[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

Similar documents
[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias [7] Query by humming Chen [8] Query by rhythm Jang [9] Query-by-tapp

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

1: 2: 3: 4: 2. 1 Exploratory Search [4] Exploratory Search 2. 1 [7] [8] [9] [10] Exploratory Search

Microsoft Word - deim2011_new-ichinose doc

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

Lyra X Y X Y ivis Designer Lyra ivisdesigner Lyra ivisdesigner 2 ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) (1) (2) (3) (4) (5) Iv Studio [8] 3 (5) (4) (1) (

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

Wikipedia YahooQA MAD 4)5) MAD Web 6) 3. YAMAHA 7) 8) Vocaloid PV YouTube 1 minato minato ussy 3D MAD F EDis ussy

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2

21 Key Exchange method for portable terminal with direct input by user

IPSJ SIG Technical Report Vol.2010-GN-74 No /1/ , 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KU

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

Gaze Head Eye (a) deg (b) 45 deg (c) 9 deg 1: - 1(b) - [5], [6] [7] Stahl [8], [9] Fang [1], [11] Itti [12] Itti [13] [7] Fang [1],

Run-Based Trieから構成される 決定木の枝刈り法

IPSJ SIG Technical Report Vol.2017-HCI-173 No.5 Vol.2017-EC-44 No /6/1 1,a) 1,2,b) 3,c) 1,d) 3D * 1* Graduate School of Engineerin

2 3, 4, [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,

untitled

2013 M

1(a) (b),(c) - [5], [6] Itti [12] [13] gaze eyeball head 2: [time] [7] Stahl [8], [9] Fang [1], [11] 3 -

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

DEIM Forum 2012 E Web Extracting Modification of Objec

28 Horizontal angle correction using straight line detection in an equirectangular image

DEIM Forum 2010 D Development of a La

fiš„v8.dvi

日本感性工学会論文誌

HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus

Microsoft Excelを用いた分子軌道の描画の実習

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

(a) (b) 1 JavaScript Web Web Web CGI Web Web JavaScript Web mixi facebook SNS Web URL ID Web 1 JavaScript Web 1(a) 1(b) JavaScript & Web Web Web Webji

1 UD Fig. 1 Concept of UD tourist information system. 1 ()KDDI UD 7) ) UD c 2010 Information Processing S

Transcription:

1,a) 2 2 1 2,b) 3,c) A choreographic authoring system reflecting a user s preference Ryo Kakitsuka 1,a) Kosetsu Tsukuda 2 Satoru Fukayama 2 Naoya Iwamoto 1 Masataka Goto 2,b) Shigeo Morishima 3,c) Abstract: We propose a new system for constructing character dance animation by considering animator s preferences. First, a user of the proposed system assigns a preferred motion, obtained through a searching algorithm, to arbitrary part in the music. Then the proposed system automatically assigns motions to the other remaining parts of the music by using motions in a database. This system enables a user to create a new dance performance for character animation considering his/her preference. Keywords: relevance feedback, character animation, motion capture, dance 1. 3DCG 1 Waseda University 2 National Institute of Advanced Industrial Science and Technology (AIST) 3 Waseda Research Institute for Science and Engineering a) kakitsuka.99821@ruri.waseda.jp b) m.goto@aist.go.jp c) shigeo@waseda.jp web *1 N [1] web *1 http://www.nicovideo.jp c 2016 Information Processing Society of Japan 1

