Introduction 2 / 43

Similar documents
Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

koji07-01.dvi

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

Z...QXD (Page 1)

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j


TOP URL 1

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

YITP50.dvi

susy.dvi

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

陦ィ邏・2

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

第10章 アイソパラメトリック要素

untitled

TOP URL 1

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

~nabe/lecture/index.html 2

量子力学 問題

( )

ADVANTAGE_Panf_p14_ ai

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,


AHPを用いた大相撲の新しい番付編成

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

meiji_resume_1.PDF

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

OHP.dvi

main.dvi


Einstein ( ) YITP

all.dvi


( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

SUSY DWs

I , : ~/math/functional-analysis/functional-analysis-1.tex

Dynkin Serre Weyl

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)


I II III IV V

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

多体問題

弦の場の理論における 位相的構造と反転対称性

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R


5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

,,..,. 1

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

行列代数2010A

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

2000年度『数学展望 I』講義録



1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

本文/目次(裏白)

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

SO(2)

untitled

高校生の就職への数学II

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

Microsoft PowerPoint - 小路田俊子 [互換モード]

DVIOUT-HYOU

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

ver Web


TOP URL 1

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

73

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =


untitled

Transcription:

Batalin-Vilkoviski ( ) 2016 2 22 at SFT16 based on arxiv:1511.04187 BV Analysis of Tachyon Fluctuation around Multi-brane Solutions in Cubic String Field Theory 1 / 43

Introduction 2 / 43

in Cubic open SFT (Schnabl 05) KBc (Okawa 06, Erler+Schnabl 09) KBc (Murata+Schnabl 11, 12, Hata+Kojita 11, 12, ) Boundary Condition Changing Op. (Erler+Maccaferri 14 ) 3 / 43

Cubic SFT D25-brane N -brane N 2 2 brane ( ) Batalin-Vilkovisky 2 brane? 2 2 = 4 4 / 43

: 5 / 43

CSFT : S[Ψ] = EOM: Q B Ψ + Ψ Ψ = 0 ( 1 2 Ψ Q BΨ + 1 ) 3 Ψ3 KBc [B, K] = 0, {B, c} = 1, B 2 = c 2 = 0, Q B B = K, Q B K = 0, Q B c = ckc. N gh (K) = 0, N gh (B) = 1, N gh (c) = 1. i = 1 = 1/2 = 2 = 1 convention 6 / 43

: Pure-gauge type Ψ sol = UQ B U 1 = c K Bc (1 G(K)) G(K) with U = 1 Bc (1 G(K)), U 1 = 1+ 1 Bc (1 G) G Okawa 06, Erler+Schnabl 09 K = 0 ( K = ) 7 / 43

K = 0 K ε -regularization: K K ε K + ε Ψ sol ε = ( UQ B U 1) K K ε = c K ε G(K ε ) Bc (1 G(K ε)) pure-gauge EOM O(ε) : Q B Ψ sol ε + Ψ sol ε Ψ sol ε = ε c K ε G ε c(1 G ε ) ε 0 EOM? (EOM?) N D25-brane? 8 / 43

K = & (Hata+Kojita 12, 13) K n 0 (K 0) G(K) (1/K) n (K ) ( Re(K) > 0 ) n 0 = 0, ±1 n = 0, ±1 Energy density = 1 2π ( n 2 0 n ) N = ( n 0 n + 1) brane EOM: Ψ sol ε (n 0, n ) ( Q B Ψ sol ε N = & Ψ sol ε EOM 0 + (Ψ sol ε ) 2) = 0 9 / 43

K = 0 K = N = 0 : G(K) = K 1 + K, 1 (tachyon ) 1 + K N = 2 : G(K) = 1 + K K, 1 + K N = 3 : G(K) = (1 + K) 2 K = 0 tachyon 2 brane K 10 / 43

