ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Similar documents
m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

pdf

i

I 1

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

sec13.dvi

I ( ) 2019

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

Gmech08.dvi

A


dynamics-solution2.dvi

C:/KENAR/0p1.dvi

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

08-Note2-web

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy


II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

2011de.dvi

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R


64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Gmech08.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


Korteweg-de Vries

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

LLG-R8.Nisus.pdf

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

K E N Z OU

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Untitled

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

B ver B

Note.tex 2008/09/19( )

i

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

Gmech08.dvi

untitled

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

notekiso1_09.dvi

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

untitled

A

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

29

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

Part () () Γ Part ,

/Volumes/NO NAME/gakujututosho/chap1.tex i

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)


ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.


i 18 2H 2 + O 2 2H 2 + ( ) 3K

KENZOU

/Volumes/NO NAME/gakujututosho/chap1.tex i

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

Transcription:

A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d 2 )+ = (a 2 c 2 )(b 3 d 3 ) (a 3 d 3 )(b 2 c 2 ) (a 2 d 2 )(b 3 c 3 )+(a 3 c 3 )(b 2 d 2 )+ 2.4 gradient (i) f(x, y, z) =/ x 2 + y 2 + z 2 /r (ii) f(x, y) =/(x 2 + y 2 ) /ρ 2 (i) r = x, r3 x =(x, y, z) (ii) x 2 + y 2 = 2 x, ρ4 x =(x, y) 2

2.5 x =0 Taylor () cos x (3 ) (2) tan x (2 ) () (2) cos x = 2! x2 + 4! x4 + d dx tan x = cos 2 x d 2 dx tan x 2 = 2 cos 3 x + sin x d 3 dx tan x 3 = 6 cos 4 x sin 2 x + 2 cos 2 x tan x = x + 3 x3 + x 3 tan x = sin x cos x x 6 x3 2 x2 ( x 6 x3 )( + 2 x2 ) = x + 3 x3 + 2.6 ( + x) α x =0 ( + x) α = +αx + α(α ) x 2 + 2! 2.7 U(x) = 4 x4 3 x3 x 2 2 Taylor 3

U(x) 3 2-4 -2 2 4 - -2 U (x) =0 mb23- U (x) = x 3 x 2 2x =(x +)x(x 2) = 0 x =, 0, 2 U (x) = 3x 2 2x 2 U ( ) = 3 U (0) = 2 U (2) = 6 x =, 2 Taylor (i) U(x) = 5 2 + 3 2 (x +)2 + (ii) U(x) = 8 3 +3(x 2)2 + 2.8 de ax dx = aeax y = ax de y dx = dy de y dx dy = aey = ae ax 2.9 f(x) = ln( + x) x =0 Taylor 4

f(0) = ln = 0 f (x) = +x f (0) = f (x) = ( + x) 2 f (0) = f (3) (x) = 2 ( + x) 3 f (3) (0) = 2! f (n) n (n )! (x) = ( ) f (n) (0) = ( ) n (n )! ( + x) n ln( + x) = f(0) + f (0)x + 2! f (0)x 2 + = x 2 x2 + 2! 3! x3 n (n )! + +( ) x n + n! ( ) n = x n n n= 2.0 (e x ) y = e xy z =(e x ) y ln z = y ln e x = yx ln e = xy z = e xy 2. Euler (i) sin(α + β) = sin α cos β + cos α sin β (ii) cos(α + β) = cos α cos β sin α sin β e i(α+β) = e iα e iβ Euler = cos(α + β)+isin(α + β) = (cos α + i sin α)(cos β + i sin β) = cos α cos β sin α sin β + i(sin α cos β + cos α sin β) (i) (ii) 5

2.2 2 ( y F = A r, x ), A = const 2 r 2 (r 0, 0) (r 0,π) (r, θ) Γ a, Γ b Γa (r 0, π ) (r 0, 0) Γb ma24-3 () (2) (3) r 0 dθ () x F x = (A/r0 2 )( y, x) (x, y) =0 (2) F 2 = A 2 (( y) 2 + x 2 )/r0 4 = A2 /r0 2 = (3) r 0 dθ F A d x = r 0 dθ = A r0 Γ a, Γ b W a = A dθ = A Γ a W b = A dθ = A Γ b π 0 π 0 dθ = Aπ dθ dθ = Aπ W a 2.3 z B ( m e) 6

