mains.dvi

Similar documents
Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

mains.dvi

all.dvi

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )


4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

nsg02-13/ky045059301600033210

数値計算:有限要素法


n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

mains.dvi


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

日本内科学会雑誌第102巻第4号

KENZOU Karman) x

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

all.dvi

GJG160842_O.QXD

: , 2.0, 3.0, 2.0, (%) ( 2.

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

meiji_resume_1.PDF


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

gr09.dvi

10:30 12:00 P.G. vs vs vs 2

Colaprete and Toon , 212 K, 6.2 mbar,.,, 38 (Carr, 1986; Pollack et al., 1987).,, 25% (Gough, 1981)., CO 2. CO 2 CO 2. Pollack et al. (1987

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j


JFE.dvi

プログラム


Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

( ) ( )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

untitled

(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola

第5章 偏微分方程式の境界値問題

OHP.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Part () () Γ Part ,

Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology


i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

~nabe/lecture/index.html 2

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

prime number theorem

note1.dvi

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

The Physics of Atmospheres CAPTER :

TOP URL 1

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Baker and Schubert (1998) NOTE 1 Baker and Schubert(1998) 1 (subsolar point) 177.4, ( 1). Sp dig subsolar point equator 2.7 dig Np Sun V

QMII_10.dvi

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

II 1 II 2012 II Gauss-Bonnet II

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

TOP URL 1

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

73

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析


Z: Q: R: C: sin 6 5 ζ a, b

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

tnbp59-21_Web:P2/ky132379509610002944

Gmech08.dvi

日本内科学会雑誌第98巻第4号

OHP.dvi


Undulator.dvi

日本内科学会雑誌第97巻第7号

K E N Z OU

dynamics-solution2.dvi

Z: Q: R: C: 3. Green Cauchy

A

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

本文/目次(裏白)

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

PII S (96)

Transcription:

8 Λ MRI.COM 8.1 Mellor and Yamada (198) level.5 8. Noh and Kim (1999) 8.3 Large et al. (1994) K-profile parameterization 8.1 8.1: (MRI.COM ) Mellor and Yamada Noh and Kim KPP (avdsl) K H K B K x (avm) K V K K x ( : Mellor-Yamada ) - - (eb : Noh and Kim ) = E - (alo : KPP ) l l - 8.1 Mellor and Yamada s Turbulence Closure Model 8.1.1 U P Θ ρ DU j ρ t = x i (ρu i ) (8.1) + ρε jkl f k U l = x k ( ρ < u k u j >) P x j g j ρ (8.) ρ DΘ = x k ( ρ < u k θ >) (8.3) D( )= U k ()= x k + ()= t g j f k ε ijk < > (8.3) Boussines (8.) Λ 85

8 Boussines < > closure second moment closure Kantha and Clayson (000) Mellor and Yamada (198) Rotta (1951a,b) Reynolds stress : D p ρ ui x j + u j x i E = < u i u j > δ ij 3l 1 3 +C 1 U i U j + x j x i < u i > l 1 C 1 δ ij (= 1(i = j); = 0(i 6= j)) Kolmogolov D ui u E j ν = x k x k 3 ν Λ 1 3 (8.4) Λ 1 δ ij (8.5) D p θ E = < u j θ > (8.6) ρ x j 3l D uj θ E (κ + ν) = 0 (8.7) x k x k κ l D θ θ E κ = < θ > (8.8) x k x k Λ Λ < u k u i u j > = 3 5 ls < ui u j > + < u iu k > + < u ju k > x k x j x i < uk θ > < u k u j θ > = ls uθ + < u jθ > x j x k (8.9) (8.10) < u k θ > = ls θ < θ > x k (8.11) S ;S uθ ;S θ < pθ >= 0 < pu i >= 0 86

8.1. Mellor and Yamada s Turbulence Closure Model Mellor-Yamada (l 1 ;Λ 1 ;l ;Λ )=(A 1 ;B 1 ;A ;B )l (8.1) l master length scale A 1 ;B 1 ;A ;B C 1 Mellor and Yamada (198) (A 1 ;B 1 ;A ;B ;C 1 )=(0:9;16:6;0:74;10:1;0:08) 8.1. The level-.5 Model level-4 level-3 ( =) (< θ >) (< θs >) (< s >) level-.5 (8.30) level- MRI.COM level-.5 ffl ffl ffl ρ DU + ρ < uw > = P + ρ fv x (8.13) ρ DV + ρ < vw > = P ρ fu y (8.14) 0 = P ρg (8.15) ρ DΘ + (ρ < wθ >) = 0 (8.16) D h i ls = P s + P b ε (8.17) P s = < wu U V > < wv > (8.18) 87

