High-Voltage (100V

Similar documents
16-Bit, Serial Input Multiplying Digital-to-Analog Converter (Rev. B

????????????MUX ????????????????????

Triple 2:1 High-Speed Video Multiplexer (Rev. C

Unidirectional Measurement Current-Shunt Monitor with Dual Comparators (Rev. B

LMC6082 Precision CMOS Dual Operational Amplifier (jp)

OPA134/2134/4134('98.03)

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

ECO-MODE? ???1.5A?60V?????SWIFT??DC/DC ?????

LM837 Low Noise Quad Operational Amplifier (jp)

電源監視回路

OPA277/2277/4277 (2000.1)

LMC7101/101Q Tiny Low Pwr Op Amp w/Rail-to-Rail Input and Output (jp)

1.1nV/√Hz の低ノイズ、低消費電力、高精度 オペアンプ、小型 DFN-8 パッケージ datasheet (Rev. A)

AD8212: 高電圧の電流シャント・モニタ

定電流駆動 LED ドライバ

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp)

General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers 324 V LM LMV321( )/LMV358( )/LMV324( ) General Purpose, Low Voltage, Rail-to-

?????????????????NMOS?250mA????????????????

LM7171 高速、高出力電流、電圧帰還型オペアンプ

LM6172 デュアル高速低消費電力、低歪み電圧帰還アンプ

ECO-MODE™ 搭載、1.5A、42V、降圧型 SWIFT™ DC/DC コンバータ

LM3886

LM358

Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S

LM3876

プログラミング可能なソフト・スタート機能を備えた1.5A LDO リニア・レギュレータ

MAX DS.J

プログラミング可能なソフトスタート機能を備えた3.0A LDOリニア・レギュレータ

LT1801/LT デュアル/クワッド80MHz、25V/μs低消費電力レール・トゥ・レール入出力高精度オペアンプ

LM150/LM350A/LM350 3A 可変型レギュレータ

LTC ビット、200ksps シリアル・サンプリングADC

LT シャットダウン機能付き、135μa、14nV/√Hz、レール・トゥ・レール出力、高精度オペアンプ

LM35 高精度・摂氏直読温度センサIC

LT6000/LT6001/LT シングル/デュアル/クワッド1.8V、13µA高精度レール・トゥ・レール・オペアンプ

LTC 自己給電絶縁型コンパレータ

HA17458シリーズ データシート

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

高輝度白色 LED ドライバ 2mm x 2mm QFN と SOT-23 パッケージ

pc725v0nszxf_j

LT 定電流/定電圧、入力電流制限付き 2Aバッテリ・チャージャ

LM2940

LP3470 Tiny Power On Reset Circuit (jp)

LM4040.fm

LTC 高効率同期整流式降圧スイッチング・レギュレータ

LM193/LM293/LM393/LM 回路入り低動作電圧低オフセット電圧コンパレータ

LM117/LM317A/LM317 可変型3 端子レギュレータ

pc817xj0000f_j

AD8515: 1.8 V 低電力 CMOS レール to レール入力/出力オペアンプ

LT6200/LT6200-5LT /LT MHz、レール・トゥ・レール入出力、0.95nV/√Hz低ノイズ・オペアンプ・ファミリー

LM317A

LT1017/LT マイクロパワー・デュアル・コンパレータ

LT1366/LT1367/LT1368/LT デュアル/クワッド高精度レール・トゥ・レール入力/出力オペアンプ

LT レール・トゥ・レール電流センス・アンプ

LM mA 低ドロップアウト・リニア・レギュレータ

untitled

R1EV5801MBシリーズ データシート

LTC 単一5VAppleTalk トランシーバ

untitled

ABSOLUTE MAXIMUM RATINGS Supply Voltage ( )...+6V All Other Pins V to ( + 0.3V) Duration of Output Short Circuit to _ or...continuous Continuous

untitled

LT 高信号レベル・アップコンバーティング・ミキサ

op-amp-v1.dvi

DS90LV V or 5V LVDS Driver/Receiver (jp)

