研究室ガイダンス(H29)福山研v2.pdf

Similar documents
1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

nsg02-13/ky045059301600033210


References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima,

本文/目次(裏白)

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional


Undulator.dvi

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

薄膜結晶成長の基礎3.dvi

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ


JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

日本内科学会雑誌第102巻第4号

スケーリング理論とはなにか? - --尺度を変えて見えること--

Ł\”ƒ-2005

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

第90回日本感染症学会学術講演会抄録(I)


δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

0.1 I I : 0.2 I

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r


From Evans Application Notes

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


Mott散乱によるParity対称性の破れを検証

TOP URL 1

PDF

Kaluza-Klein(KK) SO(11) KK 1 2 1

Nosé Hoover 1.2 ( 1) (a) (b) 1:

PowerPoint Presentation

数学の基礎訓練I


FS_handbook.indd

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

prime number theorem

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

C 3 C-1 Cu 2 (OH) 3 Cl A, B A, A, A, B, B Cu 2 (OH) 3 Cl clinoatacamite S=1/2 Heisenberg Cu 2+ T N 1 =18K T N 2 =6.5K SR T N 2 T N 1 T N 1 0T 1T 2T 3T


C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

PowerPoint Presentation

E-2 A, B, C A, A, B, A, C m-cresol (NEAT) Rh S m-cresol m-cresol m-cresol x x x ,Rh N N N N H H n Polyaniline emeraldine base E-3 II

0406_total.pdf

TOP URL 1

Transcription:

J.M. Kosterlitz and D.J. Thouless, Phys. 5, L124 (1972); ibid. 6, 1181 (1973) David J. Thouless J. Michael Kosterlitz + ρ T s KT D.J. Bishop and J.D. Reppy, PRL 40, 1727 (1978) ( ) = 2k B m2 T KT π 2 T KT Δρ s John D. Reppy 2

1.1 0 (Kosterlitz-Thouless-Halperin-Nelson-Young) B.I. Halperin and D.R. Nelson, PRL 41, 121 (1978), D.R. Nelson and B.I. Halperin, PRB 19, 2457 (1979), A.P. Young, PRB 19, 1855 (1979) T m T i temperature translational quasi-lo bond-orientational LO bond-orientational quasi-lo b 1 + b 2 = 0 dissociation of dislocation pairs Burgers vector dissociation of disclination pairs 5-fold 7-fold 3

1.1 S. Nakamura et al., PRB 94, 180501 (2016) drawn by S. Nakamura based on MC calculation by K. Wierschem and E. Manousakis, PRB 83, 214108 (2011) 4

1.1 ρ s (1) P.A. Crowell and J.D. Reppy, PRB 53, 2701 (1996) (2) Y. Shibayama et al., J. Phys.: 150, 032096 (2009) (3) J. Nyéki et al., Nature Phys. 13, 455 (2017) 6) Ref. [3] F2 (uniform fluid) L2 + C2 C2 IC2 ( ) G2 + L2 (gas+liquid) L2 ( ) C2 + IC2

1.1 ( ) A.F. Andreev and I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969) E. Kim and M.H.W. Chan, Nature 427, 225 (2004); Science 305, 1941 (2004) Alexander F. Andreev Ilya M. Lifshitz torsional oscillator = winding-circle map by PIMC calculation M. Boninsegni et al., PRL 99, 035301 (2007)

1.2 RVB (resonating valence bond) singlet pair gapful (Δ J) P.W. Anderson (1973, 1987) 7

1.2 K. Ishida et al., PRL 79, 3451 (1997) C / R C T 10 1 10 0 10-1 18.2 nm -2 18.4 nm -2 MSE model bcc solid 3 He (24.13 cm 3 /mol) ΔS N 2 k B ln2 C T 10-2 0.1 1 10 T (mk) 8

