|
|
|
- めぐの ますはら
- 7 years ago
- Views:
Transcription
2
3 Z Z 0 Z >0 Q, R, C a, b a b a = bc c 0 a b b a b a a, b, c a b b c a c a a 1 a 1.1 ( ). p Z >0 p 1 p 1 p 1 2, 3, 5, 7, 11, 13, 17,... a a a a a Z 1.1. a, b, c b a c a b + c a. b b + c a c = (b + c) b a c a b + c a 1.2. n 2 n. n n n = 2 n n n n 1 n d
4 d < n d n p 1, p 2,..., p k 2 k 1 p 1,..., p k 2 n = p 1 p 2 p k + 1 n 3 p i p 1 p 2 p k p i 1 p i p i n p i 1.2 n p 1,..., p k p 1,..., p k a b c a b c a b c a b c 1.2 ( ). a b gcd(a, b) a = 0 b = 0 gcd(a, b) = 0 a 0 b 0 a b 1 a b 0 gcd(a, b) gcd(a, b) = 1 a b 1.3 ( ). a b lcm(a, b) a = 0 b = 0 lcm(a, b) = 0
5 a 0 b 0 a b ab a lcm(a, b) gcd(a, b) = gcd(b, a) lcm(a, b) = lcm(b, a) 1.3. a b a b r 0 r < b gcd(a, b) = gcd(r, b). a b r b d b d a d r r a b q a = qb + r d b qb d r d a = qb + r d a d r = a qb d 1.3 a, b a > b > 0 a b r gcd(a, b) = gcd(b, r) r = 0 gcd(b, r) = b gcd(a, b) = b gcd(a, b) r 0 gcd(a, b) gcd(b, r) b > r > 0 r a gcd(a, b) a b ca+db = gcd(a, b) c, d cb+dr = gcd(b, r) = gcd(a, b) c, d a = bq + r q Z gcd(a, b) = cb + dr = cb + d(a bq) = da + (c dq)b c a + d b = gcd(a, b) c = d d = c dq r = 0 gcd(a, b) = b 0 a + 1 b = gcd(a, b)
6 c, d 1.2. a, b ca+db = gcd(a, b) c, d a, b m a b m a m b a b (mod m) a m ba m gcd(a, m) b a m ba m 1 b. 1.2 a m ba + cm = gcd(a, m) b, c Z cm m gcd(a, m) = ba + cm m ba 1.2. p 2 1. p 2. a, b p a p b p ab. 1 2 p p a 1 p p a p p a 1 gcd(a, p) = ca + dp = 1 c, d Z b c b + d p = 1 c, d Z (ca + dp)(c b + d p) = 1 (ca + dp)(c b + d p) = cc ab + (cad + dc b + dd p) p
7 cc ab = (cad + dc b + dd p) p p 2 p 1.1 cc ab p ab p a p ab = p b b p p p = ab 2 p a p b p a a p a = p p b b = p ap = p a = 1 p p 1 p n 1. k 0 p 1,..., p k e 1,..., e k e1 e n = p 1 p k k k = 0 1 e1 e n = p 1 p k k n e1 e 2. n = p 1 p k f1 f k n = q 1 q l l n k = l (q 1, f 1 ),..., (q k, f k ) p i = q i e i = f i i = 1,..., k. 1 n n n = 1 n n 2 n n = n 1 n n n a, b n = ab a b
8 e1 e a = p 1 p k k b = p 1 e 1 p k e k n = ab p 1,..., p k, p 1,..., p k q 1,..., q l i = 1,..., l f i q i = p j q i {p 1,..., p k } f i = e j q i = p j q i {p 1,..., p k } f i = e j q i = p j = p j f i = e j + e j n = q 1 f1 q l f l n 2 n n n = 1 n 1 n 2 n = p 1 e1 p k e k n = q 1 f1 q l f l p k n f1 p k q 1 q f l l 1.2 q i p k q i q i p k 2 p k = q i n n = q 1 f1 q l f l i = l e k f l e k f l e k f l n = n/p k e k = n/q l e k n e1 e = p 1 p k 1 f1 f k 1 = q 1 q l 1 f l 1 p l e k k f l e k > 0 p k n p k {p 1,..., p k 1 } p 1,..., p k f l e k = 0 n = p 1 e1 p k 1 e k 1 = q 1 f1 q l 1 f l 1 n n < n 2 n k 1 = l 1
9 k = l (q 1, f 1 ),..., (q k 1, f k 1 ) p j = q j e j = f j j = 1,..., k 1 k = l p k = q k e k = f k 2 n