R1LV0416Dシリーズ データシート

DAC121S101/DAC121S101Q 12-Bit Micro Power, RRO Digital-to-Analog Converter (jp)

TO-92 Plastic Package (Z) TO-252 (D-Pak) Bottom View Dual-In-Line Packages (N) Surface-Mount Package (M, MM) Front View 8-Lead LLP Top View 4 DAP Top

R1RW0408D シリーズ

untitled

pc123xnnsz_j

AD8250 :ゲイン設定可能(G=1、2、5、10)な 10MHz、20V/μsのiCMOS®計装アンプ

LT 単一セル・マイクロパワー600kHz PWM DC/DCコンバータ

R1LV1616H-I シリーズ

LM2831 高周波数動作 1.5A 負荷 降圧型DC/DCレギュレータ

MITSUMI Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notificat

LM Watt Stereo Class D Audio Pwr Amp w/Stereo Headphone Amplifier (jp)

ELCODIS.COM - ELECTRONIC COMPONENTS DISTRIBUTOR

ANJ_1092A

DS90LV011A 3V LVDS 1 回路入り高速差動出力ドライバ

MLA8取扱説明書

LTC ホット・スワップ・コントローラ

LTC ビット、100ksps、サンプリングADC

LM2940.fm

LM2940/LM2940C 1A 低ドロップアウト3 端子レギュレータ

MAX DS.J

R1RP0416D シリーズ

AN15880A

R1RW0416DI シリーズ

pc910l0nsz_j

ADC082S021 2 Channel, 50 ksps to 200 ksps, 8-Bit A/D Converter (jp)

HN58V256Aシリーズ/HN58V257Aシリーズ データシート

j9c11_avr.fm

M51132L/FP データシート

LT1638/LT MHZ、0.4V/μs Over-The-Topマイクロパワーレール・トゥ・レール入力/出力オペアンプ

HN58C256A シリーズ/HN58C257A シリーズ データシート

LP2985 マイクロパワー150mA 低ノイズ、超低ドロップアウト・レギュレータ(SOT-23 およびmicro SMD パッケージ) 超低ESR 出力コンデンサが使用可能

HN58X2402SFPIAG/HN58X2404SFPIAG

LT MHz~1100MHz高直線性ダイレクト直交変調器

mbed祭りMar2016_プルアップ.key

uPC2745TB,uPC2746TB DS

Transcription:

www.tij.co.jp ± ± ± ± ± IN +IN Status Flag Enable/Disable (E/D) V O Enable/Disable Common (E/D Com) PRODUCT DESCRIPTION OPA445 (1) 8V, 15mA OPA452 8V, 5mA OPA547 6V, 75mA OPA548 6V, 3A OPA549 6V, 9A OPA551 6V, 2mA OPA567 5V, 2A OPA569 5V, 2.4A 1. http://focus.ti.com/lit/ds/symlink/opa454

(1) (1) SO-8 DDA V S = () () 12 V (2) ().3 () +.3 V (2) ±1 ma +5.5 V (3) I SC T J 55 +125 C 55 +125 C T J +15 C 4 V 5 V 15 V DDA PACKAGE SO-8 PowerPAD (TOP VIEW) E/D Com (Enable/Disable Common) IN +IN 1 2 3 (1) PowerPAD Heat Sink (Located on bottom side) 8 7 6 E/D (Enable/Disable) OUT 4 5 Status Flag 2

