D C839397AA97F02E696E6464>

GM-01A_usermanual

(II) tikeya[at]shoin.ac.jp ayakutsuki[at]shoin.ac.jp Study of katakana for English Speakers Learning Japanese (II) IKEYA Tomoko KUTSUKI Aya Faculty of

I

„h‹¤.05.07


16_.....E...._.I.v2006


日本看護管理学会誌15-2


13 RoboCup The Interface System for Learning By Observation Applied to RoboCup Agents Ruck Thawonmas

Acknowledgements I wish to thank my supervisor, Dr Liu Hong, for his guidance throughout the various revisions of this thesis, as well as his patience



;HgS 1998 ;Fe2O kg ; kg 1 Minami et al., S 33 S 34 S 36 S % 0.75% 4.21% S 34 S 34 S Ish

06_学術.indd

28 Theoretical and Applied Linguistics at Kobe Shoin 2014 No. 17 objects, (3) to choose KATAKANA word, if they are unsure of selecting, (4) to develop

数理解析研究所講究録 第1955巻


Transcription:

$\backslash 4$ $\grave$ REJECT}$g$\mathscr{X}\mathscr{L}$ 1739 2011 128-137 128 : Chinese Mathematical Arts in the Song, Yuan and Ming Dynasties and thedutch Numerals -The Suzhou Numerals Transmitted into Japan (JOCHI Shigeru) (LIU Bowen) 2 HAO (CHANG Hao) 3 lntemational Center, Osaka Kyoiku University Graduate lnstitute of Japanese Studies, National Kaohsiung First Univ of Sci And Tech Department of Applied Japanese, I-Shou University I $A$ (1275 ) ( 1299 ) 13 ( 1592 ) 16 ( ) 3 $\ovalbox{\tt\small REJECT}$lAjF$\not\in$X $\Re$ # $*\mathscr{z}$ $\varpi$f# $\ovalbox{\tt\small ( 1627 ) (C) 22500962 $NSC98-2511-S-327\cdot\omega 1-MY3$ 1 jochi\copyright ccosaka-kyom $\iota$acjp $hnp:/mw$osaka-kyoim$\iota$acjp $\sim$j $\alpha$h 2 lbw\copyright cmlsnkfistkedutw 3 ch3hao@gma com $i1$ 4 (199312) - ( ) (1993) Jl :6143 ( 1641 ) ( ) ( ) $([\alpha 1;1994) $ $:3$ Jl $178$ 004) Jl :15-22 ( 1673 ) ( ($MX\infty$ Ri$\alpha$i ) 1613 $)$ ( )

$10_{\text{ }}$ $\grave$ $\gravearrow$ 129 (1928;1954) (1930;1954) $**$ (1944) (1964) 5 (18851962) 7 1950 3 8 ) $\circ$ $m$ $)$ ( 1592 ( ) ( ) ( 1675 ) 9 (16811763) ( ( ) ( ) 1757 ) ( ) $ \grave $ ) 5 (1964) 6 1712 ( 1712 ) 10 (1877) J ( ( 1781 ) ) ( (20052009) Jl :12) 7 (1935) $\underline{u}vol1:2$ [r 8 (2003) (2003) (2004) (2007) (2007) $\circ$ 9 10

$\mathscr{n}^{-\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}-}ffl^{13}$ $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ $0^{1}$ 130 Big5 ( 1 ) 1 5 1 11 3 4 5 1 1 3 $0$ $\sim$ 6 $8$ $9$ 5 $5\sim 9$ 9 4 4 9 5 2 f$ =$ ( ) [ ( 1573 ) ( ) ( 1592 ) (?) H $ $ $\searrow$ 12 : $\ovalbox{\tt\small REJECT}$? J ( 1798 ) 1 ( ) 1 11 12 13 ( )

131 ( ( ) 1893 ) $\Re^{m}) ) $ ( ) 14 ( 1524 ) $15$ $(1019\cdot 1086)$ 16 5 1 2 $4$ $7$ 17 3 7 ( ) 11 19 3 $19152\div 56=19152\div 4\div 14=342$ 56 4 14 $4788\div 14=342$ 4788 4 1 3 300 3 14 4 12 47 35 35 3( ) 588 5 1 4 4 14 4 16 58 42 14 l\={o} (1944) :173-174 16 ( ) (1978;2008) 7 4 $(-)$ 17 ( ) (1993) I t 2:396

