5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

Similar documents
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V


( ) ,

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

30

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

i

i 18 2H 2 + O 2 2H 2 + ( ) 3K

Untitled

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,


all.dvi

The Physics of Atmospheres CAPTER :

Gmech08.dvi

KENZOU

Part () () Γ Part ,

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

II 2 II

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Gmech08.dvi

K E N Z OU

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

pdf

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

08-Note2-web

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

( ) ( )

I 1

A


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

現代物理化学 2-1(9)16.ppt

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

応力とひずみ.ppt

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

I ( ) 2019


Note.tex 2008/09/19( )

sec13.dvi

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

meiji_resume_1.PDF


( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

77

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =



80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0


phs.dvi

all.dvi


notekiso1_09.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

TOP URL 1

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

量子力学 問題

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

B ver B

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

/Volumes/NO NAME/gakujututosho/chap1.tex i

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

TOP URL 1

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

現代物理化学 1-1(4)16.ppt

A 99% MS-Free Presentation

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =


2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,


(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b


PDF


Transcription:

4 1 1.1 ( )

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1 di A n n, di n/ = Ω i n, d a A = da + Ω A (1.2.3), d a /, d/,, Ω A (1.2.3) V a, V a (1.2.2) V, d a V a d(v + Ω r) = + Ω (V + Ω r).

6 Ω, d a V a = dv + 2Ω V + Ω (Ω r). (1.2.4),, g a, F (1.2.4) (1.2.1), dv = α p 2Ω V + g + F (1.2.5), α, g g a Ω (Ω r) 2 2Ω V, (coriolis force) 1.3 2,, δxδyδz, (x, y, z) x, [ρu ( ρu/ x) δx 2 ] δyδz, [ρu+( ρu/ x)δx 2 ] δyδz, x,, (ρu)/ x, ( ) x 2, ρ = (ρv ) (1.3.6) t, (continuity equation) d/ = / t+v, (ρv ) = ρ V + V ρ (1.3.6), dρ = ρ V. (1.3.7) 1.4 3 p, α, T, f(p, α, T ) = (1.4.8)

7,,,, (ideal gas),, n pv = nr T (1.4.9), R (= 8.31447 JK 1 mol 1 ), (1.4.9),,, p p k, p = k p k V, k M k, m k,, p k = M k m k V R T p = R T V Mk m k = R T ( Mk V ) M k m k Mk m = M k / M k /m k α = V/ M k, pα = RT (1.4.1), R = R / m, m = 28.97 g mol 1, R = 287 J kg 1 K 1 1.5,,

8,,,,,,,,, Q = di + W, Q, W, di/, c v dt/, c v, pdα/,, dt Q = c v + pdα (1.5.11) (1.5.11),, (1.5.11) dt = c v + pdα (1.4.1), α dlnt = c p R dlnp, c p = c v + R, T = C p R/c p. (1.5.12) C p θ, C θ = T (p /p) κ, κ = R/c p (1.5.13)

9, p 1hPa. θ (potential temperature) θ, (1.5.11), d(lnθ) = Q c p T (1.5.14) (1.5.14) (Q = ) dθ/ =, θ, (1.5.11) Q L dq c ll dt = c dt p αdp (1.5.15), q, l, L, c l, Q 1.6, (1.2.5), (1.3.6), (1.4.1), (1.5.11), 6 6 p, α, T, u, v, w F Q,,,,,,, (1.2.5) dv H = α p f V + F H (1.6.16) = α p z g (1.6.17)

1, V H, 2, F H f = fk, f(= 2Ω sin φ) ( ) 1.7,,, (1.2.5), *1. (q 1, q 2, q 3 ) q 1 = λ, q 2 = φ, q 3 = r = z + a, λ, φ, r, a, z ds i h i ds 1 = r cos dλ, ds 2 = rdφ, ds 3 = dr. h 1 = r cos φ, h 2 = r, h 3 = 1. (1.7.18), î, ĵ, ˆk, V = uî + vĵ + wˆk u = ds 1 = r cos φdλ, v = ds 2 = r dφ, w = ds 3 = dr = dz. (1.7.19) *2, dv = V ( t + (V ) V + uv r tan φ + uw ) î ( r u 2 + r tan φ + uw ) ) ĵ + ( u2 + v 2 ˆk. r r *1, *2 dv = [ ( Vi ) t + V V i + i l ( Vi V l h i h l h i q l V lv l h l h i ) ] h l ẽ i (1.7.2) q i l, l = i

