q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

Similar documents
N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

本文/目次(裏白)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

85 4


基礎数学I

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

プログラム

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

PDF

液晶の物理1:連続体理論(弾性,粘性)

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

研修コーナー

パーキンソン病治療ガイドライン2002

: , 2.0, 3.0, 2.0, (%) ( 2.

第3章

画像工学特論

0406_total.pdf

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Super perfect numbers and Mersenne perefect numbers /2/22 1 m, , 31 8 P = , P =

TOP URL 1

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

Note.tex 2008/09/19( )

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

meiji_resume_1.PDF

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

ohpmain.dvi

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

TOP URL 1

III,..

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

untitled

Microsoft Word - 学士論文(表紙).doc

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

日本内科学会雑誌第102巻第4号

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

修士論文

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

chap10.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Gmech08.dvi


2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =


n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

chap9.dvi

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

TOP URL 1

waseda2010a-jukaiki1-main.dvi

eto-vol1.dvi

DVIOUT-fujin

吸収分光.PDF

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

( )

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

CG38.PDF

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

量子力学 問題

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

Transcription:

H k r,t= η 5 Stokes X k, k, ε, ε σ π X Stokes 5.1 5.1.1 Maxwell H = A A *10 A = 1 c A t 5.1 A kη r,t=ε η e ik r ωt 5. k ω ε η k η = σ, π ε σ, ε π σ π A k r,t= q η A kη r,t+qηa kηr,t 5.3 η q η E = 1 c A t, H = A E k r,t= η {q η A kη r,t q ηa kηr,t}, 5.4 ˆk {q η A kη r,t q ηa kηr,t} 5.5 *103 5.1. k z k xy ε σ = 1, 0, 0, ε π = 0, 1, 0 *104 E H E H E q σ =1 q π *10 Appendix A *103 Appendix *104 ε σ ε π = ˆk 45

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ π 45 q π = 1 45 q π = e iπ/ = i Ez,t ={ε σ + iε π e ikz ωt ε σ iε π e ikz ωt } i/ = ε σ sinkz ωt+ε π coskz ωt = ε σ sinkz ωt+ε π sinkz ωt + π 5.8 z=0 k z σ π Right-handed Circular Polarization *106 5.1 q π = e iπ/ = i Ez,t ={ε σ iε π e ikz ωt ε σ + iε π e ikz ωt } i/ = ε σ sinkz ωt ε π coskz ωt = ε σ sinkz ωt+ε π sinkz ωt π 5.9 q π = i 5. q π =e iπ/ =i Ez,t ={ε σ +iε π e ikz ωt ε σ iε π e ikz ωt } i/ = ε σ sinkz ωt+ε π coskz ωt 5.10 σ π q σ q π ε = q σ q π 5.11 *105 i/ *106 z 46

ε x ε y ε x ε y z z ε x ε y ε y ε x t t x x y z y z 5.1: z z z z 5.: z z z z 1 0 σ π 45 1 1 45 0 1 1 1 1 1 1 1 1 1 i i E RCP z,t =ε σ coskz ωt+ε π coskz ωt + π = ε σ coskz ωt ε π sinkz ωt = {ε σ + iε π e ikz ωt +ε σ iε π e ikz ωt }/, 5.1 5.8 1 1,i 47

5. Stokes 3 P 1, P, P 3 [3] P =P 1,P,P 3 5.13 P 1, P, P 3 +45 45 σ π 1 1 P 1 =1 +45 P 1 = 1 45 P =1 P = 1 P 3 =1 σ P 3 = 1 π σ : P = 0, 0, 1, π : P = 0, 0, 1 45 : P = 1, 0, 0, 45 : P = 1, 0, 0 : P = 0, 1, 0, : P = 0, 1, 0 P 0 = P 1 + P + P 3 =1 P 1 = P = P 3 =0 P 1, P, P 3 Stokes ˆµ photon ˆµ ˆµ = 1 Î + P ˆσ 5.14 = 1 1+P 3 P 1 ip P 1 + ip 1 P 3 5.15 Î ˆσ Pauli 0 1 0 i ˆσ x =, ˆσ y =, ˆσ z = 1 0 i 0 1 0 0 1 5.16 ˆµ ε = ε ˆµε = 1 1+P 3 P 1 ip 1 1 0 = 1 P 1 + ip 1 P 3 0 1 + P 3 1 0 1 + P 3 / ε = 1 0 σ P 3 =1 1 P 3 =0 1/ P 3 = 1 0 P ε ε ˆµε *107 1 σ or π: ε = ε 0 ˆµε = 1 1 + P 0 3, ε = ε 1 ˆµε = 1 1 P 3. 45 or 45 : ε = 1 1 ε 1 ˆµε = 1 1 + P 1, ε = 1 1 ε 1 ˆµε = 1 1 P 1. right or left: ε = 1 1 ε i ˆµε = 1 1 + P, ε = 1 1 ε i ˆµε = 1 1 P. *107 Stokes 1,i P =1 1, i P = 1 1,i ε σ ε π = ˆk Ar,t=ε σ + iε πe ik r ωt +ε σ iε πe ik r ωt ε π ε σ = ˆk 1,i P =1 48