K = 0 K = : KBc K K = 1 K, B B = B K 2, c c = ck 2 Bc Masuda-Noumi-Takahashi 12, Erler 12, Hata+Kojita 13 K = 0 K = K K εη = K ε 1 + ηk ε, B B εη = c c εη = c(1 + ηk ε ) 2 Bc B (1 + ηk ε ) 2 11 / 43

BV BV-basis 12 / 43

BRST-charge Ψ = Ψ sol ε + Φ CSFT S[Ψ] = S[Ψ sol ε ] + Φ ( Q B Ψ sol ε ( 1 + 2 Φ QΦ + 1 ) 3 Φ3 with + (Ψ sol ε ) 2) } {{ } S[Φ] : QA Q B A + Ψ sol ε A ( 1) A A Ψ sol ε Q 2 = 0 EOM Q 2 A = [ Q B Ψ sol ε + (Ψ sol ε ) 2, ] A 13 / 43

BV CSFT ( )BV S[Φ] BV eq: ( ) δs[ψ] 2 = 0 δψ ( ) δs[φ] 2 = 0 δφ nilpotency Q 2 = 0 ( EOM) BV S[Φ] BRST BRST (on-shell) nilpotency unphysical sector 14 / 43

BV { u i (p) } Φ (p µ : ): Φ = u i (p) φ i (p) }{{} p i component field ( p ) d 26 p (2π) 26 CSFT ω ij (p) u i (p ) u j (p) = ω ij (p) (2π) 26 δ 26 (p + p ) : ω ij (p) = ω ji ( p) ω ij (p) 0 only when N gh (u i ) + N gh (u j ) = 3 15 / 43

BV component field BV ω ij δs δs (p) δφ i (p) δφ j ( p) = 0 p i,j ω ij (p) ω ij (p) : j ω ij (p)ω jk (p) = δ i k (det ω ij 0 ) 16 / 43

Darboux basis {u i (p)} {v i (p), v i (p)} vi (p) v j (p ) = a i (p) δ ij (2π) 26 δ 26 (p + p ) vi v j = v i v j = 0 { } ϕ i (p), ϕ (p) i field anti-field S[ϕ, ϕ ] BV eq: a i (p) 1 δs δs p δϕ i i ( p) δϕ i (p) = 0. 17 / 43

: Darboux basis Darboux basis anti-field ϕ L : ϕ i = δυ[ϕ] δϕ i ( Υ[ϕ] = gauge-fermion (gauge ) field ϕ gauge-fixed action BRST-transf. : Ŝ[ϕ] = S[ϕ, ϕ ] L δ B ϕ i (p) = a i (p) 1 δs[ϕ, ϕ ] δϕ i ( p) L ) δ B Ŝ[ϕ] = 0 & ( δ B ) 2 ϕ EOM 18 / 43

BV basis : I photon u 1A 6 u i BV-basis (photon sector A µ µ χ): N gh = 0 : u 0 = p = e (π/4)k e ip X e (π/4)k N gh = 1 : u 1A = p µ α µ 1 c 1 p, u 1B = c 0 p N gh = 2 : u 2A = p µ α µ 1 c 0c 1 p, u 2B = c 1 c 1 p N gh = 3 : u 3 = c 1 c 0 c 1 p Q B : ( ) ( ) iq B u 0 = u 1A + k 2 u1a k 2 u 1B, Q B = (u u 1B 1 2A + u 2B ) ( ) ( u2a 1 iq B = k u 2B 1) 2 u 3, Q B u 3 = 0 19 / 43

