観測量と物理量の関係.pptx

Similar documents
( ) ,

AHPを用いた大相撲の新しい番付編成

輻射の量子論、選択則、禁制線、許容線


/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

untitled

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

. km. km. km

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

「諸雑公文書」整理の中間報告

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)


弾性定数の対称性について

The Physics of Atmospheres CAPTER :

空き容量一覧表(154kV以上)

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy

PDF

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

D:/BOOK/MAIN/MAIN.DVI

m

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

01_教職員.indd


untitled

Mott散乱によるParity対称性の破れを検証

2004

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

参加報告書

P70

ohpr.dvi

取扱説明書[N906i]


( )

日本統計学会誌, 第44巻, 第2号, 251頁-270頁

pdf

Microsoft Word - 座談会「小泉政治」.doc

H22環境地球化学4_化学平衡III_ ppt

IV (2)


3-2 -

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

MOSFET HiSIM HiSIM2 1

総研大恒星進化概要.dvi

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

QMI_10.dvi

[PDF] ザルトバインド総合カタログ

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

I ( ) 2019

吸収分光.PDF

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

OHP.dvi


[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

K 1 mk(

syuryoku


資料4-1 一時預かり事業について

土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課)


i 18 2H 2 + O 2 2H 2 + ( ) 3K

untitled

スライド 1

4/15 No.

slide1.dvi

H22応用物理化学演習1_濃度.ppt

KT

Netcommunity SYSTEM X7000 IPコードレス電話機 取扱説明書

.A. D.S

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

PowerPoint Presentation

4‐E ) キュリー温度を利用した消磁:熱消磁

8 8 0

レジャー産業と顧客満足の課題

Part () () Γ Part ,

0-Ł\04†E01.pdf



人間石川馨と品質管理


K E N Z OU

1 発病のとき

Fig V 2.3.3

2014_VERAum.pptx

平成19年度

Products catalog

ha ha km2 15cm 5 8ha 30km2 8ha 30km2 4 14

09_organal2

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ

読めば必ずわかる 分散分析の基礎 第2版

jse2000.dvi

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru


Transcription:

(I! F! ( (! "! (#, $ #, $!! di! d"! =!I! + B! (T ex T ex : "! n 2 / g 2 = exp(! h! n 1 / g 1 kt ex " I! ("! = I! (0e "! +! e ("! " #! B! [T ex ("! ]d " d! " = # " ds = h" 4$ %("(n dsb h" 1 12 [1! exp(! ] kt ex 0 "! (RL Eq.1.78

d! " = # " ds = h" 4$ %("(n dsb h" 1 12 [1! exp(! ] kt ex B 12 = cm -3 A 21 2h! 3 / c 2 = 32" 4 µ 12 3ch 2 d! " = 8# 3 µ 12 [ " c $("]dn 1[1! exp(! h" ] kt ex dn 1 =n 1 ds (n 1 cm -2 (line profile "v=c/[!$(!] d! = 8" 3 µ 12 (km s -1-1 dn 1 h# [1" exp(" ]!v kt ex d! " (RL Eq.1.78 (RL Eq.10.27 ~ 1!!!("!!(" d! =1 "v/c=1/[!$ (!]!!! v I! "! (0 %! (& bg ($(!"0 "! ( "!!I! = I! " B! = e ("! "" # $! B! [T ex (" #! ]! d "#! " (1" e "! B! 0 T ex!i!!i! = I! " B! = (1" e "! [B! (T ex " B! ]! " = N 1 [ " c #("]8$ 3 µ 12 [1! exp(! h" kt ex ] B!! "" # (

"! F! F! = " I! (",#cos" d! cos# #=0 (cos# P! (#, $ ( F! = " I! (",#P! (",#d! P! (0, 0 =1 P! (#, $ (0, 0 $ % "! A = P! (",#d! P = 1 2 A ed! " I! (",#P! (",#d! A e A e $ % =& 2 ( P=kT A d! (! T A =! 2 2k 1 " I " (#,$P " (#,$d! =! 2 I "! A 2k "! =%! (T R T R (T B "! =2kT R /& 2! T A = 1 " T R (!,"P # (!,"d! = T R! A D A e #D 2 $ A #(&/D 2

