,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

Size: px
Start display at page:

Download ",, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,"

Transcription

1 Mellor and Yamada1974) The Turbulence Closure Model of Mellor and Yamada 1974) Kitamori Taichi 2004/01/30

2 ,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

3 A 26 A1 26 A2 27 A

4 1 2 1,,,,,,,, 2 3,,,, Boussinesq 1877), 2 1, 1,, 1950, , 2 1, 1999) 2 2 Mellor 1973) Donaldson 1973) 2 Mellor1973) 2

5 1 3 10, Mellor and Yamada 1974),, 2 4 Mellor 1973) Mellor and Yamada 1974), Mellor 1973) Mellor and Yamada 1974) 2 3 Mellor 1973) 4 Mellor and Yamada 1974) 5 Mellor and Yamada 1974) 6 5

6 2 4 2,, ), 21 x i i = 1, 2, 3),, U i = 0, 1) x i U i t + U i U k ) + ε ikl f k U l = 1 P g i βθ + ν 2 U i, 2) ρ x i Θ t + U k Θ) = α 2 Θ 3), Einstein, U i, ρ= const), P, Θ, f i = 0, f y, f), g i = 0, 0, g), α, β, ν 22 A, A = A + a 4),, A = A, ā = 0, AB = A B + ab, ab = 0 5) 5) 1 A lim N N n A k r, t) 6) k=1, r 6) 5), A t = A t, 7) A = A 8)

7 2 5 4) U, P, Θ, 1), 2), 3) U i = 0, 9) x i U i t + U i U k + u i u k ) + ε ikl f k U l = 1 P g i βθ + ν 2 U i, 10) ρ x i Θ t + U k Θ + u k θ) = α 2 Θ 11) 10), 11) u i u k, u k θ 9) 11), 23 u i u j, u j θ 1) 3) 9) 11) θ t + u i t + u i x i = 0, 12) U i u k + U k u i + u i u k u i u k ) + ε ikl f k u l = 1 p g i βθ + ν 2 u i, 13) ρ x i Θu k + U k θ + u k θ u k θ) = α 2 θ 14) 13) u j 13) j u i, t u iu j ) + U k u i u j + u i u j u k ν ) u i u j + 1 x j ρ pu i + 1 x i ρ pu j + f k ε jkl u i u l + ε ikl u j u l ) U j U i = u i u k u j u k βg j u i θ + g i u j θ) + p ui + u ) j 2ν u i u j 15) ρ x j x i

8 2 6, 13) θ 14) u i, t u iθ) + θ U k u i θ + u i u k θ αu i νθ u ) i + ) 1 x i ρ pθ + ε ikl f k u l θ Θ = u i u k u k θ U i βg i θ x 2 + p k ρ θ α + ν) u i x i θ 16) 16) θ 2 θ 2 14) θ θ 2 t + U k θ 2 + u k θ 2 α θ2 ) = 2u k θ Θ 2α θ θ 17) 15), 16) u i u j u k u i u k θ 3 9) 11), 15) 17) 3, 4,

9 3 7 3 Mellor 1973) 9) 11), 15) 17), Mellor 1973) u i u j, u j θ, θ 2 u i u j, u j θ, θ 2, q u 2 i = u 2 + v 2 + w 2, Mellor 1973) p/ρ)u i /x j + u j /x i ) Rotta 1951) p ui + u ) j = q u i u j δ ) ij ρ x j x i 3l 1 3 q2 + Cq 2 Ui + U ) j 18) x j x i l 1 C p/ρ)θ/x i ) 18) Rotta 1951) p θ = q u i θ 19) ρ x i 3l 2 l 2 l 1 2νu i / )u j / ) Kolmogorov 1941) 2ν u i u j = 2 3 q 3 Λ 1 δ ij 20), Λ 1 α + ν)u i / )θ/ ) 20) Kolmogorov 1941) 1, 1 0 α + ν) u i θ = 0 21)

