第3章

Similar documents
m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

TOP URL 1


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

TOP URL 1

TOP URL 1

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

QMII_10.dvi

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

( )

The Physics of Atmospheres CAPTER :

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

液晶の物理1:連続体理論(弾性,粘性)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

master.dvi

Microsoft Word - 学士論文(表紙).doc

LLG-R8.Nisus.pdf

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

7

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

untitled

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

B

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

85 4

Untitled

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

all.dvi

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Gmech08.dvi

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

II 2 II


OHO.dvi

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

05Mar2001_tune.dvi

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

振動と波動

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

( 23 )

³ÎΨÏÀ

Microsoft Word - 章末問題

70 : 20 : A B (20 ) (30 ) 50 1


9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

基礎数学I

I

chap10.dvi

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

鉄筋単体の座屈モデル(HP用).doc

量子力学A

TOP URL 1

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

QMI_10.dvi


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

Gmech08.dvi

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

Transcription:

5 5.. Maxwell Maxwell-Ampere E H D P J D roth = J+ = J+ E+ P ( ε P = σe+ εe + (5. ( NL P= ε χe+ P NL, J = σe (5. Faraday rot = µ H E (5. (5. (5. ( E ( roth rot rot = µ NL µσ E µε µ P E (5.4 =

( = grad ( div rot rote E E = E div E = ( ( div E = div D = µσ E εµ E µ PNL E = + + (5.5 (5.5 P NL E 5.. 4 PNL E

P d E E ω ( ω ( ( i = ε ω ijk j k (5.6 d (SHG i j k x y z j ω k ω i ω P paraxial approximation E A z z E Ek = ω ω ω ( ω Ei ( r, t = i( z expi( ωt A k r +cc.. (5.7 ( ω Ej ( r, t = j( z expi( ωt A k r + cc.. (5.8 ( ω Ek ( r, t = k ( z expi( ωt A k r + cc.. (5.9

ω = ω ω (5. 5.6 { cc} ( ω NL (, t εdijk k ( z j ( z expi ( ω ω t ( P r = A A i k k r +.. (5. PNL (5.5 ( x, z ( ω ( ω E i E i (5. x z = + x z z z ( ω E i = i A i( z k z z + A i( z k z i( z exp i( ωt + cc.. z A k r (5. x A z x ( ω E i = { A i( z kxexp i( ωt k r + c. c.} (5.4 ( ω z ( z E i = i A i k z 4

+ A i( z( k x + k z i( z exp i( ωt + cc.. z A k r (5.5 4 (Slow varying envelop approximation SVEA z A( k A( z (5.6 z z A z A λ A A z λ A (5.5 A z ( ω E = i ( z ( z( i + + z i z i A k A k x k z ( ω } exp i t k r + cc.. (5.7 (5.5 5

( ( r exp +.. iµσω ω µε A i z i ωt k cc +µ P NL (5.8 k c ωµε = µε= k = k k ( x + z n P NL = ( ω ω ε d A ( z A ( z ijk k j ( ω ω t ( k k r cc } exp i +.. = ijk { Ak A j z ( ω ε d ( z ( { ( } exp i ω t + cc.. k k r (5.9 ( ω ( z A ik e = iωσµ A ( z e z i ik r ik r i + µωε ( ( ( i k k r dijkak z A j z e (5. 6

c µ i ωσµ = i σ k = i n σ εεµ r k µ = iσ k ε A ( ω µ µ = σ i ω ε d e A A A (5. i i ijk k j z ε ε ( i k k k r E ( ω ( ω E PNL ( ω E( ω A ( ω i µ µ i( k+ k k r = σ A j + i ω εd jikaia ke (5. z ε ε E ( ω E ( ω P ( E ( ω NL ω A ( ω µ µ = σ i ω ε d e A A A (5. k k kij i j z ε ε ( i k + k k r 7

6 second harmonic generation, SHG 6. ( ω = ω = ω ω = ω + ω = ω ω (5. (5. ω ω ω ω ω z colinear (5. (5. (5. (5. (5. A ( ω µ = iω ε d A A i kr (6. ( ω ( ω exp( k ijk i j z ε 8

ω k = k k A L µ i kr k ( L = iω εdkij i j e d ε A A A z = iω µ ε d ε AA kij i j i kl e i k (6. L (6. εµ A A A ( L = ω ( d i kl i kl ( e e + ( k k kij i j n ε µ = ω n εµ = ω n ( d A A cos kl ( k kij i j ( d A A sin ( k kij i j kl εµ = ω n εµ = ω ( d A A 4sin ( k kij i j ( d sin kij A i Aj L n kl (6. S 9

ε S = A k µ ( L sin = ω ( ε ( µ ( ( dkij A i Aj L ω n sin kl µ ( ( = ω ε dkij i j L A A ω ε n (6.4 ε ε S A A p (6.5 p ( p = p = n ω p µ µ (6.4 S sin µ = ω ε ( ω ( ω { } ( ε d kij S is jl kl n n (6.6 ( sin ( 6. ω ω ω ω ω sin k

( d d d ( SHG (4 (5.4 SHG η ( ( { } ( sin L µ k S SS i j η = = ω ε dkij L S ω ω ε n n S ( ( { } ( sin L µ k = ω ε dkij cosαi sinα jl S ε ω ω n n (6.7 η η 5 (5.

6. ( (5.4 k phase matching S sin kl µ = ω ( ω ( ω ε { } ( ε d kij S is jl n n (6.6 sin ( ω ( ω k = k k ω ω = n c c ( ω ( ω ( ω { n n } ω = = c (6.8 n ( ω ( ω = n (6.9

SHG (6.6 sin ( k (6. L SHG 6. SHG sin π π k L c = L c π = = k ω c π ( ω ( ω { n n } λ = 4 n n ( ω ( ω { } (6. λ L c SHG k k L c SHG SHG SHG k

6. SHG SHG k cm L c 5 57 ( ω ( ω δ n= n n =.7 4 57.7 5.7.7 6 KDP LiNbO λ µ m n n n n ( e.6.498.4599 4.4 4.554.5.5.475 4.5 4. δ n.85.6.9.776 e SHG ( L c L SH 6.4 6.4 4

( δ k = 9 x y z ( x + y + z = (6. n ne n n n n n > n < e e KDP LN k z x k z k n n k n n k z θ e e e n e ( θ = cosθ sinθ + n n e (6. 5

n ( ω ( ω = n ( n n > e 6.5 6.5 k z k z k (6.8 n ( ω e ( θ = cosθ sinθ ( ω + ( ω n n e ( ω = n (6.4 θ θ sin ω ω ( n ( n ω ω ( ne ( ne θ = (6.5 ( ω, ωω, ( e,, (, ee, e 6

x z ( ω ( ω ( ω k + k = k ( ω ( ω ( ω n + n = n e ( ω ne = n + n e ( ω ( ω ( (6.6 7