Size: px
Start display at page:

Download ""

Transcription

1 Ver

2

3

4 4 ) 2) 3) 4) 5) (S45 9 ) ( 4) III 6) 7) 8) 9) ) 2) 3) 4) BASIC 5) 6) 7) 8) 9)

5 RC

6 ii Java 35 A 4 A 4 B C D E F G H I J K ɛ δ 5 B 53 A 53 B C C. 56 C.2 57 C.3 59 C.4 60 C.5 62 C.6 63 C.7 64 C.8 65 C.9 65 C 67 A 67 B C C. 69 C.2 7 C.3 7 C.4 72 C.5 73

7 iii D 75 E 77 79

8

9

10

11 . 0.2 step ( ) 38 A. 42 A.2 43 A.3 44 A.4 45 A.5 e 48 B. 53 B.2 55 B.3 e 62 C. 68

12

13 . x y = f(x) y y, y, y (n) n F (x, y, y, y,, y n ) = 0 (.) dy dt = ay y ay = 0 ay + by + cx = 0 (ay ) 2 = 0! d 2 2 y dx 2 = 0 x t x y

14 2 y = ax y = a y = ax a a = y y = y x y = x 2 xy 2y = 0 y = 2x y y x 2x 2 x 2 = 2x 2 2x 2 = 0 y = e ax y = ay y = ae ax y y ae ax = a e ax

15 x dy = f(x) (.2) dx dy dx = f(x)dx dx dy dx dx = f(x)dx + C dy = f(x)dx + C y = f(x)dx + C y = f(x)dx + C (.3) (x, y) = (, 5) y = 2x + y = (2x + )dx + C y = x 2 + x + C C C y = x 2 + x + C 5 = C C = 5 2 = 3 y = x 2 + x + 3

16 4.2.2 x y dy = f(x) g(y) (.4) dx dy dx = f(x)g(y)dx dx dy dx = f(x)dx g(y) dx dy g(y) dx dx = f(x)dx + C g(y) dy = f(x)dx + C g(y) dy = f(x)dx + C (.5) 2 (x, y) = (, ) y = x y ydy = xdx + C 2 y2 = 2 x2 + C x 2 + y 2 = 2C = C C C x 2 + y 2 = C = C C = + = 2 x 2 + y 2 = 2

17 «dy y dx = f y x x = u dy «y dx = f x y = xu y u 2 y = f(u) y = xu y = (x) u + x(u) y = u + x u 2 u + x u = f(u) x u = f(u) u u = f(u) u x f(u) u u = x x 0 x R f(u) u du dx dx = R x dx + C (f(u) u) 0 f(u) u du = log e x + C (.6) u = y x 3 x dy dx = x + y dy dx = + y y (x 0) x x = u dy dx = + u f(u) = u + R (.6) f(u) = u + (u + ) u du = log e x + C R du = log e x + C u = log e x + C u = y x y x = log e x + C y = x(log e x + C)

18 6.2.4 ( y ( dy ) y dx ) dy + p(x)y = q(x) (.7) dx q(x) 0 dy + p(x)y = 0 (.8) dx dy y = p(x)dx log e y = p(x)dx + C y = ce R p(x)dx (.9) c ( ) c x C(x) y = C(x)e R p(x)dx (.0) (.7) {C(x)e R p(x)dx } + p(x){c(x)e R p(x)dx } = q(x) C (x)e R p(x)dx + C(x){e R p(x)dx } + p(x)c(x)e R p(x)dx = q(x) C (x)e R p(x)dx + C(x)( p(x))e R p(x)dx + p(x)c(x)e R p(x)dx = q(x) C (x)e R p(x)dx = q(x) C (x) = q(x)e R p(x)dx

19 .2 7 C(x) = q(x)er p(x)dx dx + C (.0) q(x) 0 y = e R j p(x)dx ff p(x)dx q(x)er dx + C (.) 4 y y = x (.7) p(x) =, q(x) = x (.) y = e R j ( )dx R j y = e dx ff ( )dx xer dx + C ff xe R dx dx + C j ff y = e x xe x dx + C C.28 j ff y = e x xe x dx + C ff y = e j xe x x ( e x )dx + C ff y = e j xe x x + e x dx + C y = e x ( xe x e x + C) y = xe x x e x x + Ce x y = x + Ce x

20 (x, y) y (0, 2) dy y dx.3.2 dy dx = y (.2) dy y dx = x dy y dx dx = dx y dy = dx y log e y = x + C (C ) y = ±e x+c = ±e C e x = α e x ( α = ± e C ) (.3) α α (0, 2) (0, 2) x = 0 y = 2 (.3) 2 = α e 0 α = 2 (x, y) y (0, 2) y = 2 e x (.4)

