d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

Similar documents
08-Note2-web

Gmech08.dvi

mugensho.dvi

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

I 1

Gmech08.dvi

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

pdf

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d


C:/KENAR/0p1.dvi

dynamics-solution2.dvi

曲面のパラメタ表示と接線ベクトル

K E N Z OU

Untitled

Fr

I ( ) 2019

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)


2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)


F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

i

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

Note.tex 2008/09/19( )

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

A


B ver B

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

x ( ) x dx = ax

KENZOU

notekiso1_09.dvi

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

Acrobat Distiller, Job 128

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y


sec13.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

( ) ( )

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

振動と波動


Korteweg-de Vries

chap1.dvi

Fubini

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i


2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

i

77

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)


chap03.dvi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.



II 2 II

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

DVIOUT

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1


y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

2011de.dvi

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n


Chap11.dvi


difgeo1.dvi

Transcription:

2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t) U U dx(t) + dy(t) + y z dz(t) U(r(t)) du = U dx(t) + U dy(t) + U dz(t) = U dr(t) = F(r) v(t) (2.4.3) x x x 21

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r B W W = rb r A F dr i F(r i ) r i, r i = r i+1 r i r A r B n r 1, r 2,, r n = r B F i = F i, s i = r i W i = F i s i cos θ i θ i U = W [ ] = [ ] [ ] m 22

(,, mg) F = (,, mg) z = z = h h W = F dr = F dz = mgh F = (,, mg) dr = (,, dz) ( ) O = (,, ) P = (x, y, z) W = P O F dr = z F z dz = mg z dz = mgz ( ) du(x, y, z) = U(x + dx, y + dy, z + dz) U(x, y, z) = U x U U dx + dy + y z dz F (x, y, z) x, y, z dx, dy, dz F df F (r) r 2 = x 2 + y 2 + z 2 x, y, z x df (r) = df (r) dr, dr d(r 2 ) = 2rdr dx 2 = 2xdx, dy 2 = 2ydy, dz 2 = 2zdz r 2rdr = 2xdx + 2ydy + 2zdz, x = x r, 2r F (r) x df (r) = df (r) dr 1 F (xdx + ydy + zdz), r x = F r r x = x F r r (2.4.6) 2.4.1 2 f(x, y) 2 f (x, y) f(x, y) = f(x + dx, y + dy) f(x, y) df(x, y), df(x, y) = f f dx + x y dy df 1 df(x) = f (x)dx x df(x, y) 3 z = f(x, y) P= (x, y) U(r) U(r + dr) U(r) du(r) = U x 23 dx + U y U dy + dz = U dr z

du = U dr(t) = U v(t), dr(t) = dr(t) = v(t) U(r 1 ) U(r ) = = t1 t r1 r du t1 = t U dr = t1 U v(t) = r1 r F dr F = U t F v(t) U(x) = x F dr x > : (dx > ) (F = kx < ) F dr = kxdx > U = F dr = x (kx )dx = 1 2 kx2 x < : (dx < ) (F = kx > ) F dr = kxdx > U = F dr = x (kx )dx = 1 2 kx2 F = mg sin θ(cos θ, sin θ) (x, y) = (L sin θ, L(1 cos θ)) dx = L cos θdθ, dy = L sin θdθ F dr = mgl sin θdθ U(θ) U() = mgl θ 2 sin θ dθ = mgl[cos θ] θ = mgl(1 cos θ) = mgy 1 2 F = k/x 2 x > x = x x 1 W x1 x1 [ 1 W = F dx = k x x x 2 dx = k 1 ] x1 = k + k x x x 1 x x U(x) = k/x 24

U(r) r M m U = GMm 1 r, r = (x2 + y 2 + z 2 ) 1/2 r (2.4.6) du = du 1 dr r (xdx + ydy + zdz) = GMm 1 (xdx + ydy + zdz) r3 U F = U = GMm r 3 : (x, y, z) = GMm r 3 r y 1 2 mv2 + mgy = E, v = dy = ± E 2g mg y E dy ( ) dy E = 2 d E mg y mg y = ± 2g 2d x = dx/ x y t E mg y = ± g/2(t t ), y = E mg g 2 (t t ) 2 2 1 y E = mgy 2.5 p = mv dp = F (2.5.1) 25

p(t 2 ) p(t 1 ) = t2 t 1 F(t) t 1 t 2 2 1 2 F 1, F 2 F 1 + F 2 = dp 1 = F 1, dp 2 = F 2, dp 1 + dp 2 = F 1 + F 2 = (2.5.2) P = p 1 + p 2 2 1, 2 r 1, r 2 2 V (r 1, r 2 ) V (r 1, r 2 ) ( V F 1 =, V, V ) = 1 V (r 1, r 2 ), F 2 = 2 V (r 1, r 2 ) x 1 y 1 z 1 i (i = 1, 2) 2 V (r 1, r 2 ) = v(r 1 r 2 ) 1 v(r 1 r 2 ) + 2 v(r 1 r 2 ) = x F 1x = v( x, y, z) v( x, y, z) = x 1 x F 2x = x 2 v( x, y, z) = v( x, y, z) x d x v( x, y, z) = x 1 x x v( x, y, z) = x 2 x r = r 1 r 2 = ( x, y, z) x/ x 1 = 1, x/ x 2 = 1 F 1x + F 2x = (2.5.2) 1: d (r 1 r 1 + d, r 2 r 2 + d) r 26