5.3 k r ωt ωt k r k r ωt ωt k r σ π cosωt k r = cosk r ωt *108 σ π 5.8 σ π π +π/ kz ωt ωt kz E RCPz,t =ε σ sinωt kz+ε π sinωt kz + π = {ε σ + iε π e iωt kz ε σ iε π e iωt kz } i/ 5.17 π π σ 5.8 5.17 Stokes 5.17 e iωt kz ε σ + iε π 1 1,i Stokes P =1 1 1, i P = 1 5.17 E RCPz,t = {ε σ iε π e ikz ωt ε σ + iε π e ikz ωt } i/ 5.18 A RCPz,t ={ε σ iε π e ikz ωt +ε σ + iε π e ikz ωt }/ 5.19 5.3 e ikz ωt ε σ iε π 1 1, i Stokes P = 1 Appendix k π c A k r,t= ε η a kη e ik r ωt + ε V ω ηa e ik r ωt kη 5.0 η k k r ωt ωt k r e ik r ωt e ik r ωt X X k ω e ik r ωt 5.19 1 1, i Stokes P = 1 *108 sin sinωt k r = sink r ωt 49

5.4 Ĝ 4 Ĝ X Stokes P 1,P,P 3 [3] 5.4.1 Ĝ Ĝ σ-σ, σ-π, π-σ, π-π 4 G σσ, G σπ, G πσ, G ππ G σσ G πσ Ĝ = G σπ G ππ Î ˆσ 5.1 Ĝ = βî + α ˆσ β + α 3 α 1 iα = α 1 + iα β α 3 5. Ĝ β, α β =G σσ + G ππ / α 1 =G πσ + G σπ / α = ig πσ G σπ / α 3 =G σσ G ππ / 5.3 1 photon Stokes P ˆµ = 1 Î + P ˆσ Tr{ˆµĜ} Tr trace *109 ˆµĜ = 1 Î + P ˆσβÎ + α ˆσ = 1 {βî + α ˆσ + βp ˆσ +P ˆσα ˆσ} = 1 {β + P αî +α + βp + ip α ˆσ} 5.4 β + P α 0 = 0 β + P α α 3 + βp 3 + ip 1 α P α 1 C 1 + 5.5 C 1 α 3 βp 3 ip 1 α P α 1 Tr{ˆµĜ} = β + P α = β + P 1 α 1 + P α + P 3 α 3 5.6 Stokes P *110 *109 C 1 = α 1 + βp 1 + ip α 3 P 3 α iα + βp +P 3 α 1 P 1 α 3, C 1 = α 1 + βp 1 + ip α 3 P 3 α +iα + βp P 3 α 1 P 1 α 3 *110 Stokes ˆµ 50

5.4. photon Stokes P Ĝ Ĝ Ĝ ˆµ = 1 Î + P ˆσ dσ =Tr{ˆµĜ Ĝ} 5.7 σ-σ, σ-π, π-σ, π-π 4 G σσ, G σπ, G πσ, G ππ X 5. *111 Ĝ Ĝ =β Î + α ˆσ βî + α ˆσ = β βî + β α ˆσ + α β ˆσ +α ˆσα ˆσ 5.8 = {β β +α α}î + {β α + α β+iα α} ˆσ 5.9 ˆµĜ Ĝ = 1 {β β + α α + β P α+p α β + ip α α}î + 1 {β βp + iα α+β α + α β+ip β α + α β} ˆσ 5.30 Tr{ˆµĜ Ĝ} Î dσ =Tr{ˆµĜ Ĝ} = β β + α α + β P α+p α β + ip α α. 5.31 dσ = 1 Ĝ = g σσ + ig σσ g σπ + ig σπ g πσ + ig πσ g ππ + ig ππ { g σσ + g σσ +g πσ + g πσ +g σπ + g σπ +g ππ + g ππ } + P 1 g σσ g πσ + g σσ g πσ + g ππ g σπ + g ππ g σπ + P g σσ g πσ g σσ g πσ + g ππ g σπ g 1{ + P 3 g σσ + g σσ g πσ + g πσ +g ππ g σπ σπ + g σπ g ππ + g 5.3 ππ } 5.33 P 1,P,P 3 C 0,C 1,C,C 3 dσ = C 0 + C 1 P 1 + C P + C 3 P 3 5.34 *111 i ˆσ = ˆσ ii α, β P, ˆσ 51