21 (.4) (.2) dy dx = y dy = y dx x 0 = 0.0, y 0 = 2.0 dx = 0. x = 0., (= x 0 + dx = ), y = 2.2, (= y 0 + y 0 dx = (2.0 0.)) x 2 = 0.2, (= x + dx = ), y 2 = 2.42, (= y + y dx = (2.2 0.)) x 3 = 0.3, (= x 2 + dx = ), y 3 = 2.662, (= y 2 + y 2 dx = )). dx dx dy i. yr.data y.data dx 0. y2.data dx 0.0

22 y.data yr.data y2.data

23 .3. x(i) dy(i+) y(i+) y(i+) dx(=0.0) =y(i) dx(=0.) =y(i)+dy(i+) 2 e x

24 2.4 (.5) f(x, y) dy = f(x, y) (.5) dx (x, y) D (x 0, y 0 ) D dy dx = f(x, y), y 0 = y(x 0 ) (.6) (.6) x 0 (.5) f(x, y) (x, y) D y f(x, y 2 ) f(x, y ) < L y 2 y (L > 0) (.7) (x 0, y 0 ) D x 0 (.6) y(x)

25 step: step2: t = 0 2g dy t y(t) dt dy dt t dy dt = ky (k ) y t k (k < 0) step3: 88Ra 2 26 k.4x0 [s ] dy dt = ky (k ) dy y dt = k dy y dt dt = kdt y dy = kdt log e y = kt + C y = ±e kt+c y = ±e C e kt y = c e kt step4: t = 0 2g

26 4 y(0) = 2 ce k 0 = 2 ce 0 = 2 c = 2 y(t) = 2e kt step5: step6: y (t) = dy dt = 2e kt = 2ke kt = k 2e kt = ky y(0) = 2e k 0 = 2e 0 = 2 dy = ky y(0) = 2 dt y c, t > 0 y = c e t c y = c e y = c e t step6 t step7: step8:.2 step3 k < 0 c e t k =

27 a a + b 8.0 : 2.0 = a + b : b 2.0 (a + b) = 8.0 b b = 3 a.5 a t da dt =.5 (.8) t db dt = 3 da dt (.8) db dt = = /

28 6.6.2 (I) 798 step: step:2 step:3 N = N(t) t t αn t βn t t N N = αn t βn t = (α β)n t = γn t step:4 step:5 dn dt = γn dn N dt = γ step:6 dt dn N dt dt = γdt N dn = γdt log e N = γt + C N = e γt+c N = e C e γt t = 0 N = N 0 N 0 = e C e γ 0 N 0 = e C N = N 0 e γt

29 .6 7 (II) 837 step: step:2 step:3 step:4 step:5 N n N N N n dn dt dn dt = γn( N N n ) step:6 dn dt = γn( N ) N n dn N dt = γ( N ) N n dn N N dt = γ N n dn N N dt dt = γdt N n N N dn = γdt N n N + N n N dn = N n γdt log e N log e N N n «= γt + C log e N N Nn «= γt + C N N «= e γt+c = e C e γt = ce γt N n

30 8 step:7 t = 0 N = N 0 N 0 N 0 N n «= ce γ0 = ce 0 = c c N N Nn «= N 0 N 0 N n «e γt N N N «= 0 «e γt Nn N Nn N 0 N n N n N N n N = N 0 e γt N n N 0 N n N = N n N 0 N N 0 e j ff γt N = Nn N 0 e γt N n N n N N = N n = + j Nn N 0 j Nn + N 0 ff ff e γt e γt step:8 N = N n j ff (.8) Nn + e N γt 0.3 N n N N = N n o +n Nn e γt N 0 N t

31 t x x v = lim t 0 t (.9) = dx dt (.20) v v a = lim t 0 t = dv dt (.2) a = dv dt = d j ff dx dt dt = d2 x dt 2 (.22) 2.4.4

32 a = g g dv dt = g (.23) dv = g dt dv = g dt v = g t + C t = 0 v = v 0 v 0 = g 0 + C C = v 0 v = g t + v 0 (.24) v = dx dt = g t + v 0 dx dt = g t + v 0 dx = g tdt + v 0 dt x = 2 g t2 + v 0 t + C t = 0 x = 0 t = 0 C = 0 x = 2 g t2 + v 0 t (.25)

33 S s t = 0 y(0) = h ( ) ) v Torricelli v = k 2gy g = 9.8m/s 2 k dt vdt s svdt = sk 2gydt dy Sdy = sk p 2gydt S sk S sk S sk 2g y dy = dt 2g dy = y dt 2g 2 ydy = t + C S sk s 2 y = t + C g t = 0, y(0) = h C S s 2 h = 0 + C sk g C = S s 2 h sk g

34 22 S s 2 S y = t sk g sk s S 2 S y = sk g sk r sk g y = S 2 S sk s 2 h g s 2 h t g s! 2 h t g r sk g y = h S 2 t r sk g S 2 t = h y t = ( h y) S sk s 2 g