$;\iota@_{\backslash }*\subset)$ $\lrcorner r^{arrow}$ $\S^{\S}\S^{2}\frac{\prime}{;i}\backslash$ $\subset_{\bigwedge_{\vee}\cdot\bigwedge_{\prime}})k^{\gamma}\backslash ")_{:_{d^{l=}})}^{p_{t}\triangleleft}\re^{\searrow}:c^{\backslash }: _{-d^{t}}\{i\overline{\not\in}\backslash \iota^{t}[\theta \cdot$ $( \wedge \bigwedge_{-}r )\vee\cdot$ $\vee^{-}\phi^{\zeta j_{t})}\ovalbox{\tt\small REJECT}_{\vee}\}\^{\otimes 1}(rk^{\vee}$ $\{j\}_{-}:\ovalbox{\tt\small REJECT}_{\backslash }^{\wedge^{\otimes_{o_{\wedge}^{\rangle}}}}:_{\bigwedge,}$ $-$ $\{$ $)-\},\delta^{\theta\vee}$ $arrow\tau$ $\sim\backslash$ $i\downarrow$ $ $ $\Re^{-}$ $\#^{\_{t}}\wedge$ $\text{ _{}\overline{t}}:\overline{i}=/$ $ r\}j^{\gamma}j$ $\rangle$ 132 4 28 2 28 34 $4788\div 14$ 3 3428 $($58-16 342 $5\mathfrak{B}(47\cdot 12(3\cross 4))$ $(4\cross 4))$ ( ) 1 4 2 5 $\ovalbox{\tt\small REJECT} \mathscr{x}^{-}4$ 5, $\frac{\text{ }}{}--$ $\vee\sim$ $\S\int$ $\ovalbox{\tt\small REJECT}$, $* )$ $i $ : $-$ $?$ $\sim$ 3 ( 418 $5^{}$ 6 $\mathfrak{u}i$ 721 ( ) ( 1573 ) ( ) $]$ 5 ( ) \={o} 5 ( 1439 ) 18 ( 1884 ) 19 ( 1914 5 ) $1$ $2$ 20 ( ) $2$ $1$ 21 ( 1898 ) 15 22 (1953) (1954)

$\} _{l}^{)}$ $0$ 1 2 $ $ 1766) 133 15 23 5 6 1 $\sim$ VI 1930 % 2 $Q$ $i$ $t$; $\aleph$ ff 30 8 25 1970 26 1980 V 3) $\cdot$ (1706 (1953) (1970) (20074) (20079) 24 1912! (20079) 25 ( ) (1924) I Jl :263 26 (2002) $htt\mathfrak{v}://www$ntledu aso? $\mathfrak{v}$id $=$3&mkev $tw/\mathfrak{v}\iota iblish/\mathfrak{v}ublish$ $=39_{o}$ $(0028X]912$ $2$ $20$ $)$ ht $://www$libkobe-u$ac\cdot/roducts/okeisho/mokurokuhtml$)

$( \mathscr{h}_{\ovalbox{\tt\small REJECT}}^{\underline{ }}g^{\underline{\langle}}\frac{\dot h_{l}^{*}}{\ovalbox{\tt\small REJECT}}27$ 134 $\mathscr{n}^{\lambda}\mathscr{h}^{\lambda}\mathscr{n}\dot{\text{ }}B^{-}4$ $10$ (1798) ) 9 ( 1798 ) 10 5 11 ( ( ) 1893 ) $\backslash$ 5 ( ) $\ovalbox{\tt\small REJECT}$ 27 1784-186& $\backslash$ $=$ W $\nearrow\backslash$ J $\backslash$ $(1824?-1898)$ ( ) ( 31 2 27 74 31 ) 3

$\dagger\pm$ $arrow$ $\equiv$ 135 VI $+)) \iota $ (5 ) 5 (1720) 5 (1788 ) 8(1788) 2 ( ) 1789 ) 17 18 (1734-1807) $\sim$ ( ) ( ) ( ) Jl (1721 ) ) 5 (1720) ( 10 (1798) ) ( ) (2010) - (1658) 1677 p31 5 p34 (1896: $\overline{\mathbb{r}}$ 1918, 1960, 1981) [ : (1947;1984:1999) 2 3 4 (1925;1954) k $*$ 1925-18:82-88 (1933;1954) 1928-2:189-195 (1928;1954) (1933:1954) (1930;1954) 1930-1:1-21 (1933;1954) $($1958: $1\mathfrak{B}8)$ j 2:8-18 (IOP8) vol10:3\ o2-373 (1976) $\ovalbox{\tt\small REJECT}$ 4 ( ) (1998) $\sim$ $ $r $10$ : (1935-1948) 2 : $\sim$ (1937) 2 :