10 3 8 2αθ/ )θ/ ) 20) 2α θ θ = 2 q θ Λ 2 22) 2 Λ 2 u i u j u k, u i u k θ, u k θ 2 2 Mellor 1973), { u i u j u k = qλ 1 u i u j ) + u i u k ) + } u j u k ), 23) x j x i uk θ u i u k θ = qλ 2 + u ) iθ, 24) x i u k θ 2 = qλ 3 θ 2 25), λ 1, λ 2, λ 3 pu i, pθ Hanjalic and Lannder 1972), pu i = pθ = 0 26) 18) 26) 15), 16), 17), D Dt t + U k 27) D Dt u iu j ) [ { qλ 1 u i u j ) + u j u k ) + } u i u k ) x i x j + ν ] u i u j + f k ε jkl u i u l + ε ikl u j u l ) D Dt u iθ) U j U i = u i u k u j u k βg j u i θ + g i u j θ) q u i u j δ ij 3l 1 3 q2 ) + Cq 2 Ui + U ) j 2 x j x i 3 [ { qλ 2 u i θ) + u k θ) x i ] + αu i θ + νθ u i + ε ikl f k u l θ } q 3 Λ 1 δ ij, 28)

11 3 9 Dθ 2 Dt Θ = u i u k u k θ U i βg i θ x 2 q u i θ, 29) k 3l 2 ) θ qλ α θ2 = 2u k θ Θ 2 q θ Λ 2 30) 2 28) 30) 1) 9) 11), 28) 30) 15, 15 2) 1),, 2) 28) i j 6

12 Mellor 1973) 28) 30) 10,, Mellor and Yamada 1974), Mellor and Yamada 1974) 28), 29), 30) ε ikl f k u j u l, ε ikl f k u l θ 31) ν 2 x u 2 iu j ), ν θ u ) i θ, αu i, α θ2 32) k Mellor and Yamada 1974) 31), 32), 28), 29), 30) D Dt u iu j ) [ { qλ 1 u i u j ) + u j u k ) + }] u i u k ) x i x j D Dt u iθ) Dθ 2 Dt U j U i = u i u k u j u k βg j u i θ + g i u j θ) q u i u j δ ij 3l 1 3 q2 ) + Cq 2 Ui + U ) j 2 x j x i 3 [ qλ 2 { u i θ) + x i u k θ) }] q 3 Λ 1 δ ij, 33) Θ = u i u k u k θ U i βg i θ x 2 q u i θ, 34) k 3l 2 ) θ qλ 2 3 = 2u k θ Θ 2 q θ Λ 2 35) ) Dq 2 Dt [ { q 2 qλ }] u i u k ) x i

13 4 11 = 2u i u k U i 2βg i u i θ 2 q3 Λ 1 36) 33) 36) δ ij /3 D Dt u i u j δ ij 3 q2 δ ij 3 ) [ { qλ 1 u i u j ) + u j u k ) + x i q )}] u k u l ) x l = u j u k U i u i u k U j δ iju k u l U l + Cq 2 β g j u i θ + g i u j θ 2 ) 3 δ ijg l u l θ q 3l 1 x j u i u k ) Ui + U ) j x j x i u i u j δ ) ij 3 q2 33) 36) 37) Mellor and Yamada 1974) a ij, b i u i u j 37) ) δij 3 + a ij q 2 ; a ii = 0, 38) u i θ b i qϕ 39) ϕ θ 2,, a ij 1, b i 1 38), 39) 34) 37) 1 40) 43)