± Ω MIN TYP MAX V OS I O = ±.2 ±4 mv (2) dv OS /dt ±1.6 ±1 µv/ C PSRR V S = ±4V to ±6V, V CM =V 25 1 µv/v I B ±1.4 ±1 pa I OS ±.2 ±1 pa e n 3 nv/ Hz 35 nv/ Hz 15 µv PP i n 4 fa / Hz V CM () + 2.5 See Note (3) () 2.5 V CMRR V S = ±5V, 25V V CM +25V 1 146 db V S = ±5V, 45V V CM +45V 1 147 db V S = ±5V, 25V V CM +25V 8 88 db V S = ±5V, 45V V CM +45V 72 82 db 1 13 1 Ω pf 1 13 9 Ω pf (4) A OL () + 1V <V O <() 1V, R L = 49kΩ, I O = ±1mA () + 1V <V O <() 1V, R L = 49kΩ, I O = ±1mA () + 1V <V O <() 2V, R L =4.8kΩ, I O = ±1mA () + 1V <V O <() 2V, R L =4.8kΩ, I O = ±1mA () + 2V <V O <() 3V, R L = 188Ω, I O = ±25mA () + 2V <V O <() 3V, R L = 188Ω, I O = ±25mA 1 13 db 112 db 1 115 db 16 db 8 12 db 84 db ± 3

± Ω MIN TYP MAX (5) GBW 2.5 MHz SR G = ±1, V O = 8V Step, R L =3.27kΩ 13 V/µs (6) 35 khz ± (7) G=±1, V O = 2V Step 3 µs ± (7) G=±5 or±1, V O = 8V Step 1 µs (8) THD+N V S = +4.6V/ 39.6V, G = ±1, f=1khz, V O = 77.2V PP.8 % (9) V O R L = 49kΩ, A OL 1dB, I O =1mA ()+1 () 1 V R L =4.8kΩ, A OL 1dB, I O = 1mA () + 1 () 2 V R L = 188Ω, A OL 8dB, I O = 26mA () + 2 () 3 V (1) I O +12/ 15 ma +14/ 17 ma (5) C LOAD 2 pf R O Ω 18 pf (11) 15 ff (12) 6 µs 4 µs (13) 15 µs (13) 1 µs T J +15 C +13 C (5) E/D Com + 2 V Ω () 2.5 V ± Ω 4

± Ω MIN TYP MAX (14)(15) V SD E/D Com + 2.5 E/D Com + 5 V V SD E/D Com E/D Com +.65 V 4 µs 3 µs () () 5 V V S ±5 V ±5 ±5 V I Q I O = 3.2 4 ma I O =,V E/D =.65V 15 21 µa T A 4 +85 C T A 55 +125 C (16) θ JC (17) 1 C/W 1 C/W θ JA (17) 24/52 C/W (18) 65 C/W θ θ +5V E/D 1V PP 1kHz E/D Com R L 5kΩ 5V 1. 5

C ± Ω Open-Loop Gain, Phase (db, ) 18 16 14 12 1 8 6 Phase 4 2 R LOAD = 4.87kΩ Gain C LOAD = 5pF V CM = V 2.1 1 1 1 1k 1k 1k 1M 1M Frequency (Hz) Phase Margin ( ) 7 65 6 55 5 45 C L =1pF C L = 3 pf C L = 2pF V CM = 45V V CM = V V CM = +45V 4 75 5 25 25 5 75 1 125 Exposed Thermal Pad Temperature ( C) 2 3 3.8 1M Bandwidth (MHz) 3.6 3.4 3.2 V CM = V 3. 2.8 V CM = 45V 2.6 V CM = 45V 2.4 2.2 C L = 3pF, 1pF, and 2pF 2. 75 5 25 25 5 75 1 125 Exposed Thermal Pad Temperature ( C) Open-Loop Output Impedance (Ω) 1k 1k 1k 1 1 1 1 1 1 1k 1k 1k 1M 1M Frequency (Hz) 4 5 14 14 AOL (db) 13 V S = ±5V 12 11 V S = ±15V 1 9 V S = ±4V 8 7 6 5 1 15 2 25 Peak I L (ma) AOL (db) 13 12 11 1 9 8 7 6 R LOAD = 48kΩ = ±49V (dc) I OUT = 1mA RL = 4.8kΩ = +48V, 49V (dc) I OUT = +9.9mA to 1mA R L = 1.88kΩ R L = 9Ω = +47V, 48V (dc) = +45V, 47V (dc) I OUT = 25mA I OUT = 5mA to 52mA 5 75 5 25 25 5 75 1 125 Exposed Thermal Pad Temperature ( C) 6 7 6