10 n a, b n a b a n b a n a mod n a n q Z a = qn + (a mod n) a mod n {0, 1,..., n 1} a n (a mod n) n 2.1. n a 1, a 2, b 1, b 2 a 1 n b 1 a 2 n b 2 a 1 + a 2 n b 1 + b 2, a 1 a 2 n b 1 b 2, a 1 a 2 n b 1 b 2. a 1 b 1 = cn c a 2 b 2 = dn d (a 1 + a 2 ) (b 1 + b 2 ) = (a 1 b 1 ) + (a 2 b 2 ) = cn + dn = (c + d)n a 1 + a 2 n b 1 + b 2 (a 1 a 2 ) (b 1 b 2 ) = (a 1 b 1 ) (a 2 b 2 ) = cn dn = (c d)n a 1 a 2 n b 1 b 2 a 1 a 2 b 1 b 2 = a 1 (a 2 b 2 ) + (a 1 b 1 )b 2 = a 1 dn + cnb 2 = (a 1 d + cb 2 )n a 1 a 2 n b 1 b n n n = 7 ( ) mod = ,
11 = = 8 7 1, = 3, 2 6 = , = ( ) mod 7 = n n = mod = (11101) 2 (1) 2 = 1 (11) 2 = 3 (111) 2 = 7 (1110) 2 = 14 (11101) 2 = mod , 7 3 = (7 1 ) = = , 7 7 = (7 3 ) = = , 7 14 = (7 7 ) = , 7 29 = (7 14 ) = = Z/nZ Z/nZ = {a mod n a {0, 1,..., n 1}} 2.1 Z/nZ (a mod n) + (b mod n) = (a + b) mod n, (a mod n) (b mod n) = (a b) mod n, (a mod n) (b mod n) = (a b) mod n Z/nZ Z/nZ Z/nZ a mod n a
12 ( ). G G G a, b G a b G 1. G a, b, c (a b) c = a (b c) G a, b a b = b a G G G G 2. G e G a a e = a e a = a e G G G 3. e G a G a b = e b a = e G b b a 2.2 ( ). R R + 1. R + 0 a a a + ( b) a b 2. R a b a b ab 3. + R a, b, c a (b + c) = (a b) + (a c) (b + c) a = (b a) + (c a) R R R R
13 R \ {0} 1 R R \ {0} R R \ {0} R R R R 0 a = 0 a 0 = 0 Z, Q, R, C 0 1 Z/nZ 0 = 0 mod n n 2 Z/nZ 1 = 1 mod n n = 1 Z/nZ 0 Z ±1 a Z Z a = 0 a 1 Q Z/nZ 1 ( 1 mod n) = n 1 Z/nZ n 2.2. n 2 a Z/nZ a gcd(a, n) = 1. gcd(a, n) = ab n 1 b b b mod n a b n a ab n 1 ab + cn = 1 c Z gcd(a, n) ab cn 1 gcd(a, n) = n p (Z/pZ) = (Z/pZ) \ {0} Z/pZ 0 p Z/pZ Z/pZ F p 2.3 ( ). K K = K \ {0} K
14 F p Q, R, C Z 2.3. R R R R R R. a, b R ab R R R R a, b R R a 1, b 1 (ab) (b 1 a 1 ) = a(bb 1 )a 1 = a 1 a 1 = aa 1 = 1 b 1 a 1 ab ab R R 1 = R 1 R R a R aa 1 = a 1 a = 1 a 1 a a 1 a 1 R a 1 R a a R R 2.4 ( ). G 1, G 2 φ: G 1 G 2 g 1, g 2 G 1 φ(g 1 g 2 ) = φ(g 1 ) φ(g 2 ) φ G 1 G ( ). R 1, R 2 φ: R 1 R 2 r 1, r 2 R 1 φ(r 1 + r 2 ) = φ(r 1 ) + φ(r 2 ) r 1, r 2 R 1 φ(r 1 r 2 ) = φ(r 1 ) φ(r 2 ) 1 R1 1 R2 R 1 R 2 φ(1 R1 ) = 1 R2
15 φ R 1 R 2 m 1,..., m k Z/m i Z a i i = 1,..., k (a 1,..., a k ) Z/m 1 Z Z/m k Z Z/m 1 Z Z/m k Z Z/m 1 Z,..., Z/m k Z Z/m 1 Z Z/m k Z (a 1,..., a k ) + (b 1,..., b k ) = (a 1 + b 1,..., a k + b k ), (a 1,..., a k ) (b 1,..., b k ) = (a 1 b 1,..., a k b k ), (a 1,..., a k ) (b 1,..., b k ) = (a 1 b 1,..., a k b k ) Z/m 1 Z Z/m k Z (0, 0,..., 0) (1, 1,..., 1) 2.1 ( ). m 1,..., m k k 1 2 m = m 1 m k Z/mZ a Z/m 1 Z Z/m k Z (a mod m 1,..., a mod m k ) f 1. f Z/mZ Z/m 1 Z Z/m k Z 2. a Z/mZ f(a) = (a 1,..., a k ) a (Z/mZ) a i (Z/m i Z) i = 1,..., k f (Z/mZ) (Z/m i Z). f well-defined a m a f(a) = f(a ) a a = cm c i a a = cm 1 m i 1 m i+1 m k m i a mi a a mod m i = a mod m i f(a + b) = f(a) + f(b) f(ab) = f(a)f(b) Z/m 1 Z Z/m k Z f(1) = (1, 1,..., 1)