14 4 12 I) Uϕ 2 /L q 2 λϕ 2 /L 2 qϕbθx qϕbθx II) Uϕ 2 /L Uϕ 2 /L qϕ 2 /Λ qϕ 2 /Λ Dθ 2 Dt [ ] θ 2 Θ qλ2 = 2qϕbk 2 q xk xk xk Λ θ2 43) II) buqϕ/l buqϕ/l b 1 q 2 ϕ{1 + Oa)}/Λ q 2 ϕ/λ b 1 q 2 ϕ/λ b 1 q 2 ϕ/λ I) buqϕ/l q 2 λbϕ/l 2 q 2 Θx{1 + Oa)} qϕbux gβϕ 2 q 2 ϕb/l II) a 1 q 3 {1 + Oa)}/Λ q 3 /Λ a 1 q 3 /Λ D Dt b iqϕ) [ { qλ2 biqϕ) + }] ) δ bkqϕ) = q 2 ik xk xk xi 3 + a Ui ik qϕbk giβθ 2 q 2 ϕbi/3l2 42) xk I) q 2 Ux{1 + Oa)} bβqϕg aq 3 /l II) auq 2 /L Uq 2 L{1 + Oa)} { ) ) δ = q 2 ik U 3 + a j δ jk U ik + xk 3 + a i jk 2 xk 3 δ Ul U i ijakl C + U )}] j βqϕgjbi + gibj 2 xk xj xi 3 δ ijglbl) q3 aij 41) 3l1 I) auq 2 /L q 3 λ/l 2 {1 + Oa)} II) Uq 2 /L Uq 2 /L{1 + Oa)} q 3 /Λ q 3 /Λ q 3 /Λ D Dt a ijq 2 ) [ { qλ 1 q 2 q 2 δik + δjk 2 xk 3 xj xi 3 δ q 2 } ] ij {1 + Oa)} xk I) Uq 2 /L q 3 λ/l 2 {1 + Oa)} aq 2 Ux βbgqϕ q 3 /Λ Dq 2 Dt [ 5 q 2 ] qλ1 {1 + Oa)} = 2aikq 2 U i 2bkgkβqϕ 2 q3 xk 3 xk xk Λ 40) 1:, a Oa)

15 4 13, 3) l Ol 1 ) = Ol 2 ), 44) λ Oλ 1 ) = Oλ 2 ) = Oλ 3 ), 45) Λ OΛ 1 ) = OΛ 2 ), 46) a Oa ij ), 47) b Ob i ), 48) ) Ui U x O, 49) ) Θ Θ x O, 50) g Og i ), 51) L Ox i ), 52) ) U D L O 53) Dt 44) 53) 40) 43) 1I), Mellor and Yamada 1974),,, 40) 1 2, Uq 2 L = q3 λ L 2 54) 40) 1 3 aq 2 U x = q3 Λ 3) λ, L Mellor and Yamada 1974) λ, L 55)

16 ) 1 3 q 2 U x = a q3 l 56) 42) 1 2 q 2 Θ x = q2 ϕb l 43) ) 55), 56) qϕbθ x = qϕ2 Λ 58) a 2 = l Λ, 59) U x = a 1 q Λ 60), 57), 58) b 2 = l Λ, 61) Θ x = b 1 ϕ Λ 62) 59), 61) a = b 63) 40) 2 1 q2 gβϕ = b Λ 64) 1 II),, Mellor and Yamada 1974) 4 1 4

17 , 33), 34), 35) Mellor and Yamada 1974) 4 4,, 1999) ) a Uq 2 L = aq3 65) Λ 65) 40) 43), a 2 Dq 2 Dt [ 5 3 qλ q 2 ] U i 1 = 2u i u k 2βg k u k θ 2 q3, 66) Λ 1 u i u j = δ ij 3 q2 3l [ 1 u i u k Cq 2 δ ik ) U j q +u j u k Cq 2 δ jk ) U i 2 ] 3 δ U l iju k u l 3 l 1 q β g j u i θ + g i u j θ 2 ) 3 δ U l ijg l u k u l u i θ = 3 l 2 q Dθ 2 Dt +3 l { 1 qλ1 q 2 q 2 δ ik + δ jk 2 q 3 x j x i 3 δ q 2 )] ij, 67) Θ u i u k + u k θ U ) i + βg i θ x 2, 68) k ) θ qλ 2 3 = 2u k θ Θ 2 q θ Λ 2 69) 2 Mellor and Yamada 1974) 3 3 u i u j, u i θ ), 40) a 2 Uq 2 L q3 = a2 Λ 70)