C ± Ω CMRR (db) 14 12 1 8 V CM = 45V 6 4 V CM = +45V 2.1.1.1 1 1 1 1k 1k Frequency (Hz) PSRR and CMRR (db) 12 1 8 6 4 PSRR 1kHz, CMRR 1kHz, CMRR 1kHz, CMRR 1.3MHz, CMRR 2 V CM = +45V V CM = 45V 75 5 25 25 5 75 1 125 Exposed Thermal Pad Temperature ( C) 8 9 14 12 1 5 55 C 49 48 PSRR (db) 8 6 VOUT (V) 47 47 +125 C +85 C +25 C 4 48 2 1 1 1 1k 1k 1k 1M Frequency (Hz) 49 55 C 5 1 2 3 4 5 I OUT (ma) 1 11 12 1 = ±49V R L = 4.8kΩ I OUT = ±1mA Average = 111µV Standard Deviation = 142µV Output Voltage (VPP) 8 6 4 Population 2 5 1 15 2 25 3 4 3 2 1 1 2 3 4 Frequency (khz) Offset Voltage (µv) 12 13 7

C ± Ω Average = 1.57µV/ C Standard Deviation =.84µV/ C Average =.34µV/ C Standard Deviation =.44µV/ C Population Population 1 2 3 4 5 6 7 8 9 1 Offset Voltage Drift (µv/ C) 2. 1.6 1.2.8.4.4.8 1.2 Output Voltage Shift (µv/ C) 14 15 1.6 2. Population Average = 48µV/ C Standard Deviation = 28µV/ C Offset Voltage (µv) 2 15 1 5 5 1 V S = 5V PowerPAD Attached 9in 12in.62 Layer Metal PCB FR1 15 1 8 6 4 2 2 4 6 8 1 2 1s/div Offset Voltage Shift (µv) 16 17 3.25 3.2 3.15 Population IQ (ma) 3.1 3.5 3. 2.95 2.5 2.6 2.7 2.8 2.9 3. 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Quiescent Current (ma) 2.9 1 2 3 4 5 6 7 8 9 1 11 12 Total Supply Voltage (V) 18 19 8

C ± Ω 4. 3.8 2 5 Typical Units Shown IQ (ma) 3.6 3.4 3.2 3. 2.8 2.6 2.4 Shutdown Current (µa) 18 16 14 12 2.2 2. 75 5 25 25 5 75 1 125 Exposed Thermal Pad Temperature ( C) 1 75 5 25 25 5 75 1 125 Exposed Thermal Pad Temperature ( C) 2 21 1 2 15 1 1 5 IB (pa) 1 IB (pa) 5 1 Common-Mode Voltage Range 15.1 75 5 25 25 5 75 1 125 Exposed Thermal Pad Temperature ( C) 22 2 5 4 3 2 1 1 2 3 4 5 V CM (V) 23 2 8 ILIMIT (ma) 18 Sourcing 16 14 12 Sinking 1 75 5 25 25 5 75 1 125 75 5 25 25 5 75 1 125 Exposed Thermal Pad Temperature ( C) Exposed Thermal Pad Temperature ( C) VFLAG to 7 R P = 2kΩ, I P = 5mA 6 5 4 R P = 5kΩ, I P = 2mA 3 R P = 1kΩ, I P = 1µA 2 R P = 2kΩ, I P = 5µA 1 24 25 9