16 f Z/m 1 Z Z/m k Z m 1 m k = m Z/mZ f f 1 f m 1,..., m k i m i m/m i 2.2 m i m/m i c i i a i Z/m i Z a Z/mZ a = (m/m 1 ) c 1 a 1 + (m/m 2 ) c 2 a (m/m k ) c k a k i j i m/m j m i (m/m j ) c j a j mi 0 a mi (m/m i ) c i a i c i Z/m i Z m/m i a mi a i a mod m i = a i f(a) = (a 1,..., a k ) f 1 2 a (Z/mZ) 2.2 a m i a m i 2.2 a m i a i = a mod m i (Z/m i Z) i a i (Z/m i Z) Z/m i Z a i b i 1 f f(b) = (b 1,..., b k ) b Z/mZ f(ab) = f(a)f(b) = (a 1,..., a k ) (b 1,..., b k ) = (a 1 b 1,..., a k b k ) = (1,..., 1) f(1) = (1,..., 1) f(ab) = f(1) 1 f ab = 1 a (Z/mZ) n totient φ(n) φ(n) = (Z/nZ)
17 e1 e 2.2. n = p 1 p k k n e φ(n) = (p 1 1)p 1 1 e 1 (p k 1)p k 1 k. 2.1 φ(n) = (Z/nZ) e = (Z/p 1 1 Z) e (Z/p k k Z) e = φ(p 1 e 1 ) φ(p k k ) n p e 1 p e n n = p e 2.2 φ(p e ) p e a {0, 1,..., p e 1} a a p e a p p e a 1 1/p p e (1 1/p) = p e p e 1 = (p 1)p e 1 φ(p e ) = (p 1)p e 1 n = p e φ 2.3 ( ). G H H G G H G. G a ah ah = {ah G h H} ah bh ah = bh ah bh g g = ah 1 g = bh 2 h 1, h 2 H g = ah 1 = bh 2 a = bh 2 h 1 1 b = ah 1 h 1 2 ah ah h H ah = bh 2 h 1 1 h H G h 2 h 1 1 h H ah bh bh bh h H bh = ah 1 h 1 2 h H G h 1 h 1 2 h H bh ah ah = bh a G ah G G
18 ah G ah ah H G G H ( ). n 2 a n a φ(n) n 1. a a mod n a Z/nZ 2.2 a (Z/nZ) a k k Z (Z/nZ) a a (Z/nZ) a (Z/nZ) a k = a l k 0 l > k (k, l) (Z/nZ) l k = 0 k > 0 (k 1, l 1) a l = a 0 = 1 m a m = a m mod l a = {1 = a 0, a 1,..., a l 1 } l l a = l 2.3 φ(n) = (Z/nZ) a = l a l = 1 a φ(n) = 1 Z/nZ 2.1 ( ). p p a a p 1 p φ(p) = p K G K G G a G a k k Z a G. a G ord(a) = min{k Z >0 a k = 1} a G 2.4 a G a a = ord(a) ord(a) = G a G ord(a) G a
19 ord(a) = G ord(a) < G x ord(a) 1 K ord(a) b ord(a) = 1 K b ord(a) G b ord(a) 1 b G b ord(a) 1 b ord(b) = 1 ord(b) ord(a) ord(a) ord(b) p ord(a) p e ord(b) p f a = a pe b = b ord(b)/pf ord(a ) = ord(a)/p e ord(b ) = p f k = ord(a b ) k 1 (a b ) k = (a ) k (b ) k = 1 (a ) k = (b ) k a b 2.3 a ord(a ) = ord(a)/p e b ord(b ) = p f ord(a)/p e p f a b 1 (a ) k = (b ) k = 1 (b ) k = 1 k ord(a ) = ord(a)/p e ord(b ) = p f ord(a ) ord(b ) k ord(a )ord(b ) = ord(a) p f e ord(a b ) = k ord(a) p f e > ord(a) f > e a, b G a b G ord(a) a G 2.2. K K K K 2.6 ( ). n n a a n b 2 n a b Z n a a 2.7 ( ). p a
20 ( ) a { 1, 0, 1} p ( ) a = p 0 gcd(a, p) 1 1 gcd(a, p) = 1 a p 1 gcd(a, p) = 1 a p e1 e n > 1 n = p 1 p k ( k a n) ( a 0 gcd(a, n) 1 ( ) = e1 ( ) ek a a n) gcd(a, n) = 1 p 1 p k ( ) a 2.1. p a p p a (p 1)/2 p. b F p ord(b) = p 1 F p c c = b k k Z k k c c c = b k ( ) k a a = 1 p a = b 2k k Z p a (p 1)/2 = b (p 1)k = (b p 1 ) k = ( 1 k ) = 1 a 2.1 a = 1 p p a = b 2k+1 k Z a (p 1)/2 = b (p 1)k+(p 1)/2 = (b p 1 ) k b (p 1)/2 = b (p 1)/2 b b (p 1)/2 1 (b (p 1)/2 ) 2 = b p 1 = 1 b (p 1)/2 = 1 a (p 1)/2 = b (p 1)/2 = 1 ( ) ab ( a ) ( ) b 2.5. a, b n > 1 = n n n