8 P b = g < wρ >=ρ 0 (8.19) ε = 3 =Λ 1 (8.0) < u > = l 3 + 1 < v > = l 3 + 1 < w > = l 3 + 1 h 4 < wu U > h < wu U > V i + < wv > P b 4 < wv > V P b h < wu U V > + < wv > + 4P b i i (8.1) (8.) (8.3) < uv 3l h 1 > = < wu > = 3l 1 < vw > = 3l 1 < uw V > h (< w > C 1 U ) U i < vw > i g < uρ > h (< w > C 1 ) V g < vρ > i (8.4) (8.5) (8.6) < uθ 3l h > = < uw Θ > h < vθ > = 3l < wθ > = 3l U i < wθ > < vw Θ V i > < wθ > h < w Θ i > g < θρ > < θ >= Λ < wθ > Θ (8.7) (8.8) (8.9) (8.30) U < uw > = K M (8.31) V < vw > = K M (8.3) Θ < θw > = K H (8.33) K M = ls M (8.34) K H = ls H (8.35) K M ;K H 88

8.1. Mellor and Yamada s Turbulence Closure Model S M S H S M [6A 1 A G M ]+S H [1 3A B G H 1A 1 A G H ]=A S M [1 +6A 1G M 9A 1 A G H ] S H [1A 1G H + 9A 1 A G H ]=A 1 (1 3C 1 ) (8.36) G M l h U V i + G H l g ρ ρ 0 (8.37) (8.38) ρ= S M S H l (8.34) (8.35) K M ;K H (8.17) D h K i h U V i = K g ρ M + + K H ρ 0 ε (8.39) K = ls MRI.COM S S M (G H = 0) S = 0: S = S c S M =S Mn (S c = 0:;S Mn = S M (G H = 0) =0:397) = l = 0 (8.40) ( ρ s ) (τ s ) u τ (τ s =ρ s ) 1= ρ s 3 =Λ 1 = τ s u τ =l (8.1) = B =3 1 u τ (8.41) master length scale MRI.COM : Z 0 Z 0 l = γ jz 0 jdz 0 = z b dz 0 z b (8.4) γ = 0: z b Mellor and Yamada (198) 8.1.3 n MYSL5 n n+1 l (8.34) (8.36) n 89

8 n+1 l (8.39) (8.1) (8.0) (8.41) K 8.4 master length scale (8.4) 8. Noh and Kim (1999) Mellor and Yamada Noh and Kim (1999) Mellor and Yamada second moment closure 8..1 U V B = g ρ=ρ o E DU DV DB DE = < uw > 1 P + fv ρ x (8.43) = < vw > 1 P fu ρ y (8.44) = < bw > R = p < w ρ + uu + vv + ww > < uw > U (8.45) V < vw > < bw > ε (8.46) R R= DU DV DB DE = K U = K V B = K B E = K E 1 P ρ x P 1 ρ R + K U + fv (8.47) fu (8.48) y U + K V V + B K B K;K B ;K E (ε) ( =(E) 1= ) (l) (8.49) ε (8.50) K = Sl (8.51) K B = S B l (8.5) K E = S E l (8.53) ε = C 3 l 1 (8.54) 90

8.. Noh and Kim (1999) (S;S B ;S E ;C) S = S 0 = 0:39 Pr = S=S B = 0:8 σ = S=S E = 1:95 C = C 0 = 0:06 l b = =N (N = B=) 1= K ο l b ο lri t (8.55) Ri t Ri t =(Nl=) (8.56) N Ri t K ) Ri t (8.55) S S=S 0 =(1 + αri t ) 1= (8.57) α Noh and Kim (1999) α ο 10:0 C C=C 0 =(1 + αri t ) 1= (8.58) l = κ(z + z 0 ) (1 + κ(z + z 0 )=h) (8.59) z 0 (z 0 = 1[m]) z h K U B K B E K E = τ ρ 0 (8.60) = Q 0 (8.61) = mu 3 Λ (8.6) m Noh and Kim (1999) m = 100 N < 0 K = K B = 1:0[m s 1 ] K E (K) 8.. nkoblm.f90 E 8.50 E N E 91

