飽和分光

Similar documents
吸収分光.PDF

Microsoft Word - 学士論文(表紙).doc

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

LD

LLG-R8.Nisus.pdf

Gmech08.dvi

重力方向に基づくコントローラの向き決定方法

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100


PDF

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

B

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

Undulator.dvi


05Mar2001_tune.dvi

: , 2.0, 3.0, 2.0, (%) ( 2.

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx


c 2009 i

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Gmech08.dvi

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

untitled

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

基礎数学I

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

PowerPoint Presentation

all.dvi

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

85 4


( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

untitled

2000年度『数学展望 I』講義録

keisoku01.dvi

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

main.dvi


Part () () Γ Part ,

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Microsoft Word - 章末問題



untitled

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

I

untitled


3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

OHO.dvi

160GHz

振動工学に基礎

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

SO(2)

211 ‚æ2fiúŒÚ

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

meiji_resume_1.PDF

Morse ( ) 2014

数学の基礎訓練I

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

chap1.dvi

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O


grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

untitled

Mott散乱によるParity対称性の破れを検証


Transcription:

3 Rb 1

1 4 1.1 4 1. 4 5.1 LS 5. Hyperfine Structure 6 3 8 3.1 8 3. 8 4 11 4.1 11 5 14 5.1 External Cavity Laser Diode: ECLD 14 5. 16 5.3 Polarization Beam Splitter: PBS 17 5.4 Photo Diode: PD 17 5.5 : FP 17 5.6 Acoust-Optic Modulator: AOM 18 5.7 5.8 6Rb 1

7 7.1 7. ECLD 7.3 7.4 3 7.5 4 8 5 3

4 1 1.1 197 1 1 1. Rb 1

.1 LS LS L S = L + S (.1.1) L S L S = L + S, L + S 1,, L S (.1.) S + 1 ( S L) L + 1 ( S > L) ˆ H FS = ξ( L S) (.1.3) ξ L S = L + S ˆ S L H FS = ξ (.1.4) Ĥ fs (.1.3), L, S > ˆ ξ h <, L, S H FS, L, S >= L [ ( + 1) S( S + 1) L( + 1) ] (.1.5) 5

. Hyperfine Structure F F = + (..1) F F F = +, + 1,, (..) + 1 ( ) + 1 ( > ) k Hˆ ( ) HFS = k Hˆ HFS (..3) k k F,, > k < F Hˆ HFS F >= < F Hˆ ( ),,,,,, F,, > HFS k (..4) k = 1 1 1 6

7 ) ( ˆ ) (1 = A H HFS (..5) A = k 1 1 ( ) 1) ( 1) ( 1) ( 1) ( 3 6 ˆ () + + + = B H HFS (..6) B,... = 3,4,5 k 3 k 1) ( 1) ( 1) ( 1) ( 3 6,, ˆ,, + + + + >= < K K B AK F H F HFS (..7) [ ] 1) ( 1) ( 1) ( 1 + + + = F F K (..8) (..7) 1 1 1 =1 1

3 3.1 =, ± 1 F =, ± 1 = F F = g = e g = e 3. 1 Torr Torr 5 3 E t E t h (3..1) (3..1)E E = h (3..) (3..1)(3..) 1 π t (3..3) 8

1 τ τ = γ ) L( L( ) = 4π 1 γ π γ + ( ) (3..4) = Full Width of Half Maximum: FWHM = γ π (3..5) θ 1 + cosθ c (3..6) (3..6) c = cosθ (3..7) 1 = cosθ f ) m z z + z d z ( z 9

1 = T k m T k m f B z B z exp ) ( 1/ π (3..8) B k T z (3..8) = exp ) ( c T k m G B (3..9) = FWHM 1/ ln = m T k c B (3..1)

11 4 4.1 GHz ~ MHz GHz ~ MHz Fig4.1 1 Fig4. 3.1 Fig4. 1 N 1 1 N 1 Fig4.1 Fig4.

1 N 1 Fig4.3 Fig4. 1 Fig4.4 Fig4.3 Fig4.4

Fig4.5 3 Fig4.5 Fig4.5 1 1 3 4 1 5 3, >, 1 > 3 =( 4 )/ Fig4.5 1 4 1 Fig4.5 13

5 5.1 External Cavity Laser Diode: ECLD Laser Diode: LD GaAs Fig5.1 h W g < h < W W (5.1.1) fc fv W g W fc W fv W g < W W (5.1.1) h fc fv h ' Fig5.1 14

ECLD ECLD LD Littrow LD Littman-Metcalf Fig5.Fig5.3 Littrow Littman-Metcalf θ 1 θ m d λ ( sin θ θ ) mλ d 1 + sin = (5.1.) Fig5. Fig5.3 Littrow Fig5. Littrow LD 78nm d=1/18mm Fig5.4 78nm (5.1.)Littrow 1 45 1 LD PZT LD LD 15

LD PZT LD 8% mw khz Fig5.4 5. / /4 / /4 Fig5.5 Fig5.5 x y E E lin_ red lin_ blue = E xˆ sin( ωt + kz+ φ = E yˆ sin( ωt + kz+ φ lin_ red ) lin_ blue ) (5..1) Fig5.5 k xˆ yˆ 16

Fig5.5 E E lin_ red lin_ blue = E xˆ sin( ωt kz+ φ) + E = E xˆ sin( ωt + kz+ φ) + E yˆ sin( ωt kz+ φ + π / ) yˆ sin( ωt + kz+ φ π / ) (5..) xy 5.3 Polarization Beam Splitter: PBS PBS Fig5.6 5.4 Photo Diode: PD Fig5.6 LD PD 5.5 : FP FP Fig5.7 FP 1 Fig5.7 17

FP λ L 4 L = nλ n FP FP FSR FSR FSR FP FP AOM AOM 5.6 5.6 Acoust-Optic Modulator: AOM AOM PbMoO 4 L λ V f a n > πλ Lf a nv 4π (5.6.1) Fig5.8 1 1 θ B 18

θ B = sin 1 λ f a V (5.6.) θ B 9% 1 P 1 Fig5.8 a 1 sin ( K1 MeP a / λ ) (5.6.3) Me K 1 Pa 1 i d d =± f i a (5.6.4) f 1 AOM 1 1 + f a a 19

5.7 85 Rb 87 Rb Rb Rb 5.8 1 LD 6~7

6Rb S+1 L =,1,,3, L = S, P, D,... n L Fig6.1 Fig6.1 Rb 795nm D1 78nm D Fig6. 1

7 7.1 Fig6.1 D78nm Visual Basic 7. ECLD ECLD LD PZT 1 1mA LD PZT 1V PZT 7.3 Fig7.1 PZT

87 Rb 78.48nm78.34nm 85 Rb 78.45nm 78.36nm Fig7.1 7.4 Fig7. PZT AOM Fig7. 3

7.5 Fig7.3 MHz + 8 1 PZT Fig7.3 ECLD 1 8MHz 1 8MHz 4

5 8 ECLD 1 D 3 FWHM FWHM