1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Similar documents

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Gmech08.dvi


A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

プログラム

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x


日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

all.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

本文/目次(裏白)

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

85 4

高等学校学習指導要領

高等学校学習指導要領

Gmech08.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

70 : 20 : A B (20 ) (30 ) 50 1

Gmech08.dvi

Ł\”ƒ-2005

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

第90回日本感染症学会学術講演会抄録(I)

LLG-R8.Nisus.pdf

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

日本内科学会雑誌第102巻第4号

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

KENZOU

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

i

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

プリント

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

II 2 II

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P


1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

B

05Mar2001_tune.dvi


1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Untitled

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

The Physics of Atmospheres CAPTER :

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

untitled

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

pdf

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

untitled

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

I ( ) 2019

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

TOP URL 1

TOP URL 1


untitled

液晶の物理1:連続体理論(弾性,粘性)

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3


2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Transcription:

IB IIA 1 1 r, θ, φ 1 (r, θ, φ)., r, θ, φ 0 r <, 0 θ π, 0 φ < 2π., θ, φ, φ, r, r, θ r, θ, φ,., r, θ, φ,,,. r, θ, φ r, θ, φ, 3 (r, θ, φ)., r, θ, φ e r, e θ, e φ., e r, e θ, e φ e r, e θ, e φ.,., (r, θ, φ) e r (r, θ, φ), e θ (r, θ, φ), e φ (r, θ, φ), (r, θ, φ) e r, e θ, e φ., 2 (r, θ, φ) dr (r, θ, φ) (r dr, θ dθ, φ dφ), dr h r dr e r h θ dθ e θ h φ dφ e φ (1). h r, h θ, h φ h r 1, h θ r, h φ r sin θ (2). r, θ, φ, h r (r, θ, φ), h θ (r, θ, φ), h φ (r, θ, φ), h r, h θ, h φ. 1

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h φ dφ 1 e φ dr 2 h r dr 2 e r h θ dθ 2 e θ h φ dφ 2 e φ (3) 2

z r sinθ dϕ eϕ r dθ eθ ds dθ θ r x 0 ϕ r sinθ dϕ r sinθ dϕ y 2 ds r dθ eθ x r sinθ dϕ eϕ r sinθ dθ dϕ er 3 ( ). z dr er r sinθ dϕ eϕ θ dθ r r dθ eθ x 0 ϕ dϕ y 2 dv r sinθ dr dθ dϕ 4. ds dr 1 dr 2 h θ h φ dθ 1 dφ 1 dθ 2 dφ 2 e dφ r h φ h 1 dr 1 r dφ 2 dr 2 e dr θ h r h 1 dθ 1 θ dr 2 dθ 2 e φ (4).. 3

,., r. dθ, dφ 3 2 dr 1 h θ dθ e θ r dθ e θ dr 2 h φ dφ e φ r sin θ dφ e φ (5). 2 ds h θ dθ e θ h φ dφ e φ h θ h φ dθ dφ e r r 2 sin θ dθ dφ e r (6)., ds n ds n e r, ds h θ h φ dθ dφ r 2 sin θ dθ dφ.,, θ, ds h φ dφ e φ h r dr e r h φ h r dφ dr e θ r sin θ dφ dr e θ (7),,, φ, ds h r dr e r h θ dθ e θ h r h θ dr dθ e φ r dr dθ e φ (8)., dr, dθ, dφ. 4, dr, dθ, dφ (r, θ, φ) 3, dr 1 h r dr e r dr e r dr 2 h θ dθ e θ r dθ e θ dr 3 h φ dφ e φ r sin θ dφ e φ (9) dv dr 1 (dr 2 dr 3 ) h r dr e r (h θ dθ e θ h φ dφ e φ ) h r h θ h φ dr dθ dφ r 2 sin θ dr dθ dφ (10). 4