21 ab n a b n 0 ab n a b n n = p 1 e1 p k e k n ( ) ( ) e1 ( ) ek ab ab ab = n p 1 p k ( ) ( ) ( ) ab a b i = ab n a b p i p i = 2 p i ( a ) b ( ) ( ) 2 ab a b = 1 = p i p i 2.1 ( ) ( ) ( ) ab pi (ab) (pi 1)/2 = a (pi 1)/2 b (pi 1)/2 pi api bpi p i p i p i p i p i ( ) ( ) ( ) ( ) ab ab pi ±1 = ( ) ( ) p i api bpi p i a b p i p i 2.5 ( ). ( a b 1. a b 1 ) ( ) b a = ( 1) a 1 b a 1 ( ) { 1 1 a = ( 1) a = a 1 a 4 3
22 a 1 ( ) { 2 = ( 1) a2 1 1 a 8 1, 7 8 = a 1 a 8 3, ( ) ( ) ( ) ( ) = = ( 1) (1272 1)/8 ( 1) ( ) ( ) ( ) 13 = 1 ( 1) = ( 1) ( 1) = ( 1) ( ) ( ) ( ) 2 3 = ( 1) = ( 1) ( 1) (132 1)/8 ( 1) ( ) 38 = = ( 1) ( 1) 1 ( ) 1 = 1 1 = 1 3
23 primality test primality certificate primality proof n > 1 2 n 1 n n n n n n 2 n 1 n n n 2
24 ( ). n > 1 1 n n k 3 k k 3. n > 1 n 1 n n n n n 1 n n 2.1 n > 1 n n a a n 1 n 1 a n 1 n 1 a a n
25 ( ). n > 1 1. a 1 n 1 gcd(a, n) gcd(a, n) 1 n 2. a n 1 n 1 n n 2 a n 1 n log 2 n n a n n n n a n n 1 n > 1 n a a n 1 n n 1 R. D. Carmichael: Note on a new number theory function. Bulletin of the American Mathematical Society, vol.16, no.5, pp (1910). doi: /s
26 ( ). n > 1 n 1. n 1 2 n 1 = 2 s d s 1 d 2. a 1 n 1 gcd(a, n) 1 n 3. a d n 1 i = 0, 1,..., s 1 a 2id n 1 n n 3.1. n. n 1 a n 1 gcd(a, n) = 1 a 2sd = (a 2s 1d ) 2 n 1 F n F n a 2s 1d n ±1 3 a 2s 1d n 1 n a 2s 1d n 1 s 1 = 0 n s 1 > 0 a 2s 2d n ±1 i a 2id n 1 a d n 1 n n n n a n 1 n n n n 3/4 n
27 n 2 1/2 n e1 e. n n = p 1 p k k k 2 f : (Z/nZ) e (Z/p 1 1 Z) e (Z/p k k Z) n 1 = 2 s d d ( 1) d n 1 i = 0 b 2id n 1 b (Z/nZ) b 2id n 1 b (Z/nZ) s 1 i n a a d n 1 j = 0, 1,..., i a 2jd n 1 a a 2id n 1 a 2id n 1 A 1 = {b (Z/nZ) b 2id n 1} A 1 = {b (Z/nZ) b 2id n 1} A 1 A 1 1/2 A 1 A 1 b f(b) = (b 1,..., b k ) b 2id n 1 f(b 2id ) = f( 1) = ( 1,..., 1) (b 1,..., b k ) 2id 2 = (b id 2 1,..., b id k ) = ( 1,..., 1) f(c) = (b 1, 1,..., 1) c (Z/nZ) a A 1 f((ac) 2id ) = f(a 2id )f(c 2id ) = f(1) (b 1, 1,..., 1) 2id = ( 1, 1,..., 1) ac A 1 A 1 k = 2 a A 1 f((ac) 2id ) = f(a 2id )f(c 2id ) = f( 1) (b 1, 1,..., 1) 2id = (1, 1,..., 1) ac A 1 A 1 A 1 A 1 a A 1 A 1 ac A 1 A 1 (Z/nZ) /2 (n 1)/2 n a 1/2
28 a a generalized Riemann hypothesis GRH n a n 2 GRH 1976 Miller Rabin GRH 3 Pratt n > 2 a 1. a n 1 n 1 2. p n 1 a (n 1)/p n 1 n. n 1 a n 1 n 1 a (Z/nZ) a φ(n) n 1 n φ(n) < n 1 n a ord(a) n 1 ord(a) < n 1 n 1 p ord(a) (n 1)/p a (n 1)/p n n 2 G. L. Miller: Riemann s Hypothesis and Tests for Primality. Journal of Computer and System Sciences, vol.13, no.3, pp (1976). doi: / M. O. Rabin: Probabilistic algorithm for testing primality. Journal of Number Theory, vol.12, no.1, pp (1980). doi: / x(80) V. Pratt: Every prime has a succinct certificate. SIAM Journal on Computing, vol.4, pp (1975)
29 e1 e n 1 n 1 = p 1 p k k p 1,..., p k a n 1 n 1 i a (n 1)/pi n 1 a n 1 n
