Vol.-CVIM-7 No.7 /3/8 NLPCA kernel PCA KPCA 4),) NLPCA KPCA NLPCA KPCA principle curve principle surface KPCA ) ),),6),8),),3) ) Jacobian KPCA PCA ) P

Similar documents
IPSJ SIG Technical Report Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

28 Horizontal angle correction using straight line detection in an equirectangular image

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

光学

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

IPSJ SIG Technical Report Vol.2010-MPS-77 No /3/5 VR SIFT Virtual View Generation in Hallway of Cybercity Buildings from Video Sequen

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

, ( ξ/) ξ(x), ( ξ/) x = x 1,. ξ ξ ( ξ, u) = 0. M LS ξ ξ (6) u,, u M LS 3).,.. ξ x ξ = ξ(x),, 1. J = (ξ ξ, V [ξ ] 1 (ξ ξ )) (7) ( ξ, u) = 0, = 1,..., N

Vol. 44 No. SIG 9(CVIM 7) ) 2) 1) 1 2) 3 7) 1) 2) 3 3) 4) 5) (a) (d) (g) (b) (e) (h) No Convergence? End (f) (c) Yes * ** * ** 1

ohpmain.dvi

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TV A310

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

kiyo5_1-masuzawa.indd

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

IPSJ-CVIM

Automatic Detection of Circular Objects by Ellipse Growing Mitsuo OKABE, Kenichi KANATANI, and Naoya OHTA 1. [4], [5], [18], [19] [14], [17] [28], [32

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

fiš„v3.dvi


IPSJ SIG Technical Report Vol.2009-CVIM-168 No /8/ (2003) Costeira Kanade (1998) AIC Vidal (2005) GPCA Taubin 3 2 EM Multi-stage Opt

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

日本統計学会誌, 第44巻, 第2号, 251頁-270頁

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

「スウェーデン企業におけるワーク・ライフ・バランス調査 」報告書

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

it-ken_open.key

JFE.dvi

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

TOP URL 1

4 2 p = p(t, g) (1) r = r(t, g) (2) p r t g p r dp dt = p dg t + p g (3) dt dr dt = r dg t + r g dt 3 p t p g dt p t r t = Benefit view dp

数学の基礎訓練I

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-CVIM-186 No /3/15 EMD 1,a) SIFT. SIFT Bag-of-keypoints. SIFT SIFT.. Earth Mover s Distance

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

Mantel-Haenszelの方法

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

meiji_resume_1.PDF

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Report2009_Softsensor.dvi


fiš„v8.dvi

I

21 Key Exchange method for portable terminal with direct input by user

all.dvi

基礎数学I

2 Fig D human model. 1 Fig. 1 The flow of proposed method )9)10) 2.2 3)4)7) 5)11)12)13)14) TOF 1 3 TOF 3 2 c 2011 Information

main.dvi


2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

Silhouette on Image Object Silhouette on Images Object 1 Fig. 1 Visual cone Fig. 2 2 Volume intersection method Fig. 3 3 Background subtraction Fig. 4

本文6(599) (Page 601)

三石貴志.indd

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

12) NP 2 MCI MCI 1 START Simple Triage And Rapid Treatment 3) START MCI c 2010 Information Processing Society of Japan

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta


EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

untitled

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

Microsoft PowerPoint - SSII_harada pptx

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf


untitled


kokyuroku.dvi

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

: , 2.0, 3.0, 2.0, (%) ( 2.

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

xia2.dvi

1 4 4 [3] SNS 5 SNS , ,000 [2] c 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2011-CVIM-177 No /5/ TRECVID2010 SURF Bag-of-Features 1 TRECVID SVM 700% MKL-SVM 883% TRECVID2010 MKL-SVM A

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F(

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

CVaR

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

Transcription:

Vol.-CVIM-7 No.7 /3/8 RANSAC M Subspace fitting via robust Jacobian kernel PCA Jun Fujiki and Shotaro Akaho The subspace fitting method based on the original kernel principle component analysis (PCA), which minimizes the square distance in feature space, sometimes derives bad estimation because it does not reflect the metric on input space. Then authors proposed the subspace fitting method based on the kernel PCA based on the metric on input space, which is called Jacobian kernel PCA. However, Jacobian kernel PCA has the sensitivity against noise more than original kernel PCA because it directly reflects the metric on input space. Then in this paper, the authors propose robust subspace fitting methods based on Jacobian kernel PCA. such as the outlier detection method based on random sampling consensus (RANSAC) and χ test, the robust method based on M-estimation and the robust method based on least absolute value estimation.. principal component analysis PCAPCA PCA least squares PCA National Institute of Advanced Industrial Science and Technology nonlinear PCA NLPCA NLPCA feature space feature map PCA ),4) NLPCA c Information Processing Society of Japan