"! F! = " I! P! (",#d! = I!! A T A = 1 " T R P! (",#d! = T R! A "! ($ s F! = " I!! d! = I!! S! S T A = 1! " P! (",#d! = T S R! A! S! A!I! = (1! e! " [B! (T ex! B! ]!T A = (1! e! " [T ex!t bg ] ( T A!T A T bg! "! T R =& 2 "! /2k T R T ( T R =! 2 I! 2k = h! k 1 exp(h! / kt!1 " f (T ( (T A ( (T R =T A */'

" I! ("! = I! (0e "! +! e ("! " #! B! [T ex ("! ]d " d! " = 8# 3 µ 12 0 [ " c $("]dn h" 1 [1! exp(! ] kt ex (!I = (1" e! [B " (T ex " B " ]! = 8" 3 µ 12 N 1 h# [1" exp(" ]!v kt ex "!!I = (1" e! [B " (T ex " B " ]! = 8" 3 µ 12 N 1 h# [1" exp(" ]!v kt ex n 1 n 2 ( n 1 n 2 i n i n 0 n i / n 0 = exp(-e i / kt k n i n i (rate equations (

(rate equations dn j dt dn j dt = (All transitions to j-(all transitions from j!=!0 =! [(Transition to j -(Transition from j]+! [(Transition to j -(Transition from j] Radiative dn j dt Collisional =![(A ij + B ij Jn i " B ji Jn j ]"![(A ji + B ji Jn j " B ij Jn i ]+!(C ij n i -C ji n j i> j i< j C ij i!j (s -1 ( (~80%~20% n (cm -3 v (cm/s ((v (cm 2 C ij = n <! ij v > i# j C ij n i = C ji n j C ij C ji = n j n i = g j g i exp(! E ij kt C ij = n <! ij v > v (( v C ij C ji = g j g i exp(! E ij kt k T k C ij (C ji

dn j dt =![(A ij + B ij Jn i! B ji Jn j ]!![(A ji + B ji Jn j! B ij Jn i ]+!(C ij n i -C ji n j = 0 i> j i< j J J n j I I n j n j ( 3 K I J n j I J ( I J ( n j i! j!i = (1" e! [B " (T ex " B " ] # B " (T ex " B " ("" T ex (n(h 2, N mol, T k (T ex =T k "" ( T k 12 CO ( 12 CO ( ( T k (J, K=(1, 1(2, 2 CO

!I = (1" e! [B " (T k " B " ] #![B " (T k " B " ]! = 8" 3 µ 12 N 1 h# [1" exp(" ]!v kt k N 1 T k ("v T k ( N 1 N mol (cm -2 N mol = N 1 Z g 1 exp(!e 10 kt k Z"E 10 01 13 CO C 18 O CO (isotopologues 13 CO C 18 O Dickman (1978, ApJS, 37, 407 13 CO (J=1-0 (Av; N H =2$10 21 Av cm -2 N(H 2 = (5.0 ± 2.5!10 5!N( 13 CO N( 13 CO = N 0 Z =!v( 13 CO!" (1" 0!Z 8! 3 µ 2 1" exp("h# / kt k N(H 2 (cm -2 (cm 2 H 2 ($

!I = (1" e! [B " (T ex " B " ]! = 8" 3 µ 12 N 1 h# [1" exp(" ]!v kt ex ( T ex (n(h 2, N mol, T k I (n(h 2, T k I ( (Sobolev V(RR (Large Velocity Gradient Goldreich & Kwan (1974, ApJ, 189, 441; GK74 Scoville & Solomon (1974, ApJ, 187, L71; SS74 Castor (1970, MNRAS, 149, 111 Townes & Schawlow (1975; TS75

The Large Velocity Gradient (LVG Approximation LVG V(R R (rate equations (Emergent Specific Intensity LVG Sobolev WR ( T ex!i = (1" e! [B(T ex " B ]!!I = $ e (! "! # B[T ex (! # ]d! # " (1" e! B 0 T B = (1! e! [ f (T ex! f ] f (T! h! k 1 exp(h! / kt "1

n 2 n 1 = g 2 g 1 exp(! h! 12 kt ex GK74 n 2 n 1 = exp(! h! 12 kt ex n 1, n 2 ( g J =2J+1! " J=0 g J =1 o o /(g J n mol (n mol ' d! = 8" 3 µ 12 dn 1 h# [1" exp(" ]!v kt ex J (=0, 1, 2,! ( "J=1 1J2J+1 dn J g J dn d! J,J+1 = 8" 3 µ J,J+1! J,J+1 = 8" 3 µ J,J+1 N!v g (n " n J J J+1 dn!v g J ( " +1