C ± Ω 2. SO-8 PowerPAD: T J(max) = +125 C 16 15 Dissipation (W) 1.5 1. T J (+125 C max) = T A + [( V S V O ) I O θ JA] 11.5 θ JA = +52 C/W, SO-8 PowerPAD 1 G = +1 (1in.5in [25.4mm 12.7mm] V S = ±45V Heat-Spreader, 1oz Copper) 9 V IN = 8V Step T J = +25 C + (1.93W 52 C/W) = +125 C R LOAD = 4.8kΩ 8 5 25 25 5 75 1 125 75 5 25 25 5 75 1 125 Exposed Thermal Pad Temperature ( C) Exposed Thermal Pad Temperature ( C) Slew Rate (V/µs) 14 13 12 26 27 1 Voltage Noise (nv/ Hz) 1 1 5µV/div 1 1 1 1k 1k 1k Frequency (Hz) 28 2s/div 29.4 G = +1 R I = 4.75kΩ.35 V PP = 38.6V.3.25 G = +1 R I = 4.75kΩ V PP = 38.6V V S = +41.6, 4.6 THD + N (%).3.25.2.15 V S = 49, +5 V S = 55, +55 THD + N (%).2.15.1.5 V S = +4.6, 39.6.1 1 1 1k 1k 1k Frequency (Hz) 1 1 1k 1k 1k Frequency (Hz) 3 31 1

C ± Ω V IN V IN 5mV/div G = +1 T C = +6 C C LOAD = 5pF V CM = +3V R F = 1kΩ 5mV/div G = +1 T C = +15 C C LOAD = 5pF V CM = +3V R F = 1kΩ Time (1µs/div) Time (1µ s/div) 32 33 T C = +125 C T C = +25 C VIN (2mV/div) VOUT (4mV/div) V IN G = +2 T C = +1 C C LOAD = 1pF V CM = +4V R F = 1kΩ 5mV T C = 55 C G = +1 C LOAD = 1pF V CM = V R F = Ω Time (2.5µs/div) Time (5ns/div) 34 35 VOUT (V) 2. 1.5 1..5.5 1. 1.5 2. G = +1 G = +2 R F = 1kΩ C LOAD = 1pF, 125 C V CM = +4V 1µs/div Peaking (%) 18 16 14 12 1 8 6 4 2 R F = Ω R F = 1kΩ T C = +125 C T C = +85 C T C = +25 C T C = 55 C 1 2 3 4 5 C LOAD (pf) 36 37 11

C ± Ω Peaking (%) 3 25 2 15 1 5 Ω C F = pf T C = 55 C C F = 2.5pF C F = 5pF T C = +25 C T C = +125 C T C = +85 C 5 1 2 3 4 5 C LOAD (pf) 38 Gain (db) 1 8 6 4 2 T A = +25 C C L = 1pF 2 4 R F = 1kΩ, C F = 5pF R F = Ω C L = 5pF 6 1k 1k 1M 1M Frequency (Hz) 39 C L = 2pF Gain (db) 1 8 6 4 2 T A = +25 C C L = 5pF C L = 5pF 2 4 C F = pf C F = 2.5pF C F = 5pF 6 1k 1k 1M 1M Frequency (Hz) VIN (V) 2 15 1 5 5 1 15 2 Ω Time (1µs/div) V 1 (Inverting) V 2 (Noninverting) V IN.8.6.4.2.2.4.6.8 Voltage at V1 and V2 (V) 4 41 12

C ± Ω 2 Ω.8 VIN (V) 15 1 5 5 1 15 V IN V 2 (Noninverting) V 1 (Inverting).6.4.2.2.4.6 Voltageat V1 and V2 (V) 4µV/div Enable OUT Status Flag 2 Time (1µs/div).8 Time (1µs/div) 42 43 OUT OUT 4µV/div Status Flag 4µV/div Status Flag Enable Enable Time (1µs/div) Time (1µs/div) 44 45 1 1..95 IENABLE (A) 1 2 4 C +85 C +25 C Threshold (V).9.85.8.75 3 1 2 3 4 5 V ENABLE (V).7 75 5 25 25 5 75 1 125 Temperature ( C) 46 47 13