Vol.-CVIM-7 No.7 /3/8 NLPCA kernel PCA KPCA 4),) NLPCA KPCA NLPCA KPCA principle curve principle surface KPCA ) ),),6),8),),3) ) Jacobian KPCA PCA ) PCA Jacobi equi-metric curve outlier M ) M M M Robust PCA R-PCA M random sample consensus RANSAC 7) χ ) M log cosh M Huber PCA M least absolute value estimation. m R n H H H KPCA 3) PCA ). m R R x G x {x [d] } D d= PCA x [d] G x[d] x = x [d] + δx x x [d] r p (r p ) = (δx) G x[d] (δx) x n H ϕ : x ϕ(x) ϕ J ϕ c Information Processing Society of Japan

Vol.-CVIM-7 No.7 /3/8 ϕ(x) ϕ [d] + J ϕ[d] (x x [d] ) ϕ [d] = ϕ(x [d] ) (r p ) = (δϕ(x)) G ϕ[d] δϕ(x) ϕ(x + δx) = ϕ(x) + δϕ G ϕ[d] = (J + ϕ [d] ) G x[d] J + ϕ [d], G ϕ [d] = J ϕ[d] G x [d] Jϕ [d] X + X. ϕ [d] = ϕ(x [d] ) n a ϕ + b = D (a ϕ [d] + b) E(a) = () a G ϕ [d] a d= a b ) ( ) ( ) ( ) ϕ a G ϕ[d] ϕ =, ã =, Gϕ[d] = b n + n ã ϕ = ] D ã [ ϕ[d] ϕ [d] ã E(ã) = () ã G+ ϕ [d] ã d= ã ),6),3) ().3 k(x, y) = ϕ(x) ϕ(y) k(x, y) (m ) = k(x, y) x = J ϕ (x) ϕ(y) Jacobian kernel a ϕ[d] a = α [d] ϕ[d] = Φ α (n ) p (n D) (D ) D D K (K) ij = k(x [i], x [j] ), ) K = (K [] K [D] D m K [d] k [i][j] = k(x [i], x [j] ), ) K [d] = (k [d][] k [d][d] K [d] = Φ ϕ[d], K [d] = Φ J ϕ[d] () ϕ D α K E [d] K [d] (α) = α α K [d] G+ x[d] K [d] α (3) d= α ( ) G x[d] G x[d] =.4 (3) ) α α µ [d] = α K [d] G+ x[d] K [d] α, Λ = diag { µ [],..., µ [D] } E (α) α KΛ Kα α = MinEigenVec [ KΛ K ] MinEigenVec[X] X [k] k [] () µ [] d =,..., D [d] () (a) (b) (a) α [k+] = MinEigenVec[K(Λ [k] ) K] (b) µ [k+] [d] = ( α [k+] ) K [d] G + x [d] K [d] ( α[k+] ) {µ [d] } D d=... (KPCA) {µ [] [d] = }D d= ) E (α) α K α α = MinEigenVec[K ].. (Euclideanization) 8),) E (α) α ( KD m K ) α, D = diag { Det G ϕ[],..., Det G ϕ[d] } Det G ϕ[d] = det { J + ϕ [d] (J + ϕ [d] ) } det G x[d] Det X X α = MinEigenVec[KD m K] 3 c Information Processing Society of Japan

Vol.-CVIM-7 No.7 /3/8..3 Taubin 3) E[G kernel [d] ] = D K d= [d]g + x [d] K [d] E α K α (α) ) α (E[G kernel ] α [d] α ( ) K α = λ E[G kernel α [d] ].6 KPCA K = KK PCA K(Λ [ ] ) K ϕ[d] (µ [ ] [d] ) = K [d]α G + x [d] PCA x [d] ϕ[d] ϕ[d] 3. 3. 7 y = x x [ 3, 3].8.3.3 7 3. KPCA PCA % KPCA PCA µ λ λ exp ( λ x µ ) 3 3 3 3 KPCAPCA xy y x xy PCA 4. 4. PCA r [d] r [d] α K [d] K [d] α α K [d] G+ x[d] K [d] α (4) α PCA α K [d] K [d] R [d] = α α K [d] G+ x[d] K [d] α () PCA 4. RANSAC RANSAC 7) () () (3) (4) 4 c Information Processing Society of Japan

Vol.-CVIM-7 No.7 /3/8 () α m m β k k log ( β) log { ( α) m }. (6) 4.3 MAD median absolute deviation MAD {x n } N n= mad [x n] = med [ x n med (x n) ] x n N(, σ ) σ χ. () mad [xn].486 med [ x ] n 9) χ α(l) L χ α% L {x n} N n= x n N( L, σ I L ) ] σ [ x χ. (L) med n (7) m n n k L = n k m N( L, σ I L ) mad σ 4.4 RANSAC χ RANSAC χ ) PCA σ 4.4. () RANSAC (6) () (7) σ 4.4. Robust PCA R-PCA () n {Φ(x [d] )} D d= {Φ(y [m] )} m= PCA α () R [d] R [d] < σ S () () S ( γ)% R [d] χ γ(l) σ (3) PCA. M M min D d= R [d] x x = x > ρ(x) min D d= ρ(r [d]) ρ(x) = x M ρ ρ influence function Ψ(x) = ρ(x) x ρ Ψ (a) (b) M log cosh w(x) = Ψ(x) x weight function Ψ tanh x + o(x ) ρ(x) = σ log cosh x σ = x + σ x4 + o(x 4 ) (σ ) Ψ(x) = σ tanh x σ, w(x) = σ x tanh x σ x w(x) = Ψ(x) x x w(x) = Ψ(x) x c Information Processing Society of Japan