e v B B =(0, 0,B) () m dv x dt (2) m dv y dt (3) m dv z dt = ev y B = ev x B = 0 (3) z x-y (i) () (2) m d2 v x dt 2 = eb dv y dt = e2 B 2 m v x 0 = d2 v x dt + 2 ω2 v x, ω = eb m A, θ v x = A sin(ωt + θ) () v y = m eb dv x dt = Aω cos(ωt + θ) =A cos(ωt + θ) ω vx 2 + v2 y = A2 = x, y v x,v y x-y ω z z (ii) u v x + iv y (),(2) du dt = iωu u = ae iωt (a ) v x,v y 2.4 () F = kx V (x) V (0) = (2) m m F ( r) = m m G N r r ( r r) 3 r r = (x x) 2 +(y y) 2 +(z z) 2 7

m V ( r) = G N m m r r V ( ) =0 m m r r ma24-7 () V (x) = x 0 kx dx = 2 kx2 (2) / r r x (x x x ) 2 + = 2 ((x x ) 2 + ) /2 2(x x ) ( mm ) G N x r r = x x r r 3 = G N mm (x x) r r 3 2.5 () (2) z(t)z(t) () 2 mv2 z + mgz = mgh z =0 v z v z = 2gh 8

(2) 2 ( ) 2 dz + mgz = mgh dt dz dt = dz h z = 2g h z 2gdt 2 h z + const. = dz h z = 2 h z + const. 2gt t =0 z = h const =0 4(h z) = 2gt 2 z = h 2 gt2 2.6 m v 0 v 0 M m ma24-8 () (2) h (3) v 0 v 0 ( = 6400 km) () E = 2 mv2 0 G N 9 mm

(2) h E = 2 mv2 G N mm + h () 2 v2 = ( 2 v2 0 G NM ) + h v = v0 2 2G NMh ( + h) (3) V =0v =0E =0 mm 2 mv2 0 = G N 2GN M 2GM v 0 = = = 2g 2 g.2km/s 2.7 a M m G =6.67 0 8 cm 3 /gram sec 2 a m -rcos θ θ V () = GmM F = GmM() ˆ 2 l r r sin θ rcos θ - m θ l r sinθ r ma25-3 0

ρ = M 4πa 3 /3 l = r cos θ 2 +(r sin θ) 2 = 2 + r 2 2r cos θ V () = Gmρ φ cos θ = u a V () = Gmρ2π drr 2 0 2 + r 2 2ru = v u r 2 dr sin θdθdφ 2 + r 2 2r cos θ dv = 2rdu du = dv 2r du 2 + r 2 2ru ( r) 2 du 2 + r 2 2ru = dv (+r) 2 2r v (+r) 2 = 2r = 2r 2 v/2 (+r)2 ( r) 2 ( r) 2 dvv /2 = ( + r r ) r = { 2/ r 2/r r a V () = a Gmρ2π drr 2 2 0 = Gmρ 4π a 3 3 = Gmρ 4πa 3 3 = GmM

= ˆ F = V () = GmM 2 ˆ a V () = ( Gmρ2π drr 2 2 a 0 + drr 2 2 ) r = = GmM 3 2 + GmM 2a 2a 3 M() M() = ρ 4 3 π3 = M3 a 3 V () =const. + GmM() 2 F = V () = GmM 2a 3 2 = GmM a ˆ = Gm M3 3 a 3 = GmM() ˆ 2 ˆ 2 2.8 a F = mv 2 /a v = aω( sin ωt, cos ωt) d v dt = aω 2 ( cos ωt, sin ωt) = ω 2 x F = d v m dt = mω2 x x (2.) 2

2.9 a ρ ω ω a ma26-7 a =2cm, =0.5m, ρ =8g/cm 3, 2000 dm = ρardrdφ v(r) =rω 2π L = ρaω r 3 dr dφ 0 0 = 2 πρa4 ω L = 2 π 8 03 kg/m 3 2 0 2 m (0.5) 4 m 4 = 3.3 0 3 kgm 2 /sec 2π 2000 60sec 2.20 Kg m 2 /sec 6400km 5.5g/cm 3 ρ ω dm = ρr 2 dr sin θdφ, v(r, θ) =r sin θω L = ρω r 4 dr sin 3 θdθdφ = ρω2π 5 5 π 0 sin 3 θdθ 3

= 4π 5 ρω5 dx( x 2 ) (x = cos θ) = 8 5 πρω5 =6.4 0 3 Km =6.4 0 6 m ρ =5.5g/cm 3 =5.5 0 3 Kg/m 3 day=8.64 0 4 sec = ω =2π/day =7.27 0 5 /sec 0 L 7.2 0 33 Kgm 2 /sec 2.2 r = φ ma26-8 V = mgx = mgr cos φ φ ṙ =0 mr 2 g φ = mgr sin φ φ + sin φ = 0 (2.2) r r r 4