11, 2Ω V =2Ω(ĵ cos φ + ˆk sin φ) (uî + vĵ + wˆk) =(2Ω cos φ w fv)î + fuĵ 2Ω cos φ uˆk, (1.2.5) du dv dw = 1 p ρ x + (2Ω + u r cos φ )(v sin φ w cos φ) + F λ, = 1 p ρ y (2Ω + u r cos φ )u sin φ vw r + F φ, (1.7.21) = 1 p ρ z + (2Ω + u v2 )u cos φ + r cos φ r + F z., f df = f t + f dλ λ + f dφ φ + f dz z = f t + u f x + v f y + w f z, (x, y, z),,,, (Phillips, 1966)., d [r cos φ (u + Ωr cos φ)] = r cos φ F λ (1.7.22) *3., F λ, r a,, (1.7.21) w (1.7.22), r a, (1.6.16) *4. (1.7.21) ( du p f + u tan φ ) v + F λ, (1.7.23) dv dw = 1 ρ x + a = 1 ( p ρ y f + u tan φ ) u + F φ, (1.7.24) a = 1 p ρ z g + F z. (1.7.25) *3 (1.7.21), r cos φ *4 (1.7.21) w,, w 2Ωw cos φ, uw/r, vw/r, 2Ωu cos φ, u 2 /r, v 2 /r

12, f = 2Ω sin φ (1.7.22),, dw/, (1.7.24) = 1 p ρ z g (1.7.26), (1.5.14), d = t + u r cos φ λ + v r φ + w z

13 1.8 z( r), p, ln(p/p ), σ = p/p s, θ 1.8.1: A ζ ζ z z ζ (x, y, z, t), ζ z (x, y, ζ, t) ( ) A, A (x, y, z, t) A (x, y, ζ, t) A, A (x, y, ζ, t) A (x, y, z(x, y, ζ, t), t) 1.8.1 xz 3 A, B, C, z A, ζ A, B z A x,,, A (B) A (A) x = A (C) A (A) x A (C) A (B) ζ z ζ z x (1.8.27), A (A), A A. (1.8.27), x, ( ) ( ) A A = x x z ζ A z x y t, s = x, y, t (, A A ) ( ) ( ) A A = + A ( ) z (1.8.28) s s z s ζ z z x ζ

14 A ζ = A z z ζ, A z = A ζ ζ z. (1.8.29) (1.8.29) (1.8.28), ( ) A = s ζ ( ) A s z + A ζ ζ z ( ) z s ζ (1.8.3) s = x, y, A B 2 z ζ ζ A = z A + A ζ ζ ζ B = z B + B ζ z ζ z, (1.8.31) ζ z ζ z. (1.8.32) s = t, ( ) A = t ζ ( ) A t z + A ζ ζ z, ζ, ( ) da A = + V ζ A + t ζ ( ) z t ζ ζ A ζ (1.8.33) (1.8.34), V, ζ = dζ/ ζ. A,, z ζ (1.8.31), α z p = α ζ p + α p z ζz = α ζ p ζ Φ (1.8.35), Φ = gz, ζ, dv = α ζ p ζ Φ fk V. (1.8.36) (1.8.29),, α p ζ ζ z + g = or α p ζ + Φ ζ =. (1.8.37)

15 z d(lnρ) + z V + w z = (1.8.38) ζ (1.8.29) (1.8.32), z V + w z = ζ V ζ V z ζ ζ z + w ζ ζ z (1.8.39), w = ż = ( ) z + V ζ z + t ζ ζ z ζ, w ζ = ( ) z z + V ζ t ζ ζ + V ζ ζ z + ζ z ζ ζ + ζ ζ ( ) z ζ (1.8.39), z V + w z = ζ V + ζ ( z t + V ζ + ζ ) z ζ ζ + ζ ζ. (1.8.38), ζ ( ) d ln p ζ + ζ V + ζ ζ = (1.8.4) θ, z., c p T dlnθ = Q (1.8.41), c p dt αdp = Q (1.8.42), ζ

16 1.8.1 ζ = p, ζ p = p p, p/ p = 1, (1.8.36), (1.8.37) dv Φ p = p Φ fk V + F (1.8.43) = α (1.8.44) (1.8.4), ζ = p p V + ω p = (1.8.45), ω = dp/ = ṗ p p ω = p = p, ω ω = p p V dp (1.8.46), p = ω =,, ω s = dp s = p s t + V s p s. (1.8.47) (1.8.46) p s (x, y, t), p s t + V s p s = ps p V dp (1.8.48), dp/ ω. z p, (1.8.45), (1.8.43), p V g = 1 f k Φ, V g p = 1 f k Φ p