35 E R, E L, E C V R Ω I A L H t s C F Q C. R, E R E R = R I (.26) 2. L, E L E L = L di (.27) dt 3. C, E C E C = Q C I = dq dt (.28) (.29).2 m L 2 v I 3 x Q 4 F = m dv dt E = LdI dt 5 2 mv2 2 LI2

36 RC E R C 0 t Q 0 Q = 0. a. t (.29) I = dq dt b. (.26,.29) RI = R dq dt c. (.28) Q C d. 2. R dq dt + Q C = E

37 R dq dt = E Q C dq dt = E Q «R C dq dt = (EC Q) RC dq dt = (Q CE) RC dq Q CE dt = (Q CE 0) RC dq Q CE dt dt = dt RC Q CE dq = dt RC (C.29) log e Q CE = RC t + C Q CE = e RC t+c (Q CE < 0) Q + CE = e C e RC t Q + CE = A e RC t Q = CE A e RC t.6 25 t = 0, Q = 0 0 = CE A e RC 0 A = CE Q = CE CE e t RC Q = CE e t RC (Q CE > 0) Q CE = e C e RC t Q CE = A e RC t Q = CE + A e RC t t = 0, Q = 0

38 26 0 = CE + A e RC 0 A = CE Q = CE CE e t RC Q = CE e t RC (Q CE 0) Q = CE e t RC (.30) I.29 I = dq n dt = CE e t o CE RC = ( RC e t RC ) = E R e t RC t I 3. E = 0 R dq dt + Q C = 0 Q = B e RC t (.3) t 0 Q Q = CE e t 0 RC t 0 = Q ; CE e RC ; CE e ; CE ( 0) = CE (t = t 0 ) Q = B e RC t CE = B e RC t 0 B = CE e RC t 0 B Q = CE e t 0 RC e t RC Q = CE e t 0 t RC Q = CE e (t t 0 ) RC

39 .6 27 I.29 I = dq dt = j ff CE e (t t 0 ) RC = CE 4..5 CE = 8 Q RC e (t t0) RC = E R e (t t 0 ) RC Q = CE e t RC Q = CE e t t 0 RC 0 t 0 = 0 E = 4, R =, C = 2, t 0 = 0 t 0 :.5 t

40

41 2 2. f(t) F (s) F (s) f(t) F (s) = 0 f(t)e st dt (t 0) (2.) s F (s) = L[f(t)] (2.2) 2.2. f(t) = L() = 0 e st dt =» s e st 0 = s (s > 0) (2.3) 2. f(t) = t [ (C.28) ] L(t) = 0» t e st dt = 3. f(t) = e at + st s 2 e st 0 = s 2 (s > 0) (2.4)

42 30 2 L(e at ) = 0 e at e st dt = 0 e (a s)t dt = " e (a s)t a s # 0 = s a (s > a) (2.5) tf(t) 3. f(t)/t 4. f (t) 5. f (t) L[af(t) + bg(t)] = al[f(t)] + bl[g(t)] (2.6) L[f(t)] = L[F (s)] (2.7) L[tf(t)] = L[F (s)] (2.8)» f(t) s L = F (s)ds (2.9) t L[f (t)] = sf (s) f(0) (2.0) L[f (t)] = s 2 F (s) sf(0) f (0) (2.) 2.4 L [F (s)] = f(t) (2.2) f(t) (.5 ). f(t)

43 dy dt = ky (k, y = f(t), f(0) = 2) y = ky F (s) L[y ] = L[ky] 3. F (s) L[y ] = kl[y] sf (s) f(0) = kl[y] sf (s) f(0) = kf (s) (2.7) sf (s) 2 = kf (s) sf (s) 2 kf (s) = 0 (s k)f (s) = 2 F (s) = 2 (s k) (2.6 ) (2.0 ) ( f(0) = 2) 4. f(t) f(t) = 2 e kt (2.5 ) L[f(t)] f(t)

44 t f(t) L[f(t)] s s 3 e at s a 4 cos ωt 5 sin ωt 6 e αt cos βt 7 e αt sin βt 8 f(t) = 0, (0 t < a) f(t) =, (t a) s > 0 s 2 s > 0 s > a s s 2 + ω 2 s > 0 ω s 2 + ω 2 s > 0 s α (s α) 2 + β 2 s > α β (s α) 2 + β 2 s > α s e as s > 0 ) ) Mathematics Handbook for Science and Engineering ( Råde,Westergren Springer)