C ± Ω 6 5 C V FLAG 2 15 6 5 C V FLAG 15 1 VFLAG (V) VFLAG (V) 4 3 2 1 1 6 5 4 3 2 1 1 I OUT R P = 1kΩ I OUT R P = 1kΩ 1µs/div 48 C V FLAG 1µs/div 1 5 5 1 15 15 1 5 5 1 15 2 IOUT (ma) IOUT (ma) VFLAG (V) VOUT (V) 4 3 2 1 1 1.6 1.4 1.2 1..8.6.4.2.2 I OUT R P = 1kΩ +125 C +85 C +25 C 55 C 1µs/div 49 1µs/div.988V PP.1Hz + +5V 5V 2Hz 2ms Pulse Mercury Wetted Relay 5 5 1 15 2 IOUT (ma) 5 51.2.2.2.2.4.4 VOUT (V).6.8 VOUT (V).6.8 1. 1.2 1.4 1.6 +125 C +85 C +25 C 55 C 1µs/div.988V PP.1Hz + +5V 5V 2Hz 2ms Pulse Mercury Wetted Relay 1. 1.2 1.4 1.6.988V PP.1Hz +5V + 5V 2Hz 2ms Pulse Mercury Wetted Relay 1µs/div +125 C +85 C +25 C 55 C 52 53 14

C ± Ω VOUT (V) 1.6 1.4 1.2 1..8.6.4.2.988V PP.1Hz +5V + 5V 2Hz 2ms Pulse Mercury Wetted Relay +125 C +85 C +25 C 55 C 2V/div R L = 1.8kΩ Flag.2 1µs/div 2ms/div 54 55 R L = 1.8kΩ 2V/div Flag 2ms/div 56 15

± ± µ R 1 V IN.1µF IN +IN.1µF I P R (1) P Status Flag E/D Com E/D R 2 G=1+ R 2 R 1 R L ± 57. µ µ Ω Low Offset, 5µV, Drift,.5µV/ C, Self-Zeroing Op Amp Gain 1st = 4.9V/V R,1st 1 1kΩ R,1st 2 39.1kΩ High-Voltage Op Amp Gain 2nd = 9.45V/V R,2nd 1 1kΩ R,2nd 2 84.5kΩ V = ±1V G 1st Stage, +5V OPA735 1st Stage, 5V A,1st Stage 1 VOUT 1st Stage VOUT 1st Stage ±4.9V,Max 2nd Stage, +5V 2nd Stage, 5V A,2nd Stage 2 VOUT 2nd Stage R LOAD 1kΩ VOUT 2nd Stage ± 46V (92V PP), Max V INPUT = ± 1VPP 58. 16

V IN R 1 R 2 A1 A2 59. MASTER SLAVE R (1) S 1Ω R (1) S 1Ω R L R 1 R 2 +5V V IN IN +IN C F (2) R (1) 3 2Ω NPN TIP29C, MJL21194, MJE153, MJL3281 R4.2Ω R5.2Ω PNP TIP3C, MJL21193, MJE154, MJL132A R L V (3) O =VOUT IL RL I L 5V 6. 17

Voltage (V) 46. 46.5 47. 47.5 48. 48.5 VOUT R S = 5kΩ T A = +25 C 49. 49.5 V V IN OUT f=1khz R S = Ω 5. 5.5 2 4 6 8 1 Time ( µ s) 63. Voltage (V) 5.5 5. 49.5 49. 48.5 VIN f=1khz VOUT R S = 5kΩ T A = +25 C RF 1kΩ = +5V 48. 47.5 VOUT R S = Ω 47. 2 4 6 8 1 Time ( µ s) V IN R S = 5V RL 4.8kΩ 61. 64. Voltage (V) 46. 46.5 47. 47.5 48. 48.5 VOUT R S = Ω VOUT R S = 5kΩ T A = +25 C 49. 49.5 VIN f=1khz 5. 5.5 2 4 6 8 1 Time ( µ s) Ω Ω 62. 18