17 1.8.2 σ σ p s = p s (x, y, t), σ = p/p s., α z p = α σ p + α p z σz = α σ (σp s ) σ Φ α σ (σp s ) = ασ p s, σ (1.8.36), V t + V σv + σ V σ = σφ RT p s p s fk V + F (1.8.49) (1.8.37), p/ σ = (σp s )/ σ = p s, Φ σ + αp s = (1.8.5), (1.8.4) 1 d(ln p/ σ)/, p/ σ = p s, σ d(lnp s ) + σ V + σ σ = (1.8.51) σ, 1 p s /p s p s t + V p s + σ p s σ + p s σ V + p s σ σ =, p s σ p s t = σ (p s V ) (p s σ) σ (1.8.52) σ = dσ/, σ = p s /p s = 1 σ = /p s = σ =, (1.8.52), p 1 s t = (p s V )dσ (1.8.53)

18, σ = σ, σ σ σ p σ s t + (p s V )dσ = p s σ (1.8.54) p s / t (1.8.53), (1.8.54) σ. σ, (1.8.49) σ V / σ, σ V, T σ =, σ = 1 ( ) p σ, σ (1.8.53) 1.8.3 θ, 193-194, 197 θ θ,,.,,,, θ θ,, α z p = α θ p + α p z θz = α θ p θ Φ (1.8.55) = θ lnθ = θ lnt R c p θ lnp, θ p = (pc p /RT ) θ T, (1.8.55) α z p = θ (c p T ) θ Φ, θ V t + V θv + θ V θ = θ(c p T + Φ) fk V (1.8.56)

19, c p T + Φ = M (Montgomery streamfunction) θ,, z, 1 θ = 1 T T θ R p pc p θ. p θ = p z z θ = ρ Φ θ θ θ (c pt + Φ) = c pt θ (1.8.57) θ (1.8.4), ( d ln p ) + θ V + θ θ θ = (1.8.58) σ d/ θ, p s / t (1.8.41) θ, θ = θ top θ =, θ = θ s θ = θ s t + V s θ s

2 1.9,.,,, 1.9.1, V,, dk = K t + V pk + ω K p = V pφ + V F (1.9.59), K = V 2 /2, V F, *5 K, (1.9.59) K t + p (KV ) + (Kω) p, 3, = p (ΦV ) + Φ p V + V F. (1.9.6) Φ p V = Φ ω p = (ωφ) + ω Φ p p, φ/ p = α = RT/p, K t + [(K + Φ)ω] p [(K + Φ)V ] + p = RT p ω + V F (1.9.61) 1 2, 1 2 *5 p, p V + ω p =

21 1.9.2 P, ps P = gzρdz = Φ dp [ ] ps Φp g = 1 ps p Φ g g p dp, g,, P = Φ sp s g + 1 g ps RT dp (1.9.62) (internal energy)i, I = c v T ρdz = ps c v T dp g (1.9.63) c v + R = c p, I P I + P (total potential energy), ps P + I = g 1 Edp + g 1 Φ s p s (1.9.64), E = c p T (enthalpy),,,, (1.8.42) E t + V pe + ω E p = RT p ω + Q (1.9.65) p E, (1.9.65), E t + p (EV ) + ω E p = RT p ω + Q (1.9.66)

22 (1.9.61) (1.9.66), RT ω/p,,, K + E (1.9.61) (1.9.66), (K + E) t + p [(K + E + Φ)]V ] + [(K + E + Φ)ω] = Q + V F (1.9.67) p, ρ dxdydz = dxdydp/g, ps ps (K + E)dpdxdy + [(K + E + Φ)V ]dpdxdy t (1.9.68) + [(K + E + Φ)ω] s dxdy = Q + V F., ps ( ) = ( )ρdxdydz = ( )dxdydp. Q, V F 3, / t *6 p p s, { t ps (K + E)dp p s t (K + E) s + ps [(K + E + Φ)V ]dp p s [(K + E + Φ)V ] s + [(K + E + Φ)ω] s }dxdy = Q + V F. (1.9.69),, t ( ), 3, { ps t ( K + Ē) g 1 t (K + E) s + p s [(K + E + Φ)V ] s } (1.9.7) [(K + E + Φ) s ω s ] dxdy = Q + V F. *6 f(x, α) a(α) b(α) x, α, d b(α) f(x, α)dx = db(α) dα a(α) dα f(b(α), α) da(α) b(α) f(a(α), α) + f(x, α)dx dα a(α) α