18 ) 40) 43), a 2 q 3 Λ = u U i iu k βg k u k θ, 71) [ u i u j = δ ij 3 q2 3l 1 q u i θ = 3 l 2 q u i u k Cq 2 δ ik ) U j +u j u k Cq 2 δ jk ) U i 2 3 δ U l iju k u l 3 l 1 q β g j u i θ + g i u j θ 2 ) 3 δ ijg l u l θ, 72) u i u k Θ + u k θ U i + βg i θ 2 ) ], 73) θ 2 = Λ 2 q u kθ Θ 74) Mellor and Yamada 1974) ) 70) 40) 43) a 1 q 3 Λ = u U i iu k βg k u k θ, 75) u i u j = δ ij Uj 3 q2 ql 1 + U ) i, 76) x i x j Θ u i θ = ql 2 3βl 2 x i q g iθ 2, 77) θ 2 = Λ 2 q u kθ Θ 78) Mellor and Yamada 1974) 1

19 Mellor and Yamada 1974) 4, 3, 2 3, ,, α = 0, ν = , U, V W /x, /y /z 0 m 5200 m 0 m 1000 m 20, 1000 m 5200 m 60 Mellor and Yamada 1974) 10 1 min min 3 512,,, 1a),, 1b) d),,,,

20 Clarke et al 1971) 52 Mellor and Yamada 1974) 2 4 Mellor and Yamada 1974) 1: a), b), c), d) a), a) Θ, d) α Θ, ξ Mellor and Yamada 1974) 2 )

21 m 300 m 2 3, 4, 2 m sec 1 3 R i , 4 4, 2000 m , 3 4 Mellor and Yamada 1974),, 4, 3, 2 3, ,, 4 3, 2 3, 4, 3

22 5 20 2: Mellor and Yamada 1974) 3 )

23 5 21 3: Ri Mellor and Yamada 1974) 5 )

24 5 22 4: Mellor and Yamada1974) 6 )

25 Mellor 1973) Mellor and Yamada 1974),,,, Mellor 1973) Mellor and Yamada 1974) Mellor 1973) Mellor and Yamada 1974) 4 2, 4 2 Mellor and Yamada 1974) 4, 3, 2 Mellor and Yamada 1974) 4 10,, Mellor and Yamada 1974) 3, 2 3 3, Mellor and Yamada 1974) 2 1 Mellor and Yamada 1974) 1, 1 2 Mellor and Yamada 1974)

26 6 24 4, 3 2, Mellor and Yamada 1974) 4, 3, 2,, Mellor and Yamada 1974),

27 25,,,,,,,, pl A TEX, dennou style 6

28 A 26 A A1 10) 4), 2) t U i + u i ) + U i U k + U i u k + U k u i + u i u k ) + ε ikl f k U l + u l ) = 1 P + p) g i βθ + θ) + ν 2 U i + u i ) ρ x i A1), 5) ) = t U i + u i ) + U i + u i )U k + u k ) + ε ikl f k U l + u l ) = t U i + u i ) + U i U k + u i U k + U i u k + u i u k ) + ε ikl f k U l + u l ) = U i t + U i U k + u i u k ) + ε ikl f k U l, A2) ) = 1 P + p) g i βθ + θ) + ν ρ x 2 U i + u i ), i = 1 P + p) g i βθ + θ) + ν 2 U i + u i ) ρ x i = 1 P g i βθ + ν 2 U i A3) ρ x i A2), A3) 10) U i t + U i U k + u i u k ) + ε ikl f k U l = 1 P g i βθ + ν 2 U i ρ x i 11) 4), 3) Θ + θ) + U k Θ + U k θ + Θu k + u k θ) = α 2 Θ + θ) t A4), 5) ) = Θ + θ) + U k Θ + U k θ + Θu k + u k θ) t