30 Agrawal, Kayal, Saxena AKS AKS AKS n n AKS AKS 4 (X + a) n X r 0 1,n X n + a Z/nZ X r (AKS ). n > 1 1. n a k a > 0 k 2 n 2. r = 2, 3,..., n 1 (a) gcd(r, n) > 1 n (b) i = 1, 2,..., (log 2 n) 2 n i r 1 r r 0 3. r 0 n 5 M. Agrawal, N. Kayal, N. Saxena: PRIMES Is in P. Annals of Mathematics, vol.160, pp (2004)
31 a = 1, 2,..., φ(r 0 ) log 2 n (X + a) n X r 0 1,n X n + a n 5. n 1 n = a k n O((log n) 3 poly(log log n)) 2(a) gcd(r, n) > 1 r < n 1 < gcd(r, n) < n n 3 r 0 r = 2, 3,..., n 1 gcd(r, n) = 1 n 4 ( ) ( n n (X + a) n = X n + ax n ) a 2 X n ( ) n a n 1 X + a n n 1 n ( ) ( n 1,..., n n 1) n a n n a Z/nZ (X +a) n = X n + a (X + a) n X r 0 1,n X n + a a (X + a) n X r 0 1,n X n + a n n n X r 0 1
32 r 0 r 0 φ(r 0 ) r 0 r 0 r 0 φ(r 0 ) r 0 2 r 0 4 n n 4.1. n > (log 2 n) r (log 2 n) 5 r 2(a) n 2(b) r 0. B = (log 2 n) 5 n 2 B d r 0 r d 2(a) n n 2 B r 2(a) r 0 2 r B r n i 1 i (log 2 n) 2 (log 2 n) 2 P = (n i 1) P 2 B i=1 P < (log 2 n) 2 i=1 n (log 2 n)2 n (log 2 n)4 = 2 (log 2 n)5 2 B lcm(2,..., B) P < 2 B [Nai] 6 m 7 lcm(2,..., m) 2 B n > (log 2 n) M. Nair: On Chebyshev-Type Inequalities for Primes. Amer. Math. Monthly, vol.89, pp (1982)
33 n > 2 B (log 2 3) 5 (log 2 2 2) 5 = (3/2) 5 = 243/32 > 7 2 n r 4.1 r (log 2 n) 5 4 n r 0 n (Z/r 0 Z) ord(n) (log 2 n) 2 n p p (Z/r 0 Z) ord(p) > 1 p 2(a) p > r (introspective). f(x) m > 0 m f(x) introspective f(x) m X r 0 1,p f(x m ) m m f(x) introspective mm f(x) introspective 2. m f(x) g(x) introspective m f(x)g(x) introspective. 1 m introspective f(x) mm X r 0 1,p f(x m ) m m introspective f(x) m X r 0 1,p f(x m ) X X m f(x m ) m X mr 0 1,p f(x mm ) X r 0 1 X mr 0 1 f(x m ) m X r 0 1,p f(x mm ) f(x) mm X r 0 1,p f(x mm )
34 mm f(x) introspective 2 m f(x) g(x) introspective (f(x)g(x)) m = f(x) m g(x) m X r 0 1,p f(x m )g(x m ) m f(x)g(x) introspective l = φ(r 0 ) log 2 n a l n, p, n/p X + a introspective. 4 (X + a) n X r 0 1,n X n + a p n (X + a) n X r 0 1,p X n + a n X + a introspective p (X + a) p p X p + a (X + a) p X r 0 1,p X p + a p X + a introspective n/p c i = ( ) n/p i a n/p i (X + a) n/p = X n/p + n/p 1 i=0 c i X i (X + a) p X r 0 1,p X p + a (X + a) n = ((X + a) p ) n/p X r 0 1,p (X p + a) n/p = X n + n/p 1 (X + a) n X r 0 1,p X n + a X n + n/p 1 i=0 n/p 1 i=0 c i X pi X r 0 1,p X n + a c i X pi X r 0 1,p a 0 j r i<n/p pi mod r 0 =j c i p { a j = 0 0 j > 0 i=0 c i X pi
35 p (Z/r 0 Z) r 0 p p pi mod r 0 = j i mod r 0 = p j mod r 0 j = 0 p j mod r 0 = 0 0 j r 0 1 c i p 0 i<n/p i mod r 0 =j (X + a) n/p = X n/p + { a j = 0 0 j > 0 n/p 1 i=0 c i X i X r 0 1,p X n/p + a n/p X + a introspective I = {(n/p) i p j i, j Z 0 } P = { l a=0 (X + a)ea e 0,..., e l Z 0 } G = {m mod r 0 m I} n p r 0 G (Z/r 0 Z) G g G r 0 g φ(r 0) = 1 g G G (Z/r 0 Z) n = (n/p) p I ord(n) > (log 2 n) 2 G > (log 2 n) 2 d 1 Φ d (X) Φ 1 (X) = X 1, Φ d (X) = X d 1 d d, d d Φ d (X) Φ d (X) Φ d (X) F p 4.2. F p Φ r0 (X) ord(p) h(x) h(x) F = F p [X]/(h(X)) F F p m 1, m 2 m 1 r0 m 2 F X m1 X m 2