23 (1.8.47), p s / t + V p s = ω s, (K + E) s, Φ s (ω s V p s ) Φ s p s / t, (1.9.7) t [K + E + 1 g Φ sp s ] = Q + V F (1.9.71), Φ s p s 2 (1.9.71) (1.9.64) ( d/), (1.9.71), 1.1,,, Lorenz(1955) (available potential energy(ape)), p, T ( θ ) (1.9.61),, (R/g) (T ω/p)dxdydp, T ω T ω(= T ω + T ω) ω =, T ω = T ω Lorenz, T ω =, (1.8.45), p ω dxdy = ωdxdy = p V dxdydp (1.1.72),,, p V dxdy = ω =, T ω = T ω =, A p s = 1hPa, θ = T (p s /p) κ

24, (1.9.64) T P E = c p g ps T dp + Φ sp s g = c p g 1 p κ s ps θp κ dp + Φ sp s g, κ = R/c p, T P E = c { pp κ s [θp ] θt } 1+κ p s g(1 + κ) + p 1+κ dθ + Φ sp s θ S g,, T P E = c pp κ s p g(1 + κ) 1+κ dθ (1.1.73), p Lorenz, APE (1.1.73) TPE, Ā = c pp κ s p g(1 + κ) 1+κ p 1+κ dθ. (1.1.74), p = p + p p 1+κ p 1+κ = ( p + p ) 1+κ = p 1+κ + (1 + κ) p κ p + κ(1 + κ) pκ 1 p 2 + 2! (1.1.74), Ā = 1 θt 2 κc pg 1 p κ s p 1+κ (p / p) 2 dθ. (1.1.75) θ S, APE, θ( T ) θ T p, p = p[θ(p)] and p = p(θ θ ) p(θ) = θ p/ θ., (p /p) 2 = (1/ p 2 )(θ p/ θ) 2 = (1/ p 2 )(θ ) 2 ( p/ θ) 2, (1.1.75) Ā = 1 θt 2 κc pg 1 p κ p κ p s θ 2 θ S = κc p 2gp κ s p κ 1 θ2 p s ( θ θ ( ) 2 p dθ θ ) 1 (1.1.76) ) 2 ( θ p

25, p θ κ θ γ d p = 1 γ d γ, γ = T z, γ d = g/c p θ = T (p s /p) κ and θ /θ = T /T (1.1.76) Ā Ā = 1 2 ps T ( T γ d γ T ) 2 dp (1.1.77) γ = 2γ d /3, T 2 = (15 K) 2, Ā/T P E 1/2 (1.1.78), 1% K TPE K = 1 ps V 2 dp, 2g, c 2 = c p RT/c v 2 V/c 1/2, T P E = c ps v c 2 dp (1.1.79) gr K/T P E 1/2 and K/ Ā 1/1 (1.1.8),, 1, APE,.1% TPE, 2% (1.9.66) (1.9.71) (E A ),,,.

26 1.11,, ( 2 ) 2 2, (vorticity equation) (divergence equation) 1.11.1,., 2,,, ζ(= k V ), ζ = 1 v a cos φ λ 1 u a φ + u tan φ. (1.11.81) a ζ (1.7.23) (1.7.24), (V )V = (V 2 /2) + ( V ) V, dv = V t + (V 2 /2) + ζk V + w V z = α p fk V + F, f = 2Ω sin φ η = f + ζ, ζk V fk V, ηk V, k,, ηk V, k [ (ηk V )] = k [ηk V V ηk (ηk )V + (V )ηk] V 2, k V = k =, 2, ζ ζ +V η +w t z = η V +k w V z +k p α+k F (1.11.82)

27, f/ t = f/ z =, (1.11.82) (ζ + f) t (ζ + f) + V (ζ + f) + w z = (ζ + f) V + k w V z + k p α + k F (1.11.83), d(ζ + f)/, 1.11.2, 3 3 V 3, D = V, V = 1 u a cos φ λ + 1 v a φ v a tan φ D,, D t V + [(V )V ] + (fk V ) + w z + w D z = (α p) + F (1.11.84),,, D t D V + V D + w + w z z + D2 2J(u, v) +(k V ) f fζ = (α p) + F (1.11.85), J(u, v) = ( u/ x)( v/ y) ( v/ x)( u/ y)., 2,,,

28 (1) (2) (3), (1.11.85) 5, 3 (1.11.83), ζ V,, z.,, p, Φ, k Φ =, (1.11.83) k p α, (1.11.85) 2 Φ