29 A 27 = Θ + θ) + U k Θ + U k θ + Θu k + u k θ) t = Θ + U k Θ + u k θ) ) = α 2 Θ + θ) = α 2 Θ + θ) A5) = α 2 Θ A6) A5), A6) 11) Θ + U k Θ + u k θ) = α 2 Θ A2 15) 13) u j 13) j u i { ui u j t + } U i u k + U k u i + u i u k u i u k ) + ε ikl f k u l { uj +u i t + } U j u k + U k u j + u j u k u j u k ) + ε jkl f k u l = u j 1 ) p + g i βθ + ν 2 u i + u i 1 ) p + g j βθ + ν 2 u j ρ x i ρ x j A7) t u iu j ) + u j U i u k ) + u i U j u k ) +u j U k u i ) + u i U k u j ) + u j u i u k ) + u i u j u k ) u j u i u k ) u i u j u k ) + f k ε jkl u i u l + ε ikl u j u l ) = 1 pu i ) 1 pu j ) + p uj + u ) i ρ x j ρ x i ρ x i x j +βg j u i θ + g i u j θ) + νu j 2 u i + νu i 2 u j A8) 9), 12) A8) ) = t u U i U j u i u j iu j ) + u j u k + u i u k + U k u j + U k u i

30 A 28 u i u j +u j u k + u i u k u j u i u k ) u i u j u k ) +f k ε jkl u i u l + ε ikl u j u l ) = t u U i U j iu j ) + u j u k + u i u k + U k u i u j ) +u k u i u j ) u j u i u k ) u i u j u k ) +f k ε jkl u i u l + ε ikl u j u l ) = t u U i U j iu j ) + u j u k + u i u k + U k u i u j ) + u i u j u k ) u j u i u k ) u i u j u k ) +f k ε jkl u i u l + ε ikl u j u l ) A9) 2 = ) A10), ρ A8) ) = ) 1 x j ρ pu i ) 1 x i ρ pu j + p ui + u ) j + βg j u i θ + g i u j θ) ρ x j x i 2ν u i u j + ν { } u i u j ) A11), 5) ) = t u U i U j iu j ) + u j u k + u i u k + U k u i u j ) + u i u j u k ) + ε jkl u i u l + ε ikl u j u l )f k, ) = ) 1 x j ρ pu i ) 1 x i ρ pu j + p ui + u ) j ρ x j x i +βg j u i θ + g i u j θ) 2ν u i u j + ν { u i u j ) A12), A13) 15) t u iu j ) + U k u i u j + u i u j u k ν ) u i u j + 1 x j ρ pu i + 1 x i ρ pu j + f k ε jkl u i u l + ε ikl u j u l ) } A12) A13)

31 A 29 U j U i = u i u k u j u k βg j u i θ + g i u j θ) + p ui + u ) j 2ν u i u j ρ x j x i 16) 13) θ, 14) u i, { ui θ + } U i u k + U k u i + u i u k u i u k ) + ε ikl f k u l t { θ + u i t + } Θu k + U k u i + u i u k u i u k ) = θ 1 ) p g i βθ + ν 2 u i + u i α 2 θ A14) ρ x i t u iθ) + u i Θu k ) + θ U i u k ) + u i U k θ) + θ U k u i ) + u i u k θ) + θ u i u k ) u i u k θ) θ u i u k ) + ε ikl f k u l θ = θ p g i βθ 2 + νθ 2 u i + αu i 2 θ A15) ρ x i 9), 12) A15) ) = t u Θ iθ) + u i u k + u k θ U i θ + U k u i + U k θ u i θ +u i u k + u k θ u i u i u k θ) θ u i u k ) + ε ikl f k u l θ A10) = t u Θ iθ) + u i u k + u k θ U i + U k u i θ) +u k u i θ) u i u k θ) θ u i u k ) + ε ikl f k u l θ = t u Θ iθ) + u i u k + u k θ U i + U k u i θ) + u i u k θ) u i u k θ) θ u i u k ) + ε ikl f k u l θ A15) ) = x i A16) ρ ) 1 ρ pθ + p θ + g i βθ 2 ρ x i