Vol.-CVIM-7 No.7 /3/8 (d) (e) (f) ρ Ψ w 4 4 3 3 ρ( x) - - (a) ρ(x) = x / 4 4 3 3 ρ( x) - - M (d) ρ(x) = σ log cos x σ ψ( x) - - - - - (b) Ψ(x) = x ψ( x) 6. - - - (e) Ψ(x) ( = ) x σ tanh σ M.9 w( x).8.7.6..4.3...7.6..4.3.. -σ σ - - (c) w(x) =.9 w( x).8 -σ σ - - (f) w(x) ( = ) σ x x tanh σ least absolute value estimation least absolute deviations M ρ(x) = x ψ(x) = sign(x) x = ρ(x) = x x x + ε ε 7. R [d] RANSAC RS- KPCA PCA M +M M M +MJ 3 = RANSAC KPCA M RS-+MJ 7. % 3% % % 6 % 3 3 RS- 4 RS- +M 3 +MJ % KPCA RANSAC RS 3 3 4 RS 3 3 4 +M +M RS +M RS +M +MJ +MJ RS +MJ RS +MJ 3 % KPCA RANSAC PCA RANSAC M RANSAC PCA 3% 4 3 RS- 4 RS- +M 3 +MJ 3% KPCA RANSAC 6 c Information Processing Society of Japan

情報処理学会研究報告 Vol.-CVIM-7 No.7 /3/8 +M +MJ 7. 3% D R D d= [d] 6 RANSAC RS 3 3 4 RS 3 3 4 +M RS +M RS +M +MJ RS +MJ RS +MJ...4.6.8 6 L error +M +MJ +M +MJ RS RS +M RS +MJ RS RS +M RS +MJ 4 3% PCA RANSAC RANSAC % RS- +M 3 +MJ PCA PCA 7 +MJ RANSAC RANSAC 7 L error of L error of RS RS +M RS +M +MJ RS +MJ.......3.4........3.4. % % PCA RANSAC.... L error of +MJ...3.4..... L error of RS +MJ...3.4. R [d] M 7 RANSAC 7 c Information Processing Society of Japan

Vol.-CVIM-7 No.7 /3/8 PCA 8. RANSAC 8 RANSAC 8 6 4 - - 8 6 4 - - 8 PCA R-PCA % ) M.Aizerman, É.Braverman and L.Rozonoér, Theoretical foundations of the potential function method in pattern regognition learning, Automation and Remote Control, :8-837, 964. ) S. Akaho, Curve fitting that minimizes the mean square of perpendicular distances from sample points, SPIE, Vision Geometry II, 993. 3),, D-II, J86-D- II(7):934-94, 3. 4), - -,, 8. ) W.Chojnacki, M.j.Brooks, A.vandenHangel and D. Gawley, On the fitting of surface to data with covariances, IEEE TPAMI, ():94-33,. 6) C.Ding, D.Zhou, X.He and H.Zha, R -PCA: Rotational invariant L -norm principal component analysis for robust subspace factorizaion, In Proc. of ICML6. 7) M.A.Fischer and R.C.Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Comm. ACM,4:38-39, 98 8),,, PRMU4-49:9-96, 4(). 9) J. Fujiki and S. Akaho, Spherical PCA with Euclideanization, Subspace 7(ACCV7). ),,, Subspace 8(MIRU8). ),,, Nov.8. ),,,,,, Mar.9. 3) N.H.Gray, P.A.Geiser and J.R.Geiser, On the least-squares fit of small and great circles to spherically projected orientation data, Mathematical Geology, (3):73-84, 98. 4) R.Hartley and A.Zisserman. Multiple view geometry in computer vision. Cambridge University, Cambridge, nd edition, 3. ) P. J. Huber, Robust estimation of a location parameter, Ann. Math. Stat., 3:73-, 964. 6),,,, 8-CVIM- 64-3:7-4, 8. 7) Q.Ke and T.Kanade, Robust L norm factorization in the presence of outliers and missing data by alternative convex programming, In Proc. of CVPR4, pp.9-99, 4. 8) Y. Leeden and P. Meer, Heteroscedastic regression in computer vision: problems with bilinear constraint, IJCV, 37():7-,. 9) R.J.Rousseeuw and A.M.Leroy, Robust Regression and Outlier Detection, John Wiley & Sons, NY, 987. ) P.D.Sampson, Fitting conic sections to very scattered data: an iterative refinement of the Bookstein algorithm, Comput. Vision, Graphics, and Image Processing, 8:97-8, 98. ) B.Schölkopf, A.Smola and K.-R.Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, :99-39, 998. ) Y.Sugaya and K.Kanatani, Outlier removal for motion tracking by subspace separation, IEICE Trans. Inf.&Syst., Jun.3. 3) G.Taubin, Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applicatons to edge and range image segmentation, IEEE TPAMI, 3():-38, 99. 4) V.Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, 99. 8 c Information Processing Society of Japan