( ) ( ) 2: E = 1 2 m 1v 2 1 + V (r 1 ) + 1 2 m 2v 2 2 + V (r 2 ) + v(r 1 r 2 ) (2.5.3) de = m 1v 1 (t) a 1 (t) + 1 V (r 1 ) v 1 (t) + 1 v(r 1 r 2 ) + m 2 v 2 (t) a 2 (t) + 2 V (r 2 ) v 2 (t) + 2 v(r 1 r 2 ) = v 1 (t) [m 1 a 1 (t) F 1 F 1] + v 2 (t) [m 2 a 2 (t) F 2 F 2] dp 1 + dp 2 = F 1 + F 2 V (r) 2.5.1 2 A, B (2.5.3) V (r) E E = 1 2 m AvA 2 + 1 2 m BvB 2 + v(r A r B ) v(r A r B ), ( r A r B ) (scattering) ( target) 2.5.2 27

2 k x V (x 1 x 2 ) = 1 2 k(x 1 x 2 ) 2 = 1 2 kx2 x = x 1 x 2 (x 1 + x 2 )/2 V (x) x F 1 = = kx (+1) = k(x 2 x 1 ) x x 1 V (x) x F 2 = = kx ( 1) = k(x 1 x 2 ) x x 2 F 1 + F 2 2.6 ( ) 2.6.1 ( ) 2 S, S O, O O O R r, r r(t) = R (t) + r (t) (2.6.1) r(t) = x(t)u 1 + y(t)u 2 + z(t)u 3, r (t) = x(t) u 1 + y (t)u 2 + z (t)u 3 u i, u i (i = 1, 2, 3) z z y O R (t) y O x x 28

O O xy R (t) (,, Z(t)) (2.6.1) x(t) = x (t), y(t) = y (t), z(t) = z (t) + Z(t) O O u i = u i (i = 1, 2, 3) z Z(t) = z + V t + at 2 /2 O z(t) = v t 1 2 gt2 z (t) = z(t) Z(t) O z (t) = z + (v V )t 1 (g + a)t2 2 O g g + a 2.6.2 (2.6.1) 2 R (t) = R () + v t R () = x(t) = v x t + x (t), y(t) = v y t + y (t), z(t) = v z t + z (t), t = t t = t 9 : 2 O, O t = t = x, x x 2 (ct) 2 = (x ) 2 (ct ) 2 2 x 2 (ct) 2 = (x ) 2 (ct ) 2 t t = iτ τ y = cτ 2 x 2 + y 2 = x 2 + y 2 29

x = r cos θ, y = r sin θ x = r cosh θ, ct = r sinh θ cosh θ = cos iθ = 1 2 (ex + e x ), sinh θ = i sin iθ = 1 2 (ex e x ) cosh 2 θ sinh 2 θ = 1 2.6.3 O O z ω u 1(t) = cos(ωt)u 1 + sin(ωt)u 2, u 2(t) = sin(ωt)u 1 + cos(ωt)u 2, u 3(t) = u 3 (2.6.2) O y y x O x du 1(t) = ωu 2(t) = ω u 1(t), du 2(t) = ωu 1(t) = ω u 2(t) (2.6.3) ω = (,, ω) = ωu 3 ω u i ( ) r(t) = x(t)u 1 + y(t)u 2 + z(t)u 3 = x (t)u 1(t) + y (t)u 2(t) + z(t)u 3 = [x (t) cos(ωt) + y (t) sin(ωt)]u 1 + [ x (t) sin(ωt) + y (t) cos(ωt)]u 2 + zu 3 (2.6.4) 2 x, y x(t) = x (t) cos(ωt) y (t) sin(ωt), y(t) = x (t) sin(ωt) + y (t) cos(ωt) (2.6.5) (2.6.3) (2.6.4) v(t) = dr(t) = v x u 1 + v y u 2 + v z u 3 = v xu 1(t) + v yu 2(t) + v z u 3 + ω (x u 1 + y u 2) = v xu 1(t) + v yu 2(t) + v z u 3 + ω r (2.6.6) 3

v x(t) = dx (t)/, v y(t) = dy (t)/, v z(t) = dz (t)/ (2.6.6) 2 a(t) = dv(t) = a x (t)u 1 + a y (t)u 2 + a z (t)u 3 = a xu 1(t) + a yu 2(t) + a zu 3 + ω (v xu 1(t) + v yu 2(t) + v z u 3) + ω (v xu 1(t) + v yu 2(t) + v z u 3 + ω r) = a xu 1(t) + a yu 2(t) + a zu 3 + 2ω (v xu 1(t) + v yu 2(t) + v z u 3) ω 2 r u i (i = 1, 2, 3) a 2(v ω) ω 2 r (2.6.7) O ma = 2m(v ω) + mω 2 r + F 2 1. : mω 2 r (r = x 2 + y 2) 2. : 2mωv sin θ θ ω v 31