45 E R C 0 t Q 0 Q = 0 R dq dt + Q C = E» L R dq dt + Q = L[E] C y dq dt y Q» L R Q + Q = L[E] C RL[Q ] + L[Q] = EL[] C F (s) = E s C CRs + = E s R{sF (s) f(0)} + C F (s) = E s RsF (s) + C F (s) = E (f(0) = 0) s CRs + F (s) = E C s F (s) = E R 0 C s + CR = E R s C s + A = E R s C s + A» CR CR RC CR (s + α)(s + β) = β α s + α «s + β 0 0 CR 0 s + 0 s + CR C A = E R CR 0 s s + CR C A

46 L [F (s)] = L 6 4 E R CR 0 s s + CR 3 C7 A5 = ECL 6 4 s 7 s CR 3» = EC L L 6 s 4 s «7C 5A CR 2 3 f(t) = Q = EC e t CR

47 3 Java gnuplot 3. y 0 = n y (3.) x 0 = n x (n x, n y ) (3.2) k = h f(x i, y i ) (3.3) k 2 = h f(x i + h 2, y i + k 2 ) (3.4) k 3 = h f(x i + h 2, y i + k 2 2 ) (3.5) k 4 = h f(x i + h, y i + k3) (3.6) y i+ = y i + 6 (k + 2k 2 + 2k 3 + k 4 ) (3.7) x i+ = x i + h (3.8) x i y i Java Java C 3.2 Java II

48 36 3 Java for 3. dn C dt = γn( N ) N n func II func II (.8) runge.data runger.data RungeRun.bat javac Runge.java pause OK java Runge pause OK rem ()gnuplot>set terminal postscript eps rem (2)gnuplot>set output "runge.eps" rem (3)gnuplot>plot..\..\tpc-math\runge\runge.data with lines rem (4)gnuplot>replot..\..\tpc-math\runge\rungeR.data with lines rem GNUPLOT..\..\gnuplot\bin\wgnuplot.exe. Java Javac 2. JavaVM[Java java ] runge.data 3. GNUPLOT 3 pause pause rem eps TeX 3.?? gnuplot eps gnuplot Windows

49 Runge.java 3.2 Java 37 import java.io.*; class Runge { private static double t,x,y,y_next,h,tmax,n0,nmax,g; private static double k,k2,k3,k4; public static void main(string [] args) { String outfilename = "runge.data"; // String outfilenamer = "runger.data";// x=0.0; // x N0=3.0; // y y=n0; // h=0.00; // dt...dx tmax=30.0; //x g=0.5; //g...gamma Nmax=00.0; //y Runge runge=new Runge(); // try { FileWriter fw = new FileWriter(outFileName); // fw.write( x + " " + y + "\n" ); //(x(0),y(0)) FileWriter fwr = new FileWriter(outFileNameR); // fwr.write(x+" "+runge.funcriron(x,n0)+"\n"); // (x(0),y(0)) for(t = 0; t < tmax; t += h) { k = h * runge.func(x, y); k2 = h * runge.func(x + (h / 2.0), y + k / 2.0); k3 = h * runge.func(x + (h / 2.0), y + k2 / 2.0); k4 = h * runge.func(x + h, y + k3); y += (k * k * k3 + k4) / 6.0; //y(i+)=y(i)+dy x += h; // x(i+)=x(i)+dx fw.write ( x + " " + y + "\n" ); // (x(i),y(i)) fwr.write(x+" "+runge.funcriron(x,n0)+"\n");// (x(i),y(i)) } fw.close(); fwr.close(); } catch(exception e) { System.out.println(" "); } } } double func(double x,double N) { // return g * N * (.0 - N / Nmax); } double funcriron(double x,double N0) { // return Nmax / (+((Nmax/N0)-)*Math.exp(-g*x)) ; }

50 N..\..\tpc-math\runge\runge.data runge.data 3. ( ) t

51 3.2 Java t N

52

53 A A B a 2 + 2ab + b 2 = (a + b) 2 (A.) a 2 2ab + b 2 = (a b) 2 (A.2) a 2 b 2 = (a + b)(a b) (A.3) x 2 + (a + b)x + ab = (x + a)(x + b) (A.4) acx 2 + (ad + bc)x + bd = (ax + b)(cx + d) (A.5) a 3 + b 3 = (a + b)(a 2 ab + b 2 ) (A.6) a 3 b 3 = (a b)(a 2 + ab + b 2 ) (A.7) a 3 + 3a 2 b + 3ab 2 + b 3 = (a + b) 3 (A.8) a 3 3a 2 b + 3ab 2 b 3 = (a b) 3 (A.9) a n b n = (a b)(a n + a n 2 b + a n 3 b 2 + +a 2 b n 3 + ab n 2 + b n ) (A.0) ax 2 + bx + c = 0 C x = b ± b 2 4ac 2a (b 2 4ac 0) (A.) f( x) = f(x) (A.2) f( x) = f(x) (A.3)

54 42 A y = x 2, cos θ y = x, sin θ D ([0, 0] > [a, b]) y = (x a) 2 + b (A.4) y b = (x a) 2 (A.5) y y = x 2 y = (x a) 2 + b b 0 a x A.