5.4.3 Stokes P dσ P =Tr{ˆµĜ ˆσĜ} 5.35 dσ P = β α + α β iα α+β βp iβ P α+ip α β + α P α α P α. 5.36 Ĝ X P X ω P κ = k k ψ φ A Ĝ X *11 X X 4.3 Stokes P φ A Ĝ Ĝ P φ A 5.5 Thomson Thomson Ĝ P 5.5.1 Ĝ Thomson Ĝ =ε εf c 1 0 = F c 0 cos θ 5.37 F c *113 5.3 β = F c 1 + cos θ =F c cos θ α 1 =0 α =0 α 3 = F c 1 cos θ =F c sin θ 5.38 *11 X *113 c Charge c. 5

5.5. Thomson 5.31 dσ = F c cos 4 θ + sin 4 θ +P 3 sin θ cos θ = F c {1 1 } 1 P 3 sin θ. 5.39 5.5.3 Stokes Stokes 5.36 dσ P = F c { sin θ cos θ + P 3 sin 4 θ0, 0, 1 + cos 4 θp 1,P,P 3 sin 4 θp 1,P, 0 }. dσ dσ dσ P 1 = F c P 1 cos θ, P = F c P cos θ, P 3 = 1 F c {sin θ + P 3 1 + cos θ} = F c {P 3 + 1 } 1 P 3 sin θ. 5.40 P dσ P dσ 5.39, 5.40 Thomson Stokes P 1 = P = P 1 cos θ 1 1 1 P 3 sin θ P cos θ 1 1 1 P 3 sin θ,, P 3 + 1 P 3 = 1 P 3 sin θ 1 1. 5.41 1 P 3 sin θ 5.3 P = 1, 0, 0 Thomson Stokes θ 5.40 θ = 90 P 1 = P =0 P 3 1 P 3 =1 53

5.5.4 θ A Thomson 5.39 P 3 P 3A *114 P 3A = P 1 sin φ A + P 3 cos φ A. 5.4 K dσ I = K {1 1 } 1 P 3A sin θ A 5.43 dσ 5.31 Thomson Stokes 5.40 P 3A 5.4 P 1 cos θ sin φ A + {P 3 + 1 P 3A = 1 P 3 sin θ} cos φ A 1 1. 5.44 1 P 3 sin θ 5.39 Thomson K I = K F c {1 1 1 P 3 sin θ }{1 1 } 1 P 3A sin θ A. 5.45 5.3: P = 1, 0, 0 Thomson Stokes θ P = 0. *114 ε σ ε π = ˆk 4.3 φ A > 0 P 1 < 0 ε π ε σ = ˆk 54

5.6 X X π σ *115 SPring-8, BL Phase Retarder ε σ-π *116 X η 4.3 *117 η =0 σ η = 90 π XY Z ε σ = 1, 0, 0 ε π = 0, sin θ, cos θ 5.46 ε = ε σ cos η ε π sin η = cos η, sin η sin θ, sin η cos θ 5.47 Stokes P =P 1,P,P 3 = sin η, 0, cos η 5.48 Stokes Stokes P 0 0 P 0 1 *118 χ PR η P 0 σ 45 π 45 P 1 = P 0 sin η, P 3 = P 0 cos η 5.49 *119 Direct Beam Direct Beam 5.45 θ =0 polscanbrw,x tth=0 5.4 Bragg Thomson 5.45 5.45 Igor-Pro Fitting 5.5 η-scan etascanbrw,x POL-scan φ A -scan polscanbrw,x Function etascanbrw,x Wave w Variable x Variable tth, ttha, p1in, p3in, int,p1out,p3out,p3a //w[0]: POL, w[1]: tth deg, w[]: ttha deg, w[3]: PL, w[4]: Intensity, w[5]: offset *115 *116 6 X *117 η ε σ ε π P 1 Thomson φ A η φ A *118 *119 [39] η = 90 P 0 σ η =0 P 0 55

tth=w[1]*pi/180; ttha=w[]*pi/180 p1in=-w[3]*sin*x*pi/180 p3in=w[3]*cos*x*pi/180 int=1-1-p3in/*sintth^ p1out=p1in*costth/int p3out=p3in+1-p3in/*sintth^/int p3a=-p1out*sin*w[0]+w[5]*pi/180+p3out*cos*w[0]+w[5]*pi/180 return w[4]*int*1-1-p3a/*sinttha^ End Function polscanbrw,x Wave w Variable x Variable tth, ttha, p1in, p3in, int,p1out,p3out,p3a //w[0]: eta, w[1]: tth deg, w[]: ttha deg, w[3]: PL, w[4]: Intensity, w[5]: offset tth=w[1]*pi/180; ttha=w[]*pi/180 p1in=-w[3]*sin*w[0]*pi/180 p3in=w[3]*cos*w[0]*pi/180 int=1-1-p3in/*sintth^; p1out=p1in*costth/int p3out=p3in+1-p3in/*sintth^/int p3a=-p1out*sin*x+w[5]*pi/180+p3out*cos*x+w[5]*pi/180 return w[4]*int*1-1-p3a/*sinttha^ End 5.4: σ Direct Beam POL = φ A 5.5: φ A =0, 30, 60, 90 η θ = 53.95,θ A = 87.088. 56