36 F p ord(p) K 2.2 K x K = p ord(p) 1 ord(p) p ord(p) r0 1 r 0 K y = x K /r 0 y r 0 1 y 1 r 0 y r 0 = 1 y X r 0 1 d r 0 1 d < r 0 Φ d (X) X d 1 y 1 r 0 y d 1 y Φ d (X) y Φ r0 (X) y F p h(x) h(x) y Φ r0 (X) h(x) Φ r0 (X) y F p ord(p) h(x) ord(p) h(x) ord(p) d y F p d p d 1 y r 0 r 0 p d 1 p d r0 1 d < ord(p) h(x) ord(p) K = F p (y) F = F p [X]/(h(X)) X y F K F p y X F 1 r 0 m 1, m 2 m 1 r0 m 2 F X m1 X m 2 h(x) F 4.2 P F F G ord(p) > 1 p X, X + 1,..., X + l F 0 G F F G 4.3. G ( G +l G 1). f(x), g(x) P G f(x) p g(x) F f(x) g(x) F f(x) = g(x) m I F f(x) m = g(x) m m p, n/p f(x) g(x) X, X + 1,..., X + l m
37 f(x) g(x) introspective f(x) m X r 0 1,p f(x m ) g(x) m X r 0 1,p g(x m ) 4.2 h(x) F p Φ r0 (X) X r 0 1 f(x) m h(x),p f(x m ) g(x) m h(x),p g(x m ) F f(x) m = f(x m ) g(x) m = g(x m ) F f(x m ) = g(x m ) Q(Y ) = f(y ) g(y ) mod p m I X m F Q(Y ) 4.2 m mod r 0 X m F G m X m F Q(Y ) Q(Y ) G f(y ) g(y ) G f(y ) p g(y ) Q(Y ) G F f(x) g(x) l = φ(r 0 ) log 2 n < r 0 log 2 n r 0 > ord(n) > (log 2 n) 2 r 0 > log 2 n l < r 0 r 0 < p l < p X, X +1,..., X +l F p 1, X, X +1,..., X +l G 1 ( ) ( ( G 1)+(l+2 1) l+2 1 = G +l ) ( l+1 = G +l ) G 1 F p G G ( G +l G 1) 4.4. n p G n G. n p i, j G (n/p) i p j I ( G + 1) 2 > ( G ) 2 = G G r 0 I m 1 > m 2 m 1 r0 m 2 X m 1 X r 0 1 X m 2 f(x) P m 1, m 2 I f(x) introspective f(x) m 1 X r 0 1,p f(x m 1 ) X r 0 1,p f(x m 2 ) X r 0 1,p f(x) m 2 h(x) X r 0 f(x) m 1 1 F = f(x) m 2 f(x) G F Y m 1 Y m 2 Y m 1 Y m 2 G
38 m 1 (n/p) G p G = n G G n G n p n G G ( ) G + l G 1 G > (log 2 n) 2 G > G log 2 n G 1 G log 2 n G (Z/r 0 Z) = φ(r 0 ) l = φ(r 0 ) log 2 n G log 2 n G > (log 2 n) 2 G log 2 n > (log 2 n) 2 1 ( ) G + l G 1 ( ) l G log2 n G log 2 n ( ) 2 G log2 n + 1 G log 2 n = 2 G log 2 n + 1 G log 2 n G log 2 n > = 2 G log 2 n 1 4 = 2 G log 2 n +1 > 2 G log2 n = n G n G G ( ) G + l > n G G 1 ( G log 2 n + 2) n p 1 2 n = p n 4 5 n
39 ( ). Gen(1 λ ) λ pk sk λ 1 λ 1 λ pk M C sk pk Enc(m, pk) m M pk c C c [[m]] Dec(c, sk) c C sk m M (pk, sk) Gen(1 λ ) m M Dec(Enc(m, pk), sk) = m RSA 7 7 R. Rivest, A. Shamir, L. Adleman: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM, vol.21, no.2, pp (1978)
40 λ λ p q N = pq φ(n) e φ(n) d (N, e) d M = (Z/NZ) C = M m (Z/NZ) c = m e (Z/NZ) c (Z/NZ) m = c d (Z/NZ) RSA d ed φ(n) 1 m (Z/NZ) m ed 1 N 1 m ed N m m c = m e c d N m m m RSA c = [[m]] pk m RSA RSA N N p q φ(n) = (p 1)(q 1) e φ(n) φ(n) e d RSA N