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing Society of Japan 2

[12] Dou [13] n + 1 m n+1 1. 1 1 1 2 1 3 1 4 1 5 1 3.1 3.2 [11] 4 3.1 m n+1 = argmax m U\S n {ρ rel(q, m)+(1 ρ) Φ(m, S n, L l )} (1) rel(q, m) Φ(m, S n, L l ) m 0 ρ 1 (1) rel(q, m) q m RMS W (f) = N i=1 α i x i (2) N x i α i (1) Φ(m, S n, L l ) Φ(m, S n, L l ) =τ min{d(m, m i ) m i S n } + (1 τ) max{sim(m, m j ) m j L l } (3) S n n L l D(m, m i ) Sim(m, m i ) m m i [8] (1) U m n+1 n S n τ c 2016 Information Processing Society of Japan 3

k τ τ k = 19 20 τ k 1 (4) τ 0 = 1 3.2 3.2.1 S C(= 1/S) C [14] 2 S S pose S move A i A B j B S pose S move S pose v β l v h S pose (i A, j B ) = N β l (h(v l (i A )) h(v l (j B ))) (5) l S move h v (v l (j B ) v l (i A )) S move (i A, j B ) = N l g[x] = β l g[h(v l (j B ) v l (i A )) h( v l (i A ))] g[h(v l (j B ) v l (i A )) h( v l (j B ))] { x if x > 0 0 otherwise (6) (7) 2. S = S pose + S move (8) 3.2.2 5 5 3.3 3 1 3 3 3.1 Set Search Generate 4. 4.1 c 2016 Information Processing Society of Japan 4

3. 6 1 15 5 6 i=1 j=i+1 D(m i, m j ) (9) 4 4 3 (1) 4. 5. 5. 3D 4.2 4 4 5 3D 3D Lat JST CREST OngaCREST c 2016 Information Processing Society of Japan 5

[1] CGM :,, : 5. : N Fluxonomy ( ) Vol. 53, No. 5, pp. 489 494 (2012). [2] Shiratori, T., Nakazawa, A. and Ikeuchi, K.: Dancing-to- Music Character Animation, Computer Graphics Forum, Vol. 25, No. 3, Wiley Online Library, pp. 449 458 (2006). [3] Ofli, F., Erzin, E., Yemez, Y. and Tekalp, A. M.: Learn2dance: Learning statistical music-to-dance mappings for choreography synthesis, IEEE Transactions on Multimedia, Vol. 14, No. 3, pp. 747 759 (2012). [4] Oore, S. and Akiyama, Y.: Learning to synthesize arm motion to music by example (2006). [5] Fukayama, S. and Goto, M.: Automated choreography synthesis using a Gaussian process leveraging consumergenerated dance motions, Proceedings of the 11th Conference on Advances in Computer Entertainment Technology, ACM, p. 23 (2014). [6] (SLP) Vol. 2012, No. 25, pp. 1 6 (2012). [7] Mukai, T. and Kuriyama, S.: Pose-timeline for propagating motion edits, Proceedings of the 2009 ACM SIG- GRAPH/Eurographics Symposium on Computer Animation, ACM, pp. 113 122 (2009). [8] Wang, P., Lau, R. W., Pan, Z., Wang, J. and Song, H.: An Eigen-based motion retrieval method for real-time animation, Computers & Graphics, Vol. 38, pp. 255 267 (2014). [9] Raptis, M., Kirovski, D. and Hoppe, H.: Real-time classification of dance gestures from skeleton animation, Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, pp. 147 156 (2011). [10] Choi, M. G., Yang, K., Igarashi, T., Mitani, J. and Lee, J.: Retrieval and visualization of human motion data via stick figures, Computer Graphics Forum, Vol. 31, No. 7, Wiley Online Library, pp. 2057 2065 (2012). [11] Perfume: Perfume GLOBAL SITE, http://www.perfume-global.com/ (2012). [12] Rocchio, J. J.: Relevance feedback in information retrieval (1971). [13] Dou, Z., Hu, S., Chen, K., Song, R. and Wen, J.-R.: Multi-dimensional search result diversification, Proceedings of the fourth ACM international conference on Web search and data mining, ACM, pp. 475 484 (2011). [14] Dijkstra, E. W.: A note on two problems in connexion with graphs, Numerische mathematik, Vol. 1, No. 1, pp. 269 271 (1959). c 2016 Information Processing Society of Japan 6