$\dagger\pm$ 136 (1941) : ( ) (1944) (r : I $\ovalbox{\tt\small REJECT})$ (1970) : ( ) $\dagger\pm$ (1980) : $ffi\gamma$ (1944) j 3-1:167-193 j 231-257 $\sim$ ( ) (1954:1979) I 5 : (1953) 1953-9:5743 (1954) m 26:13-19 $\varpi$f $\ovalbox{\tt\small REJECT}$ $28:1-12$ (1954) I j 29:818 (1954) II (1955) $m$ M 34:12-22 (1955) 16 (1) j j 36:17-22 (1956) 16 (2) M $38:1\alpha 16$ (1957) 16 (3) j 39:7-14 (1967) - M 5 $\sim$2:1-39 NeedhamJ (1993) $\mathbb{f}$oe (1954-) SCtence and Cyiltzaoin in Chum Cambridge: Cambndge University Pless : $(19\mathfrak{B})$ : $\approx ffi$ ) (1974) $\sim$ : (1964) [ - : (1960) j $7:4\alpha 44$ (1%5-1970) fftll : (1966:1985) ( ) : (1987) $*1:1-19$ (1966) : (1970) : (1978) : ( ) (197$2 8) : $\infty$ (1980) : ( 577) ( ) (1982) $\dagger\pm$ : (1983) ffiffl] : $\dagger\pm$ (1987) : (1988) ) : ( (1990) : (1993) ne Irjluence ofchunese MathemattcalArts on Seki Kowa PhD Thesis ofunivqsity oflondon $\dagger\pm$ $7(1\Re 8)A:$ 32&334 (1996) ( ) 4 : 3346 ( ) 28 P 12

137 (1999) $)$ ( ) 205-211 (1(9993) $)$ [ ( ) : :95-138 (2002) Jl 1317:71-79 (20033) 1:1-24 (20049) ( ) $1392:4G59_{O}$ $(2\alpha)5:2(W)$ : (20074) - ( ) $\sim$ 1546: 1-20 $(2\omega 79)$ $32:65\mathfrak{X}2$ g l ( ) (1993) $\mathscr{q}$ 5 ( ( ) : (1993) - [ ) $ $ ( ) (1994) J186:101-115 : $(2\alpha)2\cdot 3)$ ( ) ( ) $48\cdot 4:63-8l9\cdot 1:99\cdot 110$ (2005) ( ) (2007) : Chinese Mathematical Arts in tbe Song Yuan and Ming Dynasties and the Duoeh Numerals -The Suzhou Numerals Transmitted into Japan JOCHI Shigeru, LIU Bowen, CHANG Hao Abstract Yang Hui $(13_{C})$ used the Suzhou Numerals at the Yang $Hui$ Simra in 1275 Chinese mathematicians used the counting rods, then Chinese scientists developed the Suzhou Numerals fiom them Then Chinese mathematicians in the Ming dynasty, Xu Xinlu (about 1573), Cheng Dawei (1533-1606) used two $\Psi pes$ ofthe Suzhou Numerals, then Chinese merchants used them for their business Chinese melchants in the $20^{th}$ century in main land, Taiwan and Hong Kong used Cheng Dawei s type Then Japanese mathematicians used the similar to Xu Xinlu s ype in the century, and their name was the $18^{th}$ $:D\mathfrak{W}h$ Numerals in the &$\nu\nu$o Yorozu Toriatslme Nikki (Shike Fukufusa, 1798) Japanese merchants used them in the $19^{ffi}$ century at least $TheIefo\ddagger e$ the author conclude tha$\ddagger$ the influenoe of Cheng Dawei, that is to say, the Suanfa Tongzong (Cheng Dawei, 1592) was limited in the end ofedo period Key Words; the Suzhou Numerals, the Dutch Numerals, the Yang HuiSuanfa(Yang Hui, 1275),, the Suanfa Tongzong(Cheng Dawei, $1592h$ the Sanyo Yorozu Tonalsume Nikki (Shike Fukufhsa, 1798)