41 RSA RSA RSA RSA c m c m c RSA RSA RSA Goldwasser Micali 8 λ p q ( ) x N = pq N x = ( ) p x = 1 (N, x) (p, q) q M = F 2 C = (Z/NZ) m F 2 m 0 1 (Z/NZ) y c = y 2 x m (Z/NZ) ( ) c c (Z/NZ) m = 1 p 8 S. Goldwasser, S. Micali. Probabilistic Encryption and How to Play Mental Poker Keeping Secret All Partial Information. In: Proceedings of STOC 1982, pp (1982)
42 ( ) c m = 0 = 1 m = 1 p Goldwasser Micali x y 2.5 ( ) c = p ( y p ) 2 ( ) { m x 1 m = 0 = ( 1) m = p 1 m = 1 RSA semantic ( security a ) = 1 a N N N Goldwasser Micali m, m c, c (Z/NZ) cc m + m c = y 2 x m c = y 2 x m cc = (yy ) 2 x m+m m = m = 1 (yy x) 2 x 0 Goldwasser Micali Paillier
43 λ p q N = pq p 1 q 1 µ N µ M = Z/NZ C = (Z/N 2 Z) m Z/NZ m 0 N 1 N 1 N 1 r c = (1 + N) m r N (Z/N 2 Z) c (Z/N 2 Z) c µ (Z/N 2 Z) c c µ 0 N 2 1 c µ 1 N c µ 1 N 0 N 1 Z/NZ Z/NZ µ Paillier (Z/N 2 Z) (Z/p 2 Z) (Z/q 2 Z) φ(p 2 ) = p(p 1) (Z/p 2 Z) p(p 1) φ(q 2 ) = q(q 1) (Z/q 2 Z) q(q 1) µ p 1 q 1 (Z/N 2 Z) pqµ = Nµ c = (1 + N) m r N r Nµ N 2 1 c µ N 2 (1 + N) mµ (1 + N) mµ (mµ)(mµ 1) = 1 + (mµ)n + N N mµ N (mµ)n 2 c µ N (mµ)n c µ 1 N c µ 1 N mµ Z/NZ µ m Z/NZ 9 P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Proceedings of EUROCRYPT 1999, pp (1999)
44 Paillier c = (1 + N) m r N c = (1 + N) m r N cc = (1 + N) m+m (rr ) N m + m Paillier N
45 Pollard p 1 10 N N Pollard p N 1 a gcd(a, N) gcd(a, N) > 1 gcd(a, N) N 1 N gcd(a, N) 2. M gcd(a M 1, N) 1 < gcd(a M 1, N) < N gcd(a M 1, N) N gcd(a M 1, N) a M Pollard p 1 N N 6.1. p N M p 1 p gcd(a M 1, N). a p 1 p 1 M p 1 a M p 1 a M 1 p N p p gcd(a M 1, N) N p p 1 M 6.1 gcd(a M 1, N) > 1 N q q 1 M 10 J. M. Pollard. Theorems on Factorization and Primality Testing. Proc. Cambridge Phil. Soc., vol.76, pp (1974)
46 M a gcd(a M 1, N) < N N N p p 1 M M N M N p 1 M M M M M M B M B M = B! M p 1 M p 1 smooth Pollard p 1 p 1 smooth N p N p p 1 smooth 6.1. M = 10! = N = a = 2 Pollard p 1 N a M = 2 M M = ( ) 2
47 M mod N a M N a M 1 N gcd(a M 1, N) ( , ) (678565, ) (653344, 25221) (25221, 22819) (22819, 2402) (2402, 1201) (1201, 0) gcd(a M 1, N) = 1201 N = N = Pollard p 1 p = 1201 p 1 = 1200 M = 10! N = M a
48 M mod N a M N a M 1 N gcd(a M 1, N) ( , ) ( , ) (114559, 96692) (96692, 17867) (17867, 7357) (7357, 3153) (3153, 1051) (1051, 0) gcd(a M 1, N) = 1051 N = N = Pollard p 1 p = 1051 p 1 = 1050 M = 10! M a N Pollard p 1
49 Pollard p 1 p 1 smooth p N Pollard p 1 11 K K 2 3 K ( ). A, B K 16(4A B 2 ) 0 E : y 2 = x 3 + Ax + B K 7.1. K = F 11 A = 3 B = 2 K 16(4A B 2 ) = E : y 2 = x 3 + 3x + 2 K E 7.2 ( ). E : y 2 = x 3 + Ax + B K E K (a, b) O E K K- E K E(K) E K Mordell Weil E(K) = {(a, b) K 2 b 2 = a 3 + Aa + B} {O} 11 H. W. Lenstra Jr. Factoring Integers with Elliptic Curves. Annals of Mathematics, vol.126, no.3, pp (1987)