1.2 3 He/HD/HD/gr δρ M. Kamada et al., to appear (2017) C T 2/3! χ T -1/3! C T 2/3 χ T -1/3 C T 2/3 This work χ T -1/3 Ref. [2] Ref. [1] [1] H. Ikegami et al., PRL 85, 5146 (2000) [2] R. Masutomi, et al., PRL 92, 025301 (2004) 9

1.3 D. Sato at al., Phys. Rev. Lett. 109, 235306 (2012) ρ C γm * A C (T) = γt, γ = (πk B2 /3 2 )Am * γ graphite 3 He 10

1.3 V. Grau, J. Boronat and J. Casulleras, PRL,89, 045301 (2002) 1 2D 3 He 0.5 2D 3 He 0 1 3 5 7-0.5 2D 4 He -1 M. Ruggeri at al., PRB 93, 104102 (2016) M.C. Gordillo and J. Boronat, PRL 116, 145301 (2016); PRB 93, 104102 (2016) M. Takano, T. Suzuki, and N. Sakumichi, J. Phys. Conf. Ser. 702, 012016 (2016) N. Sakumichi and H. Suno, to appear 11

1.3 C (mj/k) 1 C (mj/k) 3 He: 11.39 nm -2 (12.938 ccstp) ρ 2 = 0.2 nm -2 C (mj/k) 1 3 He: 11.70 nm -2 (13.280 ccstp) 0.5 nm -2 C (mj/k) 1 degenerate ideal Fermi gas 3 He: 12.19 nm -2 (13.847 ccstp) 1.0 nm -2 ZYX (19g, 30.5 m 2 ) 0 0 0 0 0.2 0.4 0.6 0.8 1 T (K) 0 0.2 0.4 0.6 0.8 1 T (K) 1st layer solid 3 He 0 0.2 0.4 0.6 0.8 1 T (K) C/N 2 k B 2 1 Greywall (15.00/Grafoil) Nakamura This work et al. (15.00/ZYX) 4 He B.K. Bhattacharyya and F.M. Gasparini, PRL 49, 919 (1982); PRB 31, 2719 (1985) 0 0 0.4 0.8 1.2 1.6 T (K) 12

2.1 50 µm 13

2.1 ε k K K ε F Y. Niimi et al., Appl. Surf. Sci. 241, 43 (2005); PRB 73, 085421 (2006) T. Matsui et al., PRL 94, 226403 (2005) 14

2.1 (a) (b) (c) (A B ) (A B) F. Munoz-Rojas et al., PRL 102, 136810 (2009) A B 15

2.1 G. Z. Magda et al., Nature 514, 608 (2014) 7 nm up-down up-up STM 7 nm () 16

2.1 Pressure Gauge Matching Box RF Power supply (13.56 MHz) to Rotary Pump Furnace Copper Coil Flow Meter sample Furnace ~40 cm H 2 gas 17

2.2 R T α di/dv V α 500 nm 5 nm raw data CB corrected bulk contact M. Bockrath et al., Nature 397, 598 (1999) 18

2.2 K. Nakayama, et. al., to appear (2017) α = 0.24 for CNT Egger et al., PRL 79, 5082 (1997) Kane et al., PRL 79, 5086 (1997) 19

2.3 T. Fujimori et al., Nat. Commun. 4, 2162 (2013) S@SWCN S@DWCT 2 nm 2 nm CN T S CN T CN T S CN T 0.68 nmφ V. V. Struzhkin et al., Nature 390, 382(1997) A. P. Drozdov et al., Nature 525, 73 (2015) 1.0 nmφ Y. Long et al., Phys. Chem. Chem. Phys. 13, 17163 (2011) 20

3.1 Y. Matsumoto et al., J. Low Temp. Phys. 134, 61 (2004); Physica B 329-333, 146 (2003) Temperature (mk) Magnetic field (Tesla) μ μ 21

3.1-1 PrNi 5 (1.2 T) -2-1 -1-2 22

3.1 Suzaku X-ray imaging spectrometer (XIS: T = 180 K) (2014) Hitomi Collaboration Nature 535, 117 (2016) soft X-ray spectrometer (SXS; T = 50 mk) 23