32 A 30 +νθ ) ) ui θ + αu i = ) 1 x i ρ pθ + p θ g i βθ 2 + ν θ u ) i ρ x i +α ) θ u i α + ν) u i θ A17), 5) ) = t u Θ iθ) + u k u i + u k θ U i + U k u i θ) + θ u i u k ) u i u k θ) + ε ikl f k u l θ, = t u Θ iθ) + u k u i + u k θ U i + θ U k u i θ) + u i u k ) u i u k θ) + ε ikl f k u l θ, = t u Θ iθ) + u k u i + u k θ U i + U k u i θ) + u i u k θ) + ε ikl f k u l θ, ) 1 ρ pθ + p θ g i βθ ρ x 2 i +ν θ u ) i + α ) θ u i = ) 1 x i ρ pθ + p θ g i βθ ρ x 2 i +ν θ u ) i + α ) θ u i ) = x i α + ν) u i α + ν) u i u i u k θ) u i u k θ) θ θ A18) A19) A18), A19) 16) t u iθ) + θ U k u i θ + u i u k θ αu i νθ u ) i + ) 1 x i ρ pθ + ε ikl f k u l θ Θ = u i u k u k θ U i βg i θ x 2 + p k ρ θ α + ν) u i x i θ A20)

33 A 31 17) 14) θ θ θ t + θ Θu k + U k θ + u k θ u k θ) = αθ 2 θ A21) 9), 12) A21) ) = θ θ t + u kθ Θ + U k θ θ + u k θ θ θ u k θ) = 1 θ 2 2 t + u kθ Θ U θ 2 k u θ 2 k θ u k θ) = 1 θ 2 2 t + u kθ Θ + 1 U k θ 2 ) + 1 u k θ 2 ) θ u k θ), 2 2 A22), A10) A21) ) = αθ ) θ = 1 2 α ) θ 2 α θ θ A23) A22), A23) 1 θ 2 2 t U k θ 2 ) + 1 u k θ 2 ) θ u k θ) α θ2 = u k θ Θ α θ θ A24) A24) 2,, 5) 17) θ 2 t + ) U k θ x 2 + u k θ 2 α θ2 = 2u k θ Θ 2α θ θ A25) k A3 36) 33), i = j, 9) Du 2 i Dt [ { u 2 qλ i }] u i u k ) x i U i = 2u i u k 2βg i u i θ q u 2 i 3 1 3l 1 3 q2 ) q 3 Λ 1 A26)

34 A 32 q 2 = u 2 i 36) Dq 2 Dt { q 2 qλ u )} iu k U i = 2u i u k 2βg i u i θ 2 q3 x i Λ 1 A27) 37) 33) 36) δ ij /3 4), ) = D Dt u iu j ) { qλ 1 u i u j ) + u j u k ) + }] u i u k ) x i x j δ [ ij Dq 2 3 Dt { q 2 qλ )}] u k u l ) x l = D u i u j δ ) ij Dt 3 q2 [ { qλ 1 u i u j ) + u j u k ) + ) u i u k ) x i x j δ ij q )}] u k u l ), A28) 3 x l U j U i ) = u i u k u j u k βg j u i θ + g i u j θ) q u i u j δ ) ij 3l 1 3 q2 + Cq 2 Ui + U ) j 2 q 3 δ ij x j x i 3 Λ 1 δ ) ij U l 2u l u k 2βg l u l θ 2 q3 3 Λ 1 U j U i = u i u k u j u k δ U l iju k u l β g j u i θ + g i u j θ 2 ) 3 δ ijg l u l θ + Cq 2 q 3l 1 Ui + U j x j x i ) u i u j δ ij 3 q2 A28), A29) 37) D u i u j δ ) ij Dt 3 q2 [ { qλ 1 u i u j ) + u j u k ) + u i u k ) x i x j δ ij q )}] u k u l ) 3 x l U j U i = u i u k u j u k δ U l iju k u l + Cq 2 Ui + U j x j β g j u i θ + g i u j θ 2 ) 3 δ ijg l u l θ q 3l 1 4) 36) i l ) A29) ) x i u i u j δ ) ij 3 q2

