untitled

Similar documents
LLG-R8.Nisus.pdf

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Part () () Γ Part ,

untitled

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

70 : 20 : A B (20 ) (30 ) 50 1


Untitled

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Note.tex 2008/09/19( )

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

keisoku01.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

TOP URL 1

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

本文/目次(裏白)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

untitled

pdf


2011de.dvi

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

all.dvi

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

第90回日本感染症学会学術講演会抄録(I)

Ł\”ƒ-2005

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

The Physics of Atmospheres CAPTER :

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

meiji_resume_1.PDF

SO(2)

総研大恒星進化概要.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Microsoft Word - 章末問題


0406_total.pdf

PDF

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

TOP URL 1

QMII_10.dvi

201711grade1ouyou.pdf

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

( )

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

重力方向に基づくコントローラの向き決定方法

TOP URL 1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

B

Mott散乱によるParity対称性の破れを検証

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K


66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI


H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,


untitled

gr09.dvi

7

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

4‐E ) キュリー温度を利用した消磁:熱消磁

NETES No.CG V

( ) ,

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

c 2009 i


9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

2000年度『数学展望 I』講義録

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e


EPSON LP-8900ユーザーズガイド

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

Transcription:

(a) (b) (c) (d) Wunderlich

2.5.1

= = =90 2 1 (hkl) {hkl} [hkl] <hkl>

L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c

c l=2 l=1 l=0 Polanyi nλ = I sinφ I:

B A a 110 B c 110 b b 110 µ a 110 A 10nm

c * a b c = * b c a = / V / V V = ab ( c) H hkl s 0 = 2 sinθ = λ 1 d hkl

B a A 110 B 110 c 110 b a b 110 A

(AFM) (STM)

(HDPE Mw=520k) 343K (a) (b) (c) scanning direction 3 µm 3 µm cantilever 2nm

Nakajima 1972 λ = 2d sinθ

2) 30

PE : n a =n. b =1.51 n c =1.58( ) n=n c -n a =0.07. a b PE : a=0.493 nm b=0.740 nm c=0.253 nm γ β c a α β b

5µm 5µm 2 µm 0 5 10 15 20 25 30 µ 100 80 60 40 20 0 2 4 6 8 10 µ

5µm 5µm 2 µm 400 300 200 100 0 5 10 15 20 25 30 µ 0 0 2 4 6 8 10 µ

µm 10 8 6 4 2 NSOM AFM 0 365 370 375 380 385 390 200 160 120 80 40 0 365 370 375 380 385 390

CH 3 C O H CH 2 O C 2µm 2µm Miles, 1996

X λ = 2Lsinθ L

3)

4) A C tie

C C N N O O H H n Ade, 1996 n r n c 5µm

2.5.3 Tm G l Gc G T m = G l = H G f c / S = H f f T m S f H S H DSC G G l

T m n 1.5 = 414.3 n + 5.0 0 2 e Tm() l = T (1 σ m ) l hf 6.27 Tm ( l) = 414.2(1 ) l H f =2.79x10 9 ergcm 3 σ e =87.4erg cm -2

T m S d T md (diluent) S s T ms

2.5.4 A B C H L C33 DSC

2.5.5 Vρ = Vaρa + Vcρc Vc φc = V ρ ρa φc = ρ ρ X (SAXS) c a d ac 2π q max

φ ac =0.85 O ac =0.065nm -1 d a =4.6nm ρ ec -ρ ea =52nm -3 d ac =34nm K( z) = ( ρ (0) ρ ) i( ρ ( z) ρ ) e e e e 1 1 = r 2 4 π qiq ( )cos 2 3 (2 ) q 0 e π = qzdq i φ ac O ac d a ρ ec -ρ ea

2.6.2 Lauritzen-Hoffman φ = 2νa σ + C νal σ νal f P e p s p σ σ

φ p φ p ν φ P ν C = a + a l al f = 2 1/2 1/2 2 σ e ν pσ s p 0 φp l p = C νaσ νa f = s 0 Saddle Point ( ν * a) 1/2 l * p 4σ e = f Cσ s = f

Saddle Point f = Hm Tm Sm = H m Tm = S m T c T m T c 0 Hm Tc T f = Hm Tc = Hm(1 ) = Hm( ) Tm Tm Tm 2 2 2 * 4σe 4σe Tm lp = = 2C σσ e s 2C Tmσσ e s φ * p = = f Hm T f T H T 2 2 ( ) ( ) ( ) 2 2 2 m

PE T m0 =418.2K h=2.8x10 9 erg cm -3 Xylene solution σ e =90 erg cm -2 σ s =11.4 erg cm -2 Tc=395.2K l P *=23.4nm Hoffman, Polymer,23,656(1982) b l φ = 2νaσ + 2bl σ νal f s e s s s

φs = 2aσ e als f = 0 ν φp l s = 2bσ νa f = 0 s * 2σe 2σe Tm ls = = f H T ν * a 2bσ s f m l * p 2 l s l p 4σ eσsb 4Tmσeσsb φ * s = = f T H φ p m

l * s T c 2σ e Tm = H ( T T ) m m c 2σ = Tm(1 ) H l e * m s T c ~T m 2σ T l T 0 e m() = m (1 ) Hml T m0 l

2.6.3 c (a) R h G: R= G( t z) 2 2 2 vc = πr h= πg ( t z) h dt, dnc A dt R z t w a dnc = Avadt = A dt ρa

dt w = π ( ) a 2 2 dnc vc A dt G t z h ρa dw = ρ dv (, t z) c c c wc χc = w wa 1 χc = w ρ w dt ρ dt dχ = A πg ( t z) h = A(1 χ ) πg ( t z) h c c a 2 2 2 2 c c w ρa ρa

χ c 0 dχc 1 χ t+ z [ ln(1 χ )] c = ( ) z 2 2 Aπ G t z h 3 t+ z χc 2 ρ c ( t z) c = AπG h 0 ρ a 3 z ρc t ln(1 χc) = AπG h = ρ 3 1 ρ 1 = = c 2 2 K1 AπG h πg I 3 ρa 3 Avrami χ = Kt c a 3 1 exp( 1 ) χ = = Kt 3 1 χc exp( 1 ) a ρcdt ρ a 3 2 3 K1t

χ a vc n = 1 χc = 1 = exp( K t ) v c v c ln ln 1 = ln K + nln t vc

Avrami,n n (sheaf) n>6 Avrami

2.6.4 G) φ G = G φ kt F kt * * exp( / )exp( / ) 0 s D φ 4σ eσsb 4Tmσeσsb φ * s = = f T H T φ m

0.8-0.9Tm G Vogel-Fulcher TA ς exp T T (T v Vogel Tg 30-70K T A 1000-2000K G V ς T + const 1 A log log. T TV

Hoffman 1975) T A =750K T V =203K G T A B exp exp 0 T TV Tm T dc ( T) = B T T + 0 m C T m0

(Gunther 1994) q

C-C CH 2 (M>1M) 126 Strobl 1993)

(M>1M) 126 SAXS Strobl 1995)