2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

Similar documents
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

pdf

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

7-12.dvi

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

x ( ) x dx = ax

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Gmech08.dvi

Gmech08.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Note.tex 2008/09/19( )

Gmech08.dvi

I ( ) 2019

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r



all.dvi

2011de.dvi

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

i

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

II 2 II


08-Note2-web

I 1

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -


数学演習:微分方程式

DVIOUT

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

dynamics-solution2.dvi

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

DE-resume

Fubini

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

曲面のパラメタ表示と接線ベクトル


KENZOU


ohp_06nov_tohoku.dvi

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

chap1.dvi


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

2000年度『数学展望 I』講義録

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =


A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

K E N Z OU

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X


Part () () Γ Part ,


meiji_resume_1.PDF

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

( ) ,

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

重力方向に基づくコントローラの向き決定方法


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

2014 S hara/lectures/lectures-j.html r 1 S phone: ,


7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

untitled

n ( (

Untitled

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

sec13.dvi


The Physics of Atmospheres CAPTER :

Transcription:

1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) 2 1 1 θ m m l ( 1.2) lθ = v mv = mg sin θ θ sin θ θ lθ = v mv = mgθ

1.1. 3 θ mg θ mg sin θ 1.2: g ξ = lθ + i l v g ξ = i l ξ ( ) g θ(t) = A sin l t + ω 0 A ω 0 1.3 2 1.3: sin θ = θ (x, v) (x, v )

4 1 1.3 1.4: θ sin θ θ 1.4 θ 1.3 1.2 2 = f(x, y) = g(x, y) (x(t), y(t)) x (t) = f(x(t), y(t)) y (t) = g(x(t), y(t)) (x 0, y 0 ) (x 0, y 0 )

1.2. 5 = f(x 0, y 0 ) = g(x 0, y 0 ) t = 0 (x 0, y 0 ) x(t) x 0 ) = f(x 0, y 0 )t y(t) y 0 = g(x 0, y 0 )t f(x 0, y 0 ) = g(x 0, y 0 ) = 0 = f(x 0, y 0 ) + ax(t) + by(t) = ax(t) + by(t) = g(x 0, y 0 ) + cx(t) + (t) = cx(t) + (t) a = f x (x 0, y 0 ), c = g x (x 0, y 0 ), x x = y A = ( a c b = f y (x 0, y 0 ), d = g y (x 0, y 0 ) ) b d d x = Ax ( ) A λ 0 0 µ = λx = µy

6 1 2 t = 0 (x 0, y 0 ) x(t) = x 0 e λt y(t) = y 0 e µt λ µ A = µ λ r = x 2 + y 2 tan θ = y x = λx µy = µx + λy dr = d (x2 + y 2 ) 1/2 ) = 1 ( 2 (x2 + y 2 ) 1/2 2x ) + 2y = 1 (x(λx µy) + y(µx + λy)) r = 1 r λ(x2 + y 2 ) = λr d tan θ = d y x/ y/ = x x 2 x(µx + λy) y(λx µy) = x 2 = µ x2 + y 2 x 2 d tan θ = 1 cos 2 θ dθ = x2 + y 2 x 2 dθ = (1 + tan2 θ) dθ dθ = x2 + y 2 d tan θ x 2 = x2 x 2 + y 2 + y 2 µx2 x 2 = µ dr = ar, dθ = µ 0 r = r 0 θ = θ 0 r(t) = r 0 e λt θ(t) = θ 0 + µt

1.2. 7 µ r λ < 0 λ > 0 λ < 0 λ > 0 λ = 0 λ 1 1 0 λ = λx + y = λy y(t) = y 0 e λt = λx + y 0e λt x(t) = C(t)e λt = C(t)λeλt + C (t)e λt = λx(t) + C (t)e λt C (t) = y 0 C(t) = x 0 + y 0 t x(t) = (x 0 + y 0 (t t 0 ))e λt y(t) = y 0 e λt 1. λ, µ > 0 2. λ, µ < 0 3. λ > 0, µ < 0 λ < 0, µ > 0 4. λ > 0 5. λ < 0 λ, µ 0 1.5 (1) (2) (4) (5)

8 1 1.5: (λ > 0 λ < 0) 1.6: (λ > 0 λ < 0) (3) (5) (1) (4) (2) 1.8 λ > 0 λ < 0 λ = 0 1.9 µ > 0 µ < 0 1 det(xe A) = 0 A 2 x 2 (Tr A)x + det A = 0 E det A A Tr A A

1.2. 9 1.7: (Jordan λ > 0 λ < 0) 1.8: (λ > 0 λ < 0) ( ) 2 2 λ, µ a = b = b 1 b 2 a b 0 Aa = λa Ab = µy a 1 b 1 2 P = a 2 b 2 P 1 λ 0 AP = 0 µ a 1 a 2

10 1 1.9: (λ = 0 µ > 0 µ < 0) P 1 P 1 x = y = = Ax dp 1 x = P 1 AP P 1 x y 1 y 2 = λ 0 y 0 µ ( 2 λ ± µ 1/ 2 i/ ) 2 U = i/ 2 1/ 2 (P U) 1 A(P U) = U 1 P 1 λ µ AP U = µ λ λ P 1 λ 0 AP = 0 λ P 1 λ 1 AP = 0 λ

1.2. 11 1 = x xy = y + xy 1.10: 2 (0, 0) (1, 1) (0, 0) (1, 1) 1.10 x y 2 = x2 + y 2 y = x 2xy A 0 3 = y = εy(1 y)2 x

12 1 ε = 0 x 2 + y 2 ε > 0 1 1.3 2 M m m M F = G Mm r 2 e e M m 2 1kg M r = 6400km g = 9.8m/s 2 2 1.11: 2 1.11 G Q, q (Charles Coulomb, 1736 1806) F = k Qq r 2 e 1

1.3. 13 1 1.11 2 1.12 2 1.12: 1.11 2 1.12 N S E B 1 Faraday(Michael Faraday, 1791 1867) Maxwell(James Maxwell, 1831 1879) v q F = q(e + v B) ρ 1 ρv j

14 1 1. div E = ρ ε 0 2. rot E = B t 3. div B = 0 4. c 2 rot B = E t + j ε 0 ε 0 = div f(x, y, z) f(x, y, z) ( f div g(x, y, z) = g(x, y, z) = x + g y + h ) (x, y, z) z h(x, y, z) h(x, y, z) rot h f(x, y, z) f(x, y, z) y g z f rot g(x, y, z) = g(x, y, z) = (x, y, z) h(x, y, z) x y z h(x, y, z) f(x, y, z) grad f(x, y, z) = f(x, y, z) = z g x g x f y f x f y f z (x, y, z) D D D div E = ρ ε 0 0 div B = 0 div E dz = D D E n ds

1.3. 15 n D ds D ρ ε 0 dz D ε 0 D 2 S C S rot E n ds = C E ds s C S B t n ds S C c 2 E rot B n ds = t n ds + j n ds ε 0 S S C S 1. div E = 0 S 2. rot E = B t 3. div B = 0 4. c 2 rot B = E t (4) c 2 rot B t = 2 E t 2 c 2 rot rot E = c 2 grad div E + c 2 E = c 2 E 2 E t 2 = c2 E

16 1 B = 2 x 2 + 2 y 2 + 2 z 2 rot rot = grad div div rot = 0 c sin(x + ct) E = sin(y + ct) sin(z + ct) 2