35 A 33 40) 38), 39) 36) ) = Dq2 Dt = Dq2 Dt [ { q 2 qλ [ ] δil x i 3 + a il )q }] 2 { 5 q 2 qλ } a ik q 2 ) 3 x i a ik Oa) ) = { 5 q 2 } ) qλ Oa) 3 A30) A31), Oa) ) δik ) = a ik q 2 U i 2βg i b i qϕ 2 q3 Λ 1 = 2 3 q2 U i x i 2a ik q 2 U i 2βg i b i qϕ 2 q3 Λ 1 9) A32) ) = 2a ik q 2 U i 2βg i b i qϕ 2 q3 Λ 1 A33) A31), A33) 40) Dq 2 Dt { 5 q 2 } ) qλ Oa) 3 = 2a ik q 2 U i 2b k g k βqϕ 2 q3 Λ 41) 38), 39) 37) ) = D { ) δij Dt 3 + a ij q 2 δ } ij 3 q2 + [ ] δjk )q 2 x i δ ij 3 = D Dt a ijq 2 ) + δ jk a jk q x l [ [ { qλ 1 + [ δik x j 3 + a ik [ δ kl 3 + a ) kl q 2 ] )}] { δij q 2 qλ 1 + a ij q 2 ) 3 q 2 + a jk q 2 ) + δ ik q 2 + x i x i 3 x j [ δij 3 + a ij ] )q 2 x j a ik q 2 ) )q 2 ]

36 A 34 δkl δ ij q δ ij 3 = D Dt a ijq 2 ) [ { qλ1 3 + q 2 + )}] a kl q 2 ) x l x l 2 ) x j 3 δ q ij 2 x j 3 δ q 2 )}] ija kl x l δ jk q 2 x i + δ ik q 2 a ij q 2 + a jk q 2 x i + a ik q 2 A34) a ij Oa) ) = D Dt a ijq 2 ) { qλ1 q 2 q 2 δ ik + δ jk 2 3 x j x i 3 δ q 2 ) 1 ) } ij + Oa) A35) ) ) = δik = q 2 { δik 3 + a ik q 2 U j δjk 3 + a ik 3 + a jk +Cq 2 Ui + U ) j β x j x i q { ) δij 3l a ij q 2 δ ij ) Uj δjk δ U l ija kl δ ij 9) ) q 2 U i δ ij ) δkl 3 + a Ul kl ) g j b i qϕ + g i b j qϕ 2 3 δ ijg l b l qϕ 3 q2 3 + a jk } ) Ui U k C βqϕg j b i + g i b j 2 3 δ ijg l b l ) q3 3l 1 a ij Ui x j + U j x i )} A36) { ) ) = q 2 δki 3 + a Uj ki δ ija kl U l C δkj 3 + a kj )} Ui x j + U j x i ) Ui βqϕg j b i + g i b j 2 3 δ ijg l b l ) q3 3l 1 a ij A35), A37) 41) D Dt a ijq 2 ) [ { qλ1 q 2 q 2 δ ik + δ jk 2 3 x j x i 3 δ q 2 } ] ij {1 + Oa)} A37)

37 A 35 { ) ) = q 2 δik 3 + a Uj δjk ik a Ui jk 2 3 δ U l Ui ija kl C + U )} j x j x i βqϕg j b i + g i b j 2 3 δ ijg l b l ) q3 3l 1 a ij A38)