µ (J, J+1 TS75 (Eq.1-76 µ J,J+1 = µ 2 J +1 2J +1 µ J,J+1 g J = µ J+1, J g J+1 g J =2J+1 µ J+1,J = µ 2 J +1 2J + 3 µ! J,J+1 = 8" 3 µ 2 ' ' N!v (J +1( " +1 B J+1,J = g J g J+1 B J,J+1 =!!!!!!!!= 32" 4 µ 2 3ch 2 J +1 2J + 3 E J = hbj(j +1 A J+1,J! J+1,J = (E J+1! E J / h = 2B(J +1 2h! 3 J+1,J!!!!/c = 32" 4 µ J+1,J 2 3ch 2 (RL Eq.10.27 (GK74 Eq.4

T B (J +1, J = (1! e! J,J+1 [ f [T ex (J, J +1]! f ]! J+1,J = 8" 3 µ 2 N!v (J +1( " +1 ( f [T ex (J, J +1] = h! k 1 / +1!1 µj N "V N (N/"V (+1 / T A (J=0, 1, 2,3! (rate equations T A n(h 2, T k, N dn g J J = g J+1 +1 A J+1,J + (g J+1 +1 B J+1,J! g J B J,J+1 J J+1,J dt!!!!!!!!!!!!g J A J,J-1! (g J B J,J-1! g J-1-1 B J-1,J J J,J-1 #!!!!!!!!!!!+ (C LJ g J g L n L! C JL g L g J L"J (GK74 Eq.10 C JL [C 12 /C 21 =exp(-h# 12 /kt k ]C C JL C JL /g L Sobolev

Castor (1970 1! exp(!"! = " * J J+1,J = (1!! J+1,J B(T ex +! J+1,J B [g J+1 +1 A J+1,J + (g J+1 +1 B J+1,J! g J B J,J+1 B ]! J+1,J![g J A J,J-1 + (g J B J,J-1! g J-1-1 B J-1,J B ]! J,J-1 + #(C LJ g J g L n L! C JL g L g J = 0 L"J! J+1,J = 1! exp(!" J+1,J " J+1,J (GK74 Eq.11 ( g J+1 +1 A J+1,J + (g J+1 +1 B J+1,J! g J B J,J+1 B(T ex = 0

T ex T B = (1! e! [ f (T ex! f ]!!!!!"![ f (T ex! f ]!!!(! # 0!!!!!" f (T ex! f!!!(! # $ ( f (T! h! k 1 exp(h! / kt "1 LVG T ex C N/%V Cn(H 2 +He<&v> (T ex!c!(n / "v!n < " v > n(h 2 +He (N/%V (photon trapping LVG J IJ " " J C IJ =n(h 2, He, <& IJ v> n(h 2 T k T k <& IJ v> T k, N/"V, n(h 2 ( (T k, N/"V, n(h 2 (N/DV, T ex ( T A (, T ex => T A (T k, N/"V, n(h 2 T B T k T B (N/"V, n, T B (n mol /(dv/dr, n, T B (X mol /(dv/dr, n [X mol =n mol /n(h 2 ] T k 12 CO N/ "Vn(H 2 2

CO (SS74 (N/%V $n(h 2 CO (Ratio (superthermal (population inversion (SS74 Fig. 1b. The ratio of antenna temperature in the CO J=2 1 and J=1 0 transitions obtained from 10- level calculations at T k =40 K.

(SS74 CS µ µ µ (n(h 2 ~10 3 cm -3 CS (T ex <T k ; sub-thermal CS! Fig. 2. Contours of antenna temperature in the J=1 0, 2 1, 3 2 CS transitions from 10-level calculations at T k =40 K. (SS74 CO T B ~ N/"V T B ~n(h 2 Fig. 3. The dramatic effects of radiative trapping are demonstrated for the J=1 0 CO transition in the two-level approximation. Dashed contours are obtained for excitation only by H 2 collisions; solid contours include excitation by trapped radiation.

(Sakamoto et al. 1994