(V IN+ ) (V IN ) AOL isafunction of VOUT and ILOAD T P = +25 C R L = 188Ω, 1mV/div R L = 9Ω, 2mV/div R L = 4.87kΩ, 2µ V/div 5 4 3 2 1 1 2 3 4 5 Output Voltage (V) 74dB 16dB 65. 89dB GAIN COMPONENT 1 5 1 R 1 (Ω) 1k 2k 1k R 3 (Ω) 1k 2k 1k R 7 (Ω) 1k 4k 9k R 8 (Ω) 1k 1k V IN (V PP ) 2 16 8 2. Inverting Response Measured Here, V 1 R 1 R2 1kΩ R 3 R4 1kΩ Combination of Both Inverting and Noninverting Responses, V 2 R 7 R 8 IN +IN R5 R6 1kΩ 1kΩ A 1 A 2 IN +IN V IN 66. 19

µ µ µ Ω µ θ (Positive Op Amp Supply) I P 4 14 R P DVDD (Digital Supply) 2 12 1 IN +IN E/D E/D Com 5V Logic (V) 2 4 6 8 1 V FLAG 8 6 4 2 V FLAG (V) 12 2 2 4 6 8 1 (ms) (Negative Op Amp Supply) 1kΩ 1kΩ 67. +2.5V 1Hz Square Wave +5V 68. V FLAG IN Flag +IN E/D Com 5V R P 1MΩ 625Ω 2

± T J = T A + P D θ JA (1) R1 1kΩ R2 1kΩ V 1 V 2 R3 1kΩ I L = [(V 2 V 1)/R 5] (R 2/R 1) =(V2 V 1)/1kΩ +5V IN +IN R4 5V 9.9kΩ Compliance Voltage Range = +47V, 48V NOTE: R 1 =R 3 and R 2 =R 4 +R 5. I L R5 1Ω R L Thermal Resistance, θja ( C/W) 6 5 4 3 2 1.5 1. 1.5 2. 2.5 3. 2 Copper Area (inches ), 2 oz 69. 7. 21

θ Leadframe (Copper Alloy) IC (Silicon) Die Attach (Epoxy) Mold Compound (Plastic) Leadframe Die Pad Exposed at Base of the Package (Copper Alloy) a) SO-8 PowerPAD cross-section view. 7. 22

23

+95V.1µ F 45.3kΩ DAC8811 or DAC7811 Protects DAC During Slewing -2mA IN +IN.1µ F R L V = V to +91V OUT 5V 72. R1 1kΩ R2 9kΩ R3 1kΩ R4 1kΩ +5V +5V VIN ±4V MASTER IN +IN Up To 195V IN A +IN 1 Piezo (1) A 2 Crystal SLAVE 5V 5V 73. 24

± ± V 1 A 1 R 4 R 5 R 2 V SIG R 1 R 2 (1) A 3 ± R 6 R 7 V 2 A 2 =(1+2R/R)(V 2 1 2 V) 1 V CM 74. R SHUNT V SUPPLY Plus or Minus V 1 (1) A 1 R 4 R 5 Load R 2 R 1 A 3 (2) R 2 R 6 R 7 75. V 2 (1) A 2 = (1+2R/R 2 1)(V2 V) 1 25

1kΩ +1V 1kΩ +1V +1V 1kΩ +1V 1kΩ V 1 A 1 V 4 A 4 1kΩ 19kΩ 1kΩ 2kΩ 1kΩ 1kΩ V LOAD = +97V, 98V (195V PP) V IN V LOAD = +97V, 98V (195V PP) V IN A 3 R LOAD 3.75kΩ A 6 RLOAD 3.75kΩ 1kΩ 1kΩ 1kΩ 1kΩ V 2 A 2 V 5 A 5 1V 1kΩ 1V 1kΩ 1V 1V a) Noninverting, G = +2V/V b) Inverting, G = 2V/V 76. Voltage (V) 1 75 5 25 25 5 75 V LOAD V 2 V 1 (V) 1 8 6 4 2 2 4 6 8 V IN 6 4 2 2 4 V IN (V) 1 Time (2µ s/div) 1 Time (1µ s/div) 6 77. Ω 78. Ω µ µ 26