38 36 [1] Boussinesq, J, 1877: Theeorie de l ecoulement tourbillant Mem Presentes par divers Savants Acad Sci Inst Fr, 23, [2] Clarke, R H, A J Dyer, R R Brook, D G Reid and A J Troup, 1971: The Wangara experiment: Boundary layer data Tech Paper 19, Div Meteor Phys, CSIRO, Australia [3] Donaldson, C dup, 1973: Construction of a dynamic model of the production of atmospheric turbulence and the dispersal of atmospheric pollutants Workshop on Micrometeorology, Boston, Amer Meteor Soc, [4] Hanjamic, K, and B E Launder, 1972: Fully developed asymmetric flow in a plane channel J Fluid Mech, [5] Kolmogorov, A N, 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds number Dokl Akad Nauk SSSR, 30, [6] Mellor, G L, 1973: Analytic Prediction of the Properties of Stratified Planetary Surface Layers J Atmos Sci, 30, [7] Mellor, G L, and T Yamada, 1974: A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers J Atmos Sci, 31, [8], 1997: Mellor, Yamada, [9], 1998: Klemp and Wilhelmson 1978), [10] Rotta, J C, 1951: Statisische Theorie nichthomogener Turbulenz Z Phys, 129, ; 131, [11], 1999:,, 196, [12], 1992: ,,,

39 37 [13],,,,,, 1995: 3, 314pp

mains.dvi

mains.dvi 8 Λ MRI.COM 8.1 Mellor and Yamada (198) level.5 8. Noh and Kim (1999) 8.3 Large et al. (1994) K-profile parameterization 8.1 8.1: (MRI.COM ) Mellor and Yamada Noh and Kim KPP (avdsl) K H K B K x (avm)

More information

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

数値計算:有限要素法

数値計算:有限要素法 ( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$ 1051 1998 59-69 59 Reynolds (SUSUMU GOTO) (SHIGEO KIDA) Navier-Stokes $\langle$ Reynolds 2 1 (direct-interaction approximation DIA) Kraichnan [1] (\S 31 ) Navier-Stokes Navier-Stokes [2] 2 Navier-Stokes

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq 7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( ) 71 特集 オープンソースの大きな流れ Nonlinear Sloshing Analysis in a Three-dimensional Rectangular Pool Ken UZAWA, The Center for Computational Sciences and E-systems, Japan Atomic Energy Agency 1 1.1 ( ) (RIST) (ORNL/RSICC)

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture nabe@sml.k.u-tokyo.ac.jp 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

Report98.dvi

Report98.dvi 1 4 1.1.......................... 4 1.1.1.......................... 7 1.1..................... 14 1.1.................. 1 1.1.4........................... 8 1.1.5........................... 6 1.1.6 n...........................

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola

(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola (2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smolarkiwicz and Rotunno (1989) F r = 0.15 0.5 ( F r = u/nh,

More information

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1 Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO , 3, 2012 9 STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO 1 950-2181 2 8050 2 950-2181 2 8050 Numerical computation of river flows

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

弾性定数の対称性について

弾性定数の対称性について () by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a 1 1 1.1 (Darcy) v(cm/s) (1.1) v = ki (1.1) v k i 1.1 h ( )L i = h/l 1.1 t 1 h(cm) (t 2 t 1 ) 1.1 A Q(cm 3 /s) 2 1 1.1 Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

Baker and Schubert (1998) NOTE 1 Baker and Schubert(1998) 1 (subsolar point) 177.4, ( 1). Sp dig subsolar point equator 2.7 dig Np Sun V

Baker and Schubert (1998) NOTE 1 Baker and Schubert(1998) 1 (subsolar point) 177.4, ( 1). Sp dig subsolar point equator 2.7 dig Np Sun V Baker and Schubert (1998) NOTE 1 Baker and Schubert(1998) 1 (subsolar point) 177.4, 2.7 2.7 ( 1). Sp 177.3 dig subsolar point equator 2.7 dig Np Sun Venus 1:. 2 (Rayleigh number), ρ u i t + ρu u i j =

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology

Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology Myers, R.H., Montgomery, D.C. & Anderson-Cook, C.M. (2009) Response Surface Methodology, Third Edition. Chapter 7. Experimantal Designs for Fitting Response Surfaces - I. (response surface methodology)

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information