{u i } Darboux basis ( ) ( ) ω1a,2a ω 1A,2B p = 2 0, ω 0 1 0,3 = 1 ω 1B,2A ω 1B,2B (v i, v i ) = (u 1A, u 2A ), (u 2B, u 1B ), (u 0, u 3 ) {u i } : } Ψ = {u 0 C+u 1A χ+u 1B C +u 2A χ +u 2B C+u 3 C p ( ) ( ) field C =, ant-field C ( χ χ ), C C N gh (field) + N gh (anti-field) = 1 20 / 43

kinetic term S 0 = 1 Ψ Q B Ψ 2 { = 1 ( p 2 χ( p) + C ( p) ) ( p 2 χ(p) + C (p) ) p 2 + ( ip 2 C( p) χ ( p) ) } C(p) Siegel gauge: anti-field = C = χ = C = 0 Ŝ 0 = p Totally Unphysical System { 1 } 2 p2 χ( p) p 2 χ(p) + ip 2 C( p)c(p) δ B χ(p) = C(p), δ B C(p) = ip 2 χ(p), δ B C(p) = 0 21 / 43

BV basis : II BV basis N gh = 1 : u 1 (p) = e π 4 K c e ip X e π 4 K N gh = 2 : u 2 (p) = e π 4 K ckc e ip X e π 4 K Q B u 1 (p) = ( p 2 1 ) u 2 (p), Q B u 2 (p) = 0 ω 1,2 = 1 Ψ = u1 (p)ϕ(p) + u 2 (p)ϕ (p) p( ), S 0 = 1 ϕ( p) ( p 2 ) 1 ϕ(p) 2 p Ŝ 0 [ϕ] = S 0 = S 0, δ B ϕ = ϕ δs 0 =0 δϕ ϕ =0 = 0 22 / 43

brane BV 23 / 43

K = 0 2 brane with G(K) = 1 + K K tachyon with G(K) = K 1 + K? BV BRST-charge Q QA Q B A + Ψ sol ε A ( 1) A A Ψ sol ε???? 24 / 43

Ψ sol ε = (UQ B U 1 ) K Kε U ε U K Kε P ε : ( ) P ε = Uε 1 Ψ sol ε + Q B Uε [ ] = Uε 1 (UQB U 1 ) ε U ε Q B Uε 1 Uε = ε 1 G ε cg ε Bc(1 G ε ) U ε P ε = O(ε) Q = Q B + O(ε): QA Q B A + P ε A ( 1) A A P ε = Q B A + O(ε) 25 / 43

1. P ε 2. photon 6 states unphysical BV-basis 3. brane P ε BV-basis(6 ) 4. BV-basis ω ij ω ij (det ω ij 0) ω ij 26 / 43

BV-basis : û 0 = B e π 4 K c e ip X e π 4 }{{} K } {{ } K ε homotopy op. û 1A, û 1B, û 2A Q B û 0 = û 1A û 1B, Q B û 1A =Q B û 1B = ( 1 p 2) û 2A û 1A = e π 4 K c e ip X e π 4 K û 1B =(1 p 2 ) B K ε e π 4 K ckc e ip X e π 4 K + ε K ε e π 4 K c e ip X e π 4 K û 2A = e π 4 K ckc e ip X e π 4 K 27 / 43

BV-basis {u 0, u 1A, u 1B, u 2A, u 2B, u 3 } N gh =0 : u 0 = Lû 0 R 1, N gh =1 : u 1A =Lû 1A R 1, u 1B =Lû 1B R 1 [ P ε, Lû 0 R 1], N gh =2 : u 2A =Lû 2A R 1, u 2B = { P ε, Lû 1A R 1} N gh =3 : u 3 =[P ε, u 2A ] = [ P ε, Lû 2A R 1] with ( Qu 0 = u 1A u 1B EOM = QB P ε + P 2 ε = O(ε) ) ( ) ( ) u1a 1 [(1 Q = ) ] ( ) p 2 0 u u 1B 1 2A + u 2B + [EOM, u 1 0 ], ( ) ( ) ( ) u2a 1 0 Q = u 2B p 2 u 1 3 + [EOM, u 1 1A ], Qu 3 = i [EOM, u 2A ] 28 / 43

L = L(K ε ) R = R(K ε ) ε 0 EOM ui EOM = 0 ui [EOM, u j ] = 0 u i Q 2 u j = 0 SFT u EOM K = 0 singular u u 1A u 1B u 2A u 2B (photon BV basis...) 29 / 43