2., r. V V V r (r, θ, φ)e r V θ (r, θ, φ)e θ V φ (r, θ, φ)e φ (11)., Γ {(r, θ, φ) a r b, θ θ 0, φ φ 0 } (12)., Γ (a, θ 0, φ 0 ) (b, θ 0, φ 0 ). Γ θ, φ,, dθ 0, dφ 0, Γ dr h r dr e r (13)., Γ (r, θ 0, φ 0 ) V dr V dr V r (r, θ 0, φ 0 )h r (r, θ 0, φ 0 ) dr (14), Γ V Γ V dr b a b a V r (r, θ 0, φ 0 )h r (r, θ 0, φ 0 ) dr V r (r, θ 0, φ 0 ) dr (15)., V r cos θ cos φ e r r 2 sin θ sin φ e θ r 3 tan θ tan φ e φ (16) Γ V dr b a r cos θ 0 cos φ 0 dr 1 2 (b2 a 2 ) cos θ 0 cos φ 0 (17). r, θ Γ {(r, θ, φ) r r 0, a θ b, φ φ 0 } (18) 5

V dr Γ b a b a V θ (r 0, θ, φ 0 )h θ (r 0, θ, φ 0 ) dθ V θ (r 0, θ, φ 0 )r 0 dθ (19)., φ Γ {(r, θ, φ) r r 0, θ θ 0, a φ b} (20) V dr Γ b a b a V φ (r 0, θ 0, φ)h φ (r 0, θ 0, φ) dφ V φ (r 0, θ 0, φ)r 0 sin θ 0 dφ (21).., Γ., p r r(p), θ θ(p), φ φ(p) (22) Γ (r(p), θ(p), φ(p)). V V V r (p)e r V θ (p)e θ V φ (p)e φ (23)., V r (r(p), θ(p), φ(p)) V r (p)., dr dr dp dp, dθ dθ dp dp, dφ dφ dp (24) dp, Γ { dr h r (p) dr dp e r h θ (p) dθ dp e θ h φ (p) dφ } dp e φ dp (25) 6

., h r (r(p), θ(p), φ(p)) h r (p)., Γ (r(p), θ(p), φ(p)) V dr { V dr V r (p)h r (p) dr dp V θ(p)h θ (p) dθ dp V φ(p)h φ (p) dφ } dp (26) dp, Γ V { V dr V r (p)h r (p) dr Γ Γ dp V θ(p)h θ (p) dθ dp V φ(p)h φ (p) dφ } dp dp { V r (p) dr dp V θ(p)r(p) dθ dp V φ(p)r(p) sin θ(p) dφ } dp dp Γ (27)... V V V r (r, θ, φ)e r V θ (r, θ, φ)e θ V φ (r, θ, φ)e φ (28)., Σ {(r, θ, φ) r r 0, a θ b, c φ d} (29)., Σ r. 1 (6), ds h θ h φ dθ dφ e r (30)., Σ (r 0, θ, φ) V ds V ds V r (r 0, θ, φ)h θ (r 0, θ, φ)h φ (r 0, θ, φ) dθ dφ (31), Σ V Σ V ds d b c a d b c a V r (r 0, θ, φ)h θ (r 0, θ, φ)h φ (r 0, θ, φ) dθ dφ V r (r 0, θ, φ)r 2 0 sin θ dθ dφ (32) 7

., V r cos θ cos φ e r r 2 sin θ sin φ e θ r 3 tan θ tan φ e φ (33) Σ V ds d b c a r 3 0 cos θ sin θ cos φ dθ dφ 1 2 r3 0(cos 2 a cos 2 b)(sin d sin c) (34)., Σ {(r, θ, φ) c r d, θ θ 0, a φ b} (35) V ds Σ d b c a d b c a V θ (r, θ 0, φ)h φ (r, θ 0, φ)h r (r, θ 0, φ) dφ dr V θ (r, θ 0, φ)r sin θ 0 dφ dr (36)., Σ {(r, θ, φ) a r b, c θ d, φ φ 0 } (37) V ds Σ d b c a d b c a V φ (r, θ, φ 0 )h r (r, θ, φ 0 )h θ (r, θ, φ 0 ) dr dθ V φ (r, θ, φ 0 )r dr dθ (38).., Σ., p, q r r(p, q), θ θ(p, q), φ φ(p, q) (39) 8