55 E 43 E y = x 2 x = y x y y = x y = x 2 y = x y = x 45 y = x 2 y = x y 0 y y = x 2 y = x y = x 0 x A.2 y = f(x) x = g(y)

56 44 A F y y r P (x, y) r r θ 0 x r x A.3 r 360 = θ rad. sinθ = y r (A.6) cosθ = x r (A.7) tanθ = y x (A.8)

57 F 45 y y = tanθ y = sinθ π 2 0 π 3π 2 π 2 2π x - y = cosθ

58 46 A G tanθ = sinθ cosθ sin 2 θ + cos 2 θ = + tan 2 θ = cos 2 θ sin( θ) = sinθ cos( θ) = cosθ tan( θ) = tan θ (A.9) (A.20) (A.2) (A.22) (A.23) (A.24) sin( π 2 θ) = cosθ (A.25) cos( π θ) = sinθ 2 (A.26) tan ( π 2 θ) = tan θ sin (π ± θ) = sin θ cos (π ± θ) = cos θ tan (π ± θ) = ± tan θ (A.27) (A.28) (A.29) (A.30) sin( π 2 + θ) = cosθ (A.3) ) cos( π + θ) = sinθ 2 (A.32) tan( π 2 + θ) = tan θ a sin A = b sin B = c sin C = 2R a 2 = b 2 + c 2 2bc cos A b 2 = c 2 + a 2 2ca cos B c 2 = a 2 + b 2 2ab cos C (A.33) (A.34) (A.35) (A.36) (A.37) sin(α ± β) = sinα cosβ ± cosα sinβ cos(α ± β) = cosα cosβ sinα sinβ tanα ± tanβ tan(α ± β) = tanα tanβ (A.38) (A.39) (A.40) ) ABC R

59 G 47 sin2θ = 2sinθ cosθ cos2θ = cos 2 θ sin 2 θ tan2θ = 2tanθ tan 2 θ sin 2 θ 2 = cosθ 2 cos 2 θ 2 = + cosθ 2 tan 2 θ 2 = cosθ + cosθ sinα + sinβ = 2sin α + β cos α β 2 2 sinα sinβ = 2cos α + β 2 cosα + cosβ = 2cos α + β 2 cosα cosβ = 2sin α + β 2 sin α β 2 cos α β 2 sin α β 2 (A.4) (A.42) (A.43) (A.44) (A.45) (A.46) (A.47) (A.48) (A.49) (A.50) y = sin x < > x = sin y (A.5) ( x, π 2 y π 2 ) y = cos x < > x = cos y (A.52) ( x, 0 y π) y = tan x < > x = tan y (A.53) ( x, π 2 y π 2 )

60 48 A H y y = e x y = x y = log e x 0 x A.5 e x n = x n (A.54) x m x n = x m+n (A.55) (x m ) n = x m n (A.56) n x = x n (A.57) a 0 = (A.58) a b = c < > b = log a c (A.59) a > 0, a, b > 0, c > 0, d > 0, d

61 H 49 log a (b c) = log a b + log a c log a b c = c log a b c log a b = log a c log a b log a b = log a b log a b = log d b log d a log a a = log a = 0 (A.60) (A.6) (A.62) (A.63) (A.64) (A.65) (A.66)

62 50 A I J x lim x 2 3 = 4 y = x = 0 x lim x ±0 x = ± ± x 2 lim x x = lim x = lim x (x + ) = 2 (x + )(x ) x x 2 lim x x = lim ( + h) 2 h 0 ( + h) ( + 2h + h 2 ) = lim h 0 h 2h + h 2 = lim h 0 h 2 + h = lim h 0 = lim 2 + h h 0 = = 2

63 K ɛ δ K ɛ δ 5 x a lim f(x) = b x a ɛ δ ɛ > 0, δ > 0s.t. x R, 0 < x a < δ f(x) b < ɛ f or all ɛ > 0, there exist δ > 0 such that for all x R, 0 < x a < δ implies f(x) b < ɛ ɛ δ 0 < x a < δ x f(x) b < ɛ 2) 2) x x( ) x x a b s.t. a = a + b a a = a + b b s.t. such that implies imply implies if then ( ) implies