ω ij ui Qu j = ( 1) u i (Qui ) u j, ui [EOM, u j ] = 0 ω ij ω ij (p) (i, j = 0, 1A, 1B, 2A, 2B, 3) ω 0,3 (p) ω 1A,2A (p) ω 1A,2B (p) 2 ω 1B,2A = ω 1A,2A +ω 0,3, ω 1B,2B = ω 1A,2B +(p 2 1)ω 0,3 u 1A/B Qu 1A/B = (1 p 2 ) ω 1A,2A + ω 1A,2B u 0 Q (u 2A, u 2B) =(1, p 2 1) ω 0,3 30 / 43

: tachyon 31 / 43

tachyon with G = K 1 + K ( : Ellwood+Schnabl 06) 1. EOM : u 1A/B EOM = 0, u 1A/B [EOM, u 0 ] = 0 L(K ε ) R(K ε ) 2. ω ij (p) (3 ) 3. kinetic term S 0 = (1/2) Φ QΦ 32 / 43

1. EOM u1a/b EOM = 0 L = 1 + O(K ε ), R = 1 + O(K ε ) OK (L, R) u1a/b (p) [EOM, u 0 ( p)] = ( O ε ) min(2p2 1,1) space-like p µ (p 2 > 1 ) OK 2 p µ p 2 > 1 2 2. ω ij (p) ω 0,3 = 1 + O(p 2 1) ( ) ( ) ω1a,2a ω 1A,2B 1 0 [1 = + O(p 2 0 1 p 2 1) ] ω 1B,2A ω 1B,2B 33 / 43

det ω ij = (p 2 1) 2 + O ( (p 2 1) 3) 0 totall unphysical system (photon tachyonic ) 34 / 43

: 2 brane 35 / 43

2 brane with G = 1 + K K ( ) 1. EOM L = 1 + O(K ε ), R = 1 + O(K ε ) O(K ε ) u 1A/B [EOM, u 0 ] = 0 L = O(K ε ), R = O(K ε ) 1 R = 1 {1 + π K ε 4 K ε + π ( π ) } 8 4 + 2 Kε 2 + O(Kε 3 ) EOM 2 (L = O(K ε ) ) 36 / 43

2. ω ij (p) ω 0,3 (p) = O ( ε min(2p2,1) ) ω ij ω 0,3 = 0 ( ) ω1a,2a ω 1A,2B = ω 1B,2A ω 1B,2B ( ) 1 0 [1 + O(p 2 1) ] 1 0 } {{ } ω 1A,2A (p) 6 u i u 0 0, u 2B 0, u 3 0, u 1A u 1B 37 / 43

u 1A u 2A ( ) Φ = u 1A (p) χ(p) + u 2A (p) χ (p) p field anti-field 1 Φ QΦ = 1 ω 1A,2A (p) χ( p)(p 2 1)χ(p) 2 2 p ω 1A,2A = 1 + O(p 2 1) 38 / 43

tachyon : K = 0 Q u i O(ε) 2 brane : K = 0 39 / 43

1. 2 2 2 = 4 3? 2. 6 BV-basis{u i }? u 0 u 1A/B u 2A/B ( ) 3. (L, R) for u 0 = Lû 0 R 1 O(K 0 ε ) O(K 1 ε )? (2 brane EOM L R O(K ε ) ) 40 / 43

4. u i hermiticity P ε hermiticity : P ε = W P ε W 1, W G ε (1 G ε ) Ψ = P ε + u i (p)φ i (p) p i ( φ i (p) = φ i( p) ) u i (p) hermiticity u i (p) = W u i( p) W 1 u i (p) 41 / 43

hermiticity basis U i (p) = 1 [ ui (p) + W 1 u i ( p) ] W 2 EOM 42 / 43

43 / 43