Σ (r(p, q), θ(p, q), φ(p, q)). V V V r (p, q)e r V θ (p, q)e θ V φ (p, q)e φ (40)., V r (r(p, q), θ(p, q), φ(p, q)) V r (p, q)., 1 (4) θ dr 1 dp, dθ 1 dp, dφ 1 p q p q p θ dr 2 dq, dθ 2 dq, dφ 2 q q q p p q p dp dq (41), Σ { (θ, φ) ds h θ (p, q)h φ (p, q) (p, q) e (φ, r) r h φ (p, q)h r (p, q) (p, q) e θ (r, θ) h r (p, q)h θ (p, q) (p, q) e φ } dp dq (42)., h r (r(p, q), θ(p, q), φ(p, q)) h r (p, q)., α (α, β) (p, q) p β p q q α q β q., Σ (r(p, q), θ(p, q), φ(p, q)) V ds { (θ, φ) V ds V r (p, q)h θ (p, q)h φ (p, q) (p, q) (φ, r) V θ (p, q)h φ (p, q)h r (p, q) (p, q) } (r, θ) V φ (p, q)h r (p, q)h θ (p, q) dp dq (p, q) p p (43) (44) 9

, V Σ { (θ, φ) V ds V r (p, q)h θ (p, q)h φ (p, q) Σ Σ (p, q) (φ, r) V θ (p, q)h φ (p, q)h r (p, q) (p, q) } (r, θ) V φ (p, q)h r (p, q)h θ (p, q) dp dq (p, q) { V r (p, q)r 2 (θ, φ) (p, q) sin θ(p, q) Σ (p, q) (φ, r) V θ (p, q)r(p, q) sin θ(p, q) (p, q) } (r, θ) V φ (p, q)r(p, q) dp dq (p, q). (45) Ω f. 1, (10)., f dv Ω. Ω Ω f(r, θ, φ) h r (r, θ, φ)h θ (r, θ, φ)h φ (r, θ, φ) dr dθ dφ (46) f(r, θ, φ) r 2 sin θ dr dθ dφ 3 f f f dr df (47)., dr. dr t ds f t df ds 10 (48)

. (48) f t. (47), (r, θ, φ) f f 1 f h r f e r 1 f e θ 1 f e φ (49) h θ θ h φ f e r 1 f e θ 1 f e φ (50) r θ r sin θ. (49). f r, θ, φ r e r h r, θ e θ h θ, φ e φ h φ (51)., f f f r θ θ f φ (52)., f (49). (r, θ, φ) f dr h r dr f e r h θ dθ f e θ h φ dφ f e φ (53). f f df dr f f dθ dφ (54) θ,, r f e r 1 h r ( f ) (55)., θ, φ, f (49). V V ( V ) S 11 σ V dr (56)

., σ, S. S n S ( V ) n 1 S σ V dr (57). (57) V n. (56), (r, θ, φ) V { V 1 ( Vφ ) h φ h θ h φ θ { 1 ( Vr ) h r h φ h r { 1 ( Vθ ) h θ h r h θ } Vθ h θ } Vφ h φ } Vr h r θ e r e θ e φ (58) { ( Vφ ) } 1 r sin θ Vθ r V r 2 sin θ θ { 1 ( Vr ) } Vφ r sin θ e θ r sin θ { 1 ( Vθ ) } r Vr e φ r θ e r (59). (58). V e r h θ h φ e θ h φ h r θ e φ h r h θ V r h r V θ h θ V φ h φ (60). f (49) ( f) 0 (61) 12

.,. V, f f(r, θ, φ) r r 0 V r (r, θ 0, φ 0 )h r (r, θ 0, φ 0 ) dr θ φ V θ (r, θ, φ 0 )h θ (r, θ, φ 0 ) dθ V φ (r, θ, φ )h φ (r, θ, φ ) dφ θ 0 φ 0 (62), V V f., V (58)., (56) σ 5 γ 1 : A B, γ 2 : B C, γ 3 : C D, γ 4 : D A (63) 4., σ σ γ 1 γ 4., γ 1, γ 3., γ 1 t e θ, γ 3 t e θ V dr V dr γ 1 γ 3 θ0 θ θ 0 {v θ (r 0, θ, φ 0 ) v θ (r 0, θ, φ 0 φ)} dθ., v θ V θ h θ., v θ (r 0, θ, φ 0 φ) φ 2 vθ v θ (r 0, θ, φ 0 φ) v θ (r 0, θ, φ 0 ) φ (65) 0 r 0 θ (64) θ0 θ vθ V dr V dr φ dθ γ 1 γ 3 θ 0 0 r 0 θ vθ Vθ h θ θ φ θ φ 0 r 0 θ 0 0 r 0 θ 0 (66)., 2 θ θ θ 0., γ 2, γ 4., γ 2 t e φ, γ 4 t e φ 13