64 52 A lim (2x ) = 5 x 3 ɛ δ 0 < x 3 < δ x (2x ) 5 < ɛ ɛ δ = ɛ 2 δ ɛ = 2 δ = 2 2 = :x = 4.0, x 3 = 4 3 = δ =, (2x ) 5 = 8 6 = 2 ɛ = 2 :x = 3.9, x 3 = = 0.9 < δ =, (2x ) 5 = =.8 < ɛ = 2 ɛ = 0.2 δ = 0.2 = 0. 2 :x = 3.0, x 3 = 3. 3 = 0.9 δ = 0., (2x ) 5 = = 0.2 ɛ = 2 :x = 3.09, x 3 = = 0.09 < δ = 0., (2x ) 5 = = 0.8 < ɛ = 0.2 ɛ = 0.02 δ = 0.02 = x = 3.00 x = OK :x = 3.00, x 3 = = 0.0 δ = 0.0, (2x ) 5 = = 0.02 ɛ = 0.02 :x = 3.009, x 3 = = < δ = 0.0, (2x ) 5 = = 0.08 < ɛ = 0.02 ɛ δ x

65 B A y = f(x) f(x) x = p x = p f (x) f(x) f(p) lim x p x p (B.) P P(p, f(p)) y f(x) f(p) P p x x B.

66 54 B f(x) = x 2 x = f(x) f() x 2 lim = lim x x x x = lim (x )(x + ) x x = lim x (x + ) (B.2) x = f(x) = x x = 0 x 0 lim x ±0 x 0 = ± (B.3) x = 0

67 B B 55 x f (x) y = f(x) dy dx d dx f(x) {f(x)} f (x) y ẏ D x y Df(x) y = f(x) x x y y {f(x)} = y lim x 0 x = lim x 0 f(x + x) f(x) x x h B.2 y f(x + h) y f(x) x x x + h x B.2 {f(x)} = lim h 0 f(x + h) f(x) h (B.4) f(x)

68 56 B C C.. (a) = 0 ) 2. (x) = 2) 3. (a x) = a 3) 4) 5) 4. (x 2 ) = 2x 5. ( x) = 2 6) 7) x (x n ) = n x n (B.5) ) 2) 3) (a) = (x) = a a lim = 0 (a : ) h 0 h {(x + h)} x lim = h 0 h (a x) = (a) x + a (x) = a (a : ) 4) (x 2 ) = (x x) = (x) x + x (x) = 2x 5) 6) 7) (x 2 ) (x + h) 2 x 2 x 2 + 2hx + h 2 x 2 = lim = lim h 0 h h 0 h 2hx + h 2 = lim = lim (2x + h) = 2x h 0 h h 0 ( x) = lim h 0 x + h x h = lim = h 0 x + h + x 2 x ( x + h x)( x + h + x) = lim h 0 h ( x + h + x) ( x) = (x 2 ) = 2 x 2 = 2 x

69 C 57 C.2 {f(x) ± g(x)} = f (x) ± g (x) (B.6) 8) {f(x) g(x)} = f (x) g(x) + f(x) g (x) (B.7) 9) 8) {f(x) ± g(x)} {f(x + h) ± g(x + h)} {f(x) ± g(x)} = lim h 0 h {f(x + h) f(x)} ± {g(x + h) g(x)} = lim h 0 h = lim h 0 {f(x + h) f(x)} = f (x) ± g (x) h {g(x + h) g(x)} ± lim h 0 h 9) {f(x) g(x)} {f(x + h) g(x + h)} {f(x) g(x)} = lim h 0 h {f(x + h) g(x + h) f(x + h)g(x)} + {f(x + h)g(x) f(x)g(x)} = lim h 0 h = lim h 0 {f(x + h) f(x)} = f (x) g(x) + f(x) g (x) h {g(x + h) g(x)} g(x) + lim f(x + h) h 0 h

70 58 B j ff f(x) = f (x) g(x) f(x) g (x) g(x) g(x) 2 (B.8) j ff = g (x) g(x) g(x) 2 (B.9) 0) ) {f(g(x))} = f (u) g (x) u = g(x) (B.0) 0) f(x) g(x) «= lim h 0 f(x + h) g(x + h) f(x) «g(x) f(x + h) g(x) f(x) g(x + h) = lim h h 0 g(x + h) g(x) h f(x + h) g(x) f(x)g(x) {f(x) g(x + h) f(x)g(x)} = lim h 0 g(x + h) g(x) h = lim h 0 f(x + h) f(x) {g(x + h) g(x)} h = f (x) g(x) f(x) g (x) g(x) 2 g(x) f(x) lim h 0 g(x + h) g(x) {g(x + h) g(x)} h ) {f(g(x))} f(g(x + h)) f(g(x)) = lim h 0 h f(g(x + h)) f(g(x)) g(x + h) g(x) = lim h 0 g(x + h) g(x) h f(g(x + h)) f(g(x)) g(x + h) g(x) = lim lim h 0 g(x + h) g(x) h 0 h d = dg(x) f(g(x)) d dy g(x) = dx du du dx = f (u) g (x)