1kΩ +1V +1V 1kΩ +12V A 1 1kΩ 1kΩ +12V A 4 1kΩ 19kΩ 2kΩ 1kΩ 1kΩ 1kΩ A3 R LOAD (+97V, 98V) 7.5kΩ ( 98V, +97V) V LOAD ( ± 195V, 39V PP) A 6 1kΩ 1kΩ V IN 1kΩ 1kΩ A 2 A5 1kΩ 1kΩ 1V 1V 1V 1V 79. ± (V) 2 15 1 5 5 1 15 2 V LOAD Time (2µ s/div) (V) 2 15 1 5 5 1 15 2 V IN Time (1µ s/div) 6 4 2 2 4 6 V IN (V) 8. Ω 81. Ω µ µ 27

V 1 R1 25kΩ R2 25kΩ = V 2 V1 V 2 R3 R4 25kΩ 25kΩ 6V 14 82. 12 1 (1V/div) V V LED 8 6 4 2 V LED (V) 2V 5ms/div 2 V 1 25kΩ 25kΩ 84. A 1 V 2 25kΩ 25kΩ A 2 R I O = (V 2 V 1)/R Load I O 83. R7 R1 1kΩ 9kΩ +1V A 1 +1V A 2 R2 R4 1kΩ 1kΩ +1V = 1 RSENSE I D + V 1 Gain Adjust Voltage 2.5V to 9.5V R SENSE 1Ω +1V A 3 R3 1kΩ A 4 +1V R 8 198kΩ R 5 1kΩ LM441D Adjusted for 2.V R 9 4.9kΩ 1Ω APD LED V LED R 1 3.1kΩ 2V Example Circuit For Reverse Biasing APD (13V to 28V, max) Advanced Photonix, Inc. SD 36-7-62-531 Digi-Key SD 36-7-62-531 85. 28

Orderable Device Status (1) Package Type AIDDA ACTIVE SO Power PAD AIDDAG4 ACTIVE SO Power PAD AIDDAR ACTIVE SO Power PAD AIDDARG4 ACTIVE SO Power PAD Package Drawing Pins Package Qty DDA 8 75 Green (RoHS & no Sb/Br) DDA 8 75 Green (RoHS & no Sb/Br) DDA 8 25 Green (RoHS & no Sb/Br) DDA 8 25 Green (RoHS & no Sb/Br) Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3) CU NIPDAU CU NIPDAU CU NIPDAU CU NIPDAU Level-2-26C-1 YEAR Level-2-26C-1 YEAR Level-2-26C-1 YEAR Level-2-26C-1 YEAR 29

REEL DIMENSIONS TAPE DIMENSIONS K P1 Reel Diameter Cavity A B W A B K W P1 Dimension designed to accommodate the component width Dimension designed to accommodate the component length Dimension designed to accommodate the component thickness Overall width of the carrier tape Pitch between successive cavity centers Reel Width (W1) QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE Sprocket Holes Q1 Q2 Q1 Q2 Q3 Q4 Q3 Q4 User Direction of Feed Pocket Quadrants *All dimensions are nominal Device AIDDAR Package Type SO Power PAD Package Drawing Pins SPQ Reel Reel Diameter Width (mm) W1 (mm) A (mm) B (mm) K (mm) P1 (mm) W (mm) Pin1 Quadrant DDA 8 25 33. 12.4 6.4 5.2 2.1 8. 12. Q1 3

*All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) AIDDAR SO PowerPAD DDA 8 25 346. 346. 29. 31

A. B. C. D. 32

(SBOS391) 33

IMPORTANT NOTICE 21.11