V dr V dr γ 2 γ 4 φ0 φ φ 0 {v φ (r 0, θ 0 θ, φ) v φ (r 0, θ 0, φ)} dφ (67)., v φ V φ h φ., v φ (r 0, θ 0 θ, φ) θ 2 vφ v φ (r 0, θ 0 θ, φ) v φ (r 0, θ 0, φ) θ (68) θ 0 0 φ0 φ vφ V dr V dr θ dφ γ 2 γ 4 φ 0 θ 0 0 vφ Vφ h φ θ φ θ φ θ 0 φ 0 r 0 θ 0 φ 0 r 0 (69)., 2 φ φ φ 0., σ σ σ { ( Vφ ) h φ V dr θ 0 φ 0 r 0 Vθ h θ 0 r 0 θ 0 } θ φ (70)., σ n e r, S h θ h φ θ φ, (57), ( V ) e r 1 h θ h φ { ( Vφ ) h φ θ 0 φ 0 r 0 Vθ h θ., ( V ) e θ, ( V ) e φ, r 0, θ 0, φ 0 r, θ, φ, V (58). 0 r 0 θ 0 } (71) V V V V 14 ω V ds (72)

z 2 S r sinθ θ ϕ er A D B x S C θ 0 ϕ0 A( r0, θ0, ϕ0 ) B( r0, θ0 θ, ϕ0 ) C( r0, θ0 θ, ϕ0 ϕ) D( r0, θ0, ϕ0 ϕ) θ0 ϕ r0 y 5 V r. z θ θ0 r0 r σ2 x σ1 0 ϕ0 σ4 σ3 ϕ σ6 σ5 y 6 V. 15

., ω V, ω ω. (72), (r, θ, φ) V { ( Vr ) } 1 h θ h φ Vθ h φ h r Vφ h r h θ V (73) h r h θ h φ θ V 1 r 2 sin θ { ( Vr r 2 ) sin θ Vθ r sin θ θ } Vφ r (74). (73). V (58) ( V ) 0 (75).,., V (73)., (72) ω 6 σ 1 : (r 0 r, θ, φ ) σ 2 : (r 0, θ, φ ) σ 3 : ( r, θ 0 θ, φ ) σ 4 : ( r, θ 0, φ ) σ 5 : ( r, θ, φ 0 φ) σ 6 : ( r, θ, φ 0 ) r 0 r r 0 r, θ 0 θ θ 0 θ, φ 0 φ φ 0 φ (76) 6., ω ω σ 1 σ 6., σ 1 σ 2., σ 1 n e r, σ 2 n e r V ds V ds σ 1 σ 2 φ0 φ θ0 θ φ 0 θ 0 {v r (r 0 r, θ, φ) v r (r 0, θ, φ)} dθ dφ., v r V r h θ h φ., v r (r 0 r, θ, φ) r 2 vr v r (r 0 r, θ, φ) v r (r 0, θ, φ) r (78) 0 (77) 16

φ0 φ θ0 θ vr V ds V ds r dθ dφ σ 1 σ 2 φ 0 θ 0 0 vr r θ φ 0 θ 0 φ ( 0 ) Vr h θ h φ r θ φ 0 θ 0 φ 0 (79)., 2 θ, φ θ θ 0, φ φ 0. σ 3 σ 4, σ 5 σ 6 V ds ω { ( Vr ) } (80) h θ h φ Vθ h φ h r Vφ h r h θ r θ φ 0 θ 0 0 θ 0 φ 0 φ 0 r 0., V h r h θ h φ r θ φ, r 0, θ 0, φ 0 r, θ, φ, V (73). r 0 θ 0 17

{ 2 1 h θ h φ f f h r h θ h φ h r 1 f r 2 r2 ( h φ h r f θ h θ θ 1 r 2 sin θ ) ( h r h θ h φ ) ( f sin θ θ θ ) } f 1 r 2 sin 2 θ ( 2 ) f 2 (81). 18