71 C 59 C.3 sin x lim h 0 x = (B.) (sin x) = cos x (B.2) 2) (cos x) = sin x (B.3) 3) (tan x) = cos 2 x (B.4) 2) (sin x) sin(x + h) sin x = lim h 0 h (x + h) + x 2 cos sin = lim 2 h 0 h 2 cos 2x + h sin h = lim 2 2 h 0 h h = lim h 0 cos(x + h sin 2 ) 2 h 2 = cos x (x + h) x 2 3) (cos x) = (sin( π 2 x)) = cos( π 2 x) ( π 2 x) = cos( π 2 x) ( ) = sin x u = π 2 x

72 60 B C.4 f(x) = g(y) (B.5) 4) 4) y = x ( x) = x 2 = 2 x 2 = 2 x y = x x = y 2 ( x) = (y 2 ) = 2 y = 2 x

73 C 6 sin x + cos x = π 2 (B.6) (sin x) = x 2 ( < x < ) (B.7) 5) (cos x) = x 2 ( < x < ) (B.8) (tan x) = + x 2 (B.9) 5) y = sin x x = sin y (sin x) = (sin y) = cos y = q sin 2 y = p x 2 x = sin y d dx x = d dx sin y = d dy sin y dy dx = cos y dy dx dy dx = cos y

74 62 B C.5 e y = e x y = 2 x x = 0 y = 3 x x = 0 y = e x x = 0 e y y = e x y = x + 0 x B.3 e e e = lim x + x «x (B.20) e = lim ( + x) x x 0 (B.2) e x lim x 0 x = (B.22) (e x ) = e x (B.23) 6) 6) d dx ex e x+h e x = lim = e x e h lim = e x h 0 h h 0 h

75 C 63 C.6 lim x 0 ( + x) x = e (log e x ) = x (B.24) (B.25) 7) 7) x > 0 (log e x) log = lim e (x + h) log e x h 0 h «x + h log e x = lim h 0 h = lim h 0 h log e + h «x = lim h 0 log e + h «h x 8 >< = lim h 0 log e + h «x 9 >= x h >: x >; = lim h 0 x log e + h «h x x = lim h 0 x log e e = h 0 lim x = x x < 0 u = x (u > 0) y = log e x = log e u = log e u y = (log e u) ( x) = u ( ) = x ( ) = x

76 64 B C.7 8) 9) (x a ) = ax a (a ) (B.26) (a x ) = a x log e a (a > 0) (B.27) 8) y = x a log e y = log e x a = a log e x 9) x d dx (log e y) = d dx (a log e x) d dy (log dy e y) dx = a d dx (log e x) dy y dx = a x dy dx = a y x = a xa x = axa y = a x log e y = log e a x = x log e a x d dx (log e y) = d dx (x log e a) d dy (log dy e y) dx = d dx x(log e a) dy dx = log e a y dy dx = y log e a = ax log e a

77 C 65 C.8 f(x) [a, b] (a, b) f(a) = f(b) f (c) = 0 c (a, b) (B.28) f(x) [a, b] (a, b) f(b) f(a) b a = f (c) c (a, b) (B.29) f(x), g(x) [a, b] (a, b) g f(b) f(a) (x) 0 g(b) g(a) = f (c) g (c) c (a, b) (B.30) C.9 f(x), g(x) lim f(x) = lim x a x a g(x) = 0( = ) f (x) lim x a g (x) = c lim f(x) x a g(x) = c (B.3)

78 66 B f(x) n c f(b) = f(a) + f (a)(b a) + f (a) (b a) 2 + 2! + f (n ) (a) (n )! (b a)n + R n R n = f (n) (c) (b a) (a < c < b) n! (B.32) f(x), f (x), f (x),, f (n ) (x), f (n) (x) x = a f(x) = f(a) + f (a)(x a) + f (a) (x a) 2 + 2! + f (n ) (a) (n )! (x a)n + n, R n 0 (B.33) f(x), f (x), f (x),, f (n ) (x), f (n) (x) x = 0 f(x) = f(0) + f (0)x + f (0) x f (n) (0) x n + 2! (n)! n, R n 0 (B.34)

79 C A f(x) {F (x)} = f(x) (C.) F (x) f(x) f(x) F (x) F (x) + C f(x) F (x) + C = f(x)dx (C ) (C.2) b f(x)dx = [F (x)] b a a = F (b) F (a) (C.3)

80 68 C B y y = x 0 x 0 x x 2 x 3 x n x n x C. y = x x C. x 0 b y = x lim n X n i=0 x i b n = lim n b n n X i=0 x i = lim n b n 2 (x 0 + x n ) n b = lim n n 2 x n n b = lim n n 2 (x n b n ) n b = lim n n 2 (x n n b) b = lim n n (b n b) 2 =! 2 lim b 2 b2 = n n 2 b2 y = x F (x) = j ff 2 x2 + C = x F (x) = 2 x2 + C = xdx b 0» b xdx = 2 x2 = 2 b = 2 b2 0