8 8.3 K Profile Parameterization (KPP) 8.3.1 K profile parameterization (KPP) Monin-Obukhov 8.1 8.69 ν x MRI.COM Mellor and Yamada (198) KPP nonlocal K profile model(troen and Mahrt 1986) Large et al.(1994) MRI.COM KPP NCEP (NCOM) X < wx > X U V T S B x u v T s b w ( ) m s t X = z < wx > (8.63) KPP X nonlocal < wx >= K x ( z X γ x ) (8.64) MRI.COM KPP K x nonlocal γ x ffl < wx 0 > ffl L ffl h ffl φ x ffl w x ffl K x ffl ν x ffl nonlocal γ x 8.3. Monin-Obukhov Monin-Obukhov d(= z) < wx 0 > nonlocal X= ( ) x= ( ) 9

8.3. K Profile Parameterization (KPP) 8.1: KPP ffl u Λ =(< wu 0 > + < wv 0 > ) 1= = j~τ 0 j=ρ 0 (8.65) ffl S Λ = < ws 0 >=u Λ (8.66) ffl Monin-Obukhov L = u Λ3 =(κb f ) (8.67) ~τ 0 ρ 0 κ = 0:4 von Karman B f ; ( ) d < εh [ε fi 1 ε ο 0:1]) < wx 0 > u Λ, S Λ, L ζ = d=l φ m (ζ ) = κd u Λ z (U +V ) 1= φ s (ζ ) = κd (8.68) S Λ z S 8.3.3 K x w x G(σ ) K x h K x (σ )=hw x (σ )G(σ ) (8.69) σ = d=h( / ) G(σ ) (O Brien 1970) G(σ )=a 0 + a 1 σ + a σ + a 3 σ 3 (8.70) 93

8 8.: ( ) G(1) = σ G(1) =0 G(σ ) ( ) h=l = 1;0:1;0; 1; 5 w x (σ )=(κu Λ ) (h=l < 0) w s (σ ) ( ) w m (σ ) ( ) (h=l 0) ( ) Large et al.(1994) 8. G(σ ) w x (8.70) (σ = 0) K x = 0 a 0 = 0 (σ < ε[= 0:1]) Monin-Obukhov (8.64[γ x = 0]) (8.68) (8.69) w x (σ )(a 1 + a σ )= κuλ < wx(d) > (8.71) φ x (ζ ) < wx 0 > < wx > (Lumley and Panofski 1964; Tennekes 1973) (8.71) κuλ w x (σ )= φ x (ζ ) (8.7) (ζ (= d=l) < 0) σ = ε(ο 0:1) w x (σ )= φ κuλ ε < σ < 1 ζ < 0 x (εh=l) (8.73) w x (σ )= φ κuλ otherwise x (σh=l) w x ( 8.) φ x ζ (= d=l) (h=l = 0) κu Λ (h=l < 0) (h=l 0) Large et al.(1994) ( 8.3) 94

8.3. K Profile Parameterization (KPP) 8.3: ζ φ x Large et al.(1994) φ m = φ s = 1 + 5ζ 0» ζ φ m = (1 16ζ ) 1=4 ζ m» ζ < 0 φ m = (a m c m ζ ) 1=3 ζ < ζ m φ s = (1 16ζ ) 1= ζ s» ζ < 0 (8.74) φ s = (a s c s ζ ) 1=3 ζ < ζ s (ζ s ;c s ;a s ;ζ m ;c m ;a m )=( 1:0;98:96; 8:86; 0:;8:38;1:6) (h=l < 0) w s (σ ) w m (σ ) (h=l 0) (ζ < ζ x ) w s w Λ φ x φ x =(a x c x ζ ) 1=3 ζ < ζ x < 0 (8.75) (8.67) (8.73) w Λ =( B f h) 1=3 (8.76) w x = κ(a x u Λ3 + c x κσw Λ3 ) 1=3! κ(c x κσ) 1=3 w Λ σ < ε w x = κ(a x u Λ3 + c x κεw Λ3 ) 1=3! κ(c x κε) 1=3 w Λ ε» σ < 1 (8.77)! < wx > (8.71) < wx(σ ) >=<wx 0 >= 1 β r σ =ε = a 1 + a σ (8.78) σ = 0 (8.70) a 1 = 1;a = β r =ε σ = 1 G(1) = σ G(1) =0 ε = 0:1 a = ;a 3 = 1;β r = 0: 95

8 8.4: ( h) h d k 1 < h < d k d k 1 Large et al.(1994) 8.3.4 KPP ν x (MRI.COM Tsujino et al.(000) ) ( d k 1 ) 8.4 δ = (h d k 1 )=(d k d k 1 ) K Λ x = (1 δ) K x (d k 1 )+δ K x (d k 1 ) (8.79) Λ x = (1 δ)ν x (d k 1 )+δk Λ x 8.4 ν x K x (d) (h) d k 1 Λ x K Λ x h d k 1 d k 1 < h < d 1 k d 1 k (8.79) K x (d k 1 ) ν x (d k 1 ) 8.3.5 h B(d) ~ V (d) (B r B(d))d Ri b (d) = j ~ V r ~ V (d)j +Vt (8.80) (d) 96

8.3. K Profile Parameterization (KPP) Ri c (MRI.COM 0.3) B r ~ V r Vt =d (8.80) d = h (B r B(h))h Ri c = j ~ V r ~ V (h)j +Vt (8.81) (h) (j ~ V r ~ V (h)j = 0) B r N (N = B=) 8.5 (B r B(h)) = (h h e )N (h h e ) (8.64) (8.69) (8.76) (8.77) γ b fi N G(h e =h)=(h h e ) =h N(h e )=N=C v ; C v = 1:8 ( 8.5) d = h e < wb e >=<wb 0 >= β T (= 0:); <wb 0 > B f V t (d) =C v( β T ) 1= Ri c κ =3 (c s ε) 1=6 hnw Λ (8.8) w Λ (8.77) (w s ) V t (d) =C v( β T ) 1= Ri c κ (c s ε) 1= dnw s (8.83) (8.80) Vt N h K x N Vt (8.83) N h K x 8.3.6 Nonlocal 8.5 local (0:35 < d=h < 0:8) (8.64 [γ x = 0]) < wb > (< 0) 8.5 (nonlocal ) < wb 0 > (> 0) < wb > local nonlocal counter gradient nonlocal local local < wb > h Nonlocal (Deardroff 197)Mailhôt and Benoit(198) nonlocal γ s γ s = C Λ < ws 0 > w Λ h C Λ = 10 γ x = 0 ζ 0 γ m = 0 ζ < 0 < γ s = C ws 0 > s ζ < 0 w s (σ )h < γ θ = C wθ 0 > + < wθ R > s ζ < 0 w s (σ )h (8.84) (8.85) C s = C Λ κ(c s κε) 1=3 (8.86) 97

8 8.5: (< wb 0 >) Large et al.(1994) < wθ R > nonlocal I 9 < wθ R >=[(I=ρC p ) 0 (I=ρC p ) hγ ] (8.87) C p h γ nonlocal References Deardroff, J. W., 197: Theoretical expression for the countergradient vertical heat flux, J. Geophys. Res., 77, 5900-5904. Kantha, L. H., and C. A. Clayson, 000: Small Scale Processes in geophysical Fluid Flows, Academic Press, 888pp. Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 3, 363-403. Lumley, J. A., and H. A. Panofsky, 1964: The structure of the atmospheric turbulence, 39pp., John Wiley, New York. Mailhôt, J., and R. Benoit, 198: A finite-element model of the atmospheric boundary layer suitable for use with numerical weather prediction models, J. Atmos. Sci., 39, 49-66. Mellor, G. L., and T. Yamada, 198: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. Space Phys., 0, 851-875. 98

8.3. K Profile Parameterization (KPP) Noh, Y., and H.-J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process, J. Geophys. Res., 104, 15,61-15,634. O Brien, J. J., 1970: A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer, J. Atmos. Sci., 7, 113-115. Rotta, J. C., 1951a: Statistische Theotie nichthomogener Turbulenz, Z. Phys., 19, 547-57. Rotta, J. C., 1951b: Statistische Theotie nichthomogener Turbulenz, Z. Phys., 131, 51-77. Tennekes, H., 1973: A model for the dynamixcs of the inversion above a convective boundary layer, J. Atmos. Sci., 30, 558-567. Treon, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation, Boundary Layer Meteorol., 37, 19-148. Tsujino, H., H. Hasumi, and N. Suginohara, 000: Deep pacific circulation controlled by vertical diffusivity at the lower thermocline depth, J. Phys. Oceanogr., 30, 853-865. 99

100