81 C 69 C C. kf(x)dx = k f(x)dx (C.4) f(x) ± g(x)dx = f(x)dx ± g(x)dx (C.5)

82 70 C x n dx = n + xn+ + C (n ) (C.6) C dx = x (C.7) x dx = log e x (C.8) 3 xdx 2 = 3 x 2 = 2 3 x x (C.9) sin xdx = cos x (C.0) cos xdx = sin x (C.) tan xdx = log e cos x cos 2 dx = tan x x (C.3) x 2 dx = sin x x 2 dx = cos x (C.2) (C.4) (C.5) + x 2 dx = tan x (C.6) e x dx = e x (C.7) a x dx = ax log a (a > 0, a ) (C.8)

83 C 7 C.2 u = ϕ(x) f(ϕ(x)) ϕ (x)dx = f(u)dx (C.9) f(x)dx = F (x) f(ax + b)dx = F (ax + b)dx (a 0) (C.20) a f(x) a f (x)dx = a + f(x)a+ (a ) (C.2) f (x) f(x) dx = log e f(x) (C.22) ( a 0) (ax + b) a dx = a a + (ax + b)a+ (a ) (C.23) (ax + b) dx = a log e ax + b (C.24) sin axdx = cos ax a (C.25) cos axdx = sin ax a (C.26) e ax dx = a eax (C.27) C.3 f (x) g(x)dx = f(x) g(x) f(x) g (x)dx (C.28)

84 72 C C.4 x a dx = log e x a (C.29) x 2 + dx = tan x (C.30) 2x x 2 + a dx = log e x2 + a (C.3) x 2 + a 2 dx = x a tan a (a 0) (C.32) tan x 2 = t sin x = 2t + t 2 (C.33) cos x = t2 + t 2 (C.34) dx = 2 dt (C.35) + t2

85 C 73 C.5 b a f(x)dx = a a b a f(x)dx = 0 f(x)dx (C.36) (C.37) b a f(x) + g(x)dx = b a b f(x)dx + g(x)dx a (C.38) b a b kf(x)dx = k f(x)dx a (k ) (C.39) b a c c f(x)dx + f(x)dx = f(x)dx b a (C.40) [a, b] f(x) g(x) b a b a f(x)dx f(x)dx b a b a g(x)dx f(x)dx u = ϕ(x) [α, β] a = ϕ(α), b = ϕ(β) b a β α f(ϕ(x)) ϕ(x)dx = b f (x) g(x)dx = f(x) g(x) a f(u)du b a f(x) g (x)dx (C.4) (C.42) (C.43) (C.44)

86

87 D A α alpha B β beta Γ γ gamma δ delta E ɛ epsilon ζ zeta H η eta Θ θ theta I ι iota K κ kappa Λ λ lambda M µ mu N ν nu Ξ ξ xi O o omicron Π π pi P ρ rho Σ σ sigma T τ tau Υ υ upsilon Φ φ, ϕ phi X χ chi Ψ ψ psi Ω ω omega ℵ

88

89 E e π log e log e log e

90

91 RC, 24, 2, 6, 6, 3, 4, 7 ɛ δ, 5, 23, 7, 36, 20, 5, 2, 5, 9, 24, 4, 43, 23, 8, 50, 9, 4 gnuplot, 35, 36, 9, 23, 65, 23, 24, 33, 44, 46, 9, 48 Java, 35, 36 Java, 35, 24, 33, 20,, 8, 6, 35 step, 3 step2, 3 step3, 3 step4, 3 step5, 4 step6, 4 step7, 4 step8, 4, 67, 8, 67, 69, 53, 9, 48, 3, 2, 23, 68, 66, 66, 9, 23, 23, 5, 20, 55

92 80, 5, 3, 4 Torricelli, 2, 42, 53, 53, 55, 56,,, 8, 65, 8, 4, 24, 26, 33, 66, 6, 3, 20, 30, 3, 29, 33, 30, 30, 3, 35, 35, 3 2, 4 3, 7, 65, 65

93 Ver Ver Ver Ver Ver Ver Ver

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

- II

- II - II- - -.................................................................................................... 3.3.............................................. 4 6...........................................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl L A TEX ver.2004.11.18 1 L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sample2 3) /staff/kaede work/www/math/takase sample1.tex

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29 A p./29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx [ ] F(x) f(x) C F(x) + C f(x) A p.2/29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx [ ] F(x) f(x) C F(x)

More information

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) ( B 4 4 4 52 4/ 9/ 3/3 6 9.. y = x 2 x x = (, ) (, ) S = 2 = 2 4 4 [, ] 4 4 4 ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, 4 4 4 4 4 k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) 2 2 + ( ) 3 2 + ( 4 4 4 4 4 4 4 4 4 ( (

More information