50 E a K = F 11 E K 1 2 b 2 b K 3 E(K) 12 (a, b) O 13 1: 7.1 (a, b) a a 3 + 3a b 4, 7 4, 7 1, 10 4, 7 5, 6 3, 8 E(K) E(K) 7.3 ( ). E K P Q E K- P + Q E(K) P = O P + Q = Q Q = O P + Q = P P, Q O P = (a, b) Q = (a, b) P + Q = O P, Q O P = (a 1, b 1 ) Q = (a 2, b 2 ) a 1 a 2 λ = b 2 b 1 a 2 a 1 P + Q = (a 3, b 3 ) a 3 = λ 2 a 1 a 2, b 3 = λ(a 3 a 1 ) b 1 P, Q O P = Q = (a, b) b 0 µ = 3a2 + A 2b P + Q = (a, b ) a = µ 2 2a, b = µ(a a) b
51 P, Q P Q P Q P = Q P E E P Q x P + Q y E x P + Q E P + Q = Q + P O + P = O P + O = O O E E(K) + (P + Q) + R = P + (Q + R) E(K) O E(K) E : y 2 = x 3 + 3x + 2 K = F 11 K- 7.2 P = (2, 4) Q = (3, 4) R = (4, 1) (P + Q) + R K K = 0 P + Q = (6, 7) = 3 (P + Q) + R = (10, 3) P + (Q + R) K = 8 Q + R = (2, 4) = P K = 6 P + (Q + R) = (10, 3) 2 4 (P + Q) + R = P + (Q + R)
52 N p q N = pq p > 3 q > 3 N E : y 2 = x 3 + Ax + B P = (a, b) gcd( 16(4A B 2 ), N) = 1 b 2 N a 3 + Aa + B (a, b) E E p q F p F q E p E q P p q P p P q P p E p (F p ) P q E q (F q ) Z/NZ P Z/NZ E M P M Z/NZ 0 c c N c N gcd(c, N) N N M P p q p 2 Q = (a 1, b 1 ) R = (a 2, b 2 ) Q p + R p = O a 1 a 2 p Q + R a 2 a 1 N N E P M M P p E p (F p ) E p (F p ) M (M P ) p = O p E E p (F p ) Pollard p 1 M E
53 E p (F p ) smooth M N N N 7.4. N = 77 E : y 2 = x 3 + 3x + 2 P = (2, 4) P E Z/NZ N M = 13 N E 11 (F 11 ) 13 M = (1101) 2 Z/77Z P P + P = 2P = (32, 36), 2P + P = 3P = (26, 32), 3P + 3P = 6P = (40, 17), 6P + 6P = 12P = (68, 18) 12P + P = 13P λ λ = = = 7 33 gcd(33, N) = 11 N = 77 11
54 Pollard 1988 Pollard F 9 = N > 0 x, y x 2 N y 2 x N ±y x 2 y 2 = (x y)(x + y) N x y x + y N gcd(x ± y, N) N f(x) Q α f(α) = 0 m f(m) N 0 m 12 A. K. Lenstra, H. W. Lenstra Jr., M. S. Manasse, J. M. Pollard. The Number Field Sieve. In: Proceedings of STOC 1990, pp (1990) /2149
55 C C Q α Q(α) Q(α) 8.1 ( ). K F (x) G(x) K F (x) G(x) gcd(f (x), G(x)) F = 0 G = 0 gcd(f, G) = 0 F 0 G 0 F G K 1 gcd(f, G) 8.1. K F (x) G(x) K A(x)F (x) + B(x)G(x) = gcd(f, G) K A(x) B(x). F = 0 G = 0 F 0 G 0 F deg F G deg G F = GQ + R R 0 deg R < deg G Q R R 0 G G R R 0 F G deg(f, G) G c 1 deg(f, G) = 0 F + c G F G A B 8.1. K F (x) 0 K K G(x) F (x) H(x)G(x) 1 F (x) K H(x) H(x) F (x) G(x). F (x) gcd(f (x), G(x)) 1 F (x) G(x) F (x)
56 gcd(f (x), G(x)) = K H(x) A(x) AF + HG = 1 HG 1 = AF F 8.2. α f(x) f(x) d Q(α) = {a d 1 α d a 1 α + a 0 a 0, a 1,..., a d 1 Q}. K Q α C K K K 0 d 1 g(x) g(α) K K K g(x)h(x) f(x) r(x) f(α) = 0 g(α)h(α) = r(α) K K K 0 g(α) g(α) 0 g(x) f(x) 8.1 f(x) g(x) h(x) h(x)g(x) 1 f(x) h(α)g(α) 1 = 0 h(α)g(α) = 1 h(α) K g(α) K Q(α) = K 8.2 C Z α Z[α] Z[α] = {a d 1 α d a 1 α + a 0 a 0, a 1,..., a d 1 Z} d f(x) φ: Z[α] Z/NZ φ(a d 1 α d a 1 α + a 0 ) = a d 1 m d a 1 m + a 0 mod N f(m) N ( ). R
57 R 0 r 1, r 2 r 1 r 2 0 R 2. a, b R ac = b c R b a a b 3. R p R \ R R a, b p ab p a p b p R 4. R R 0 r c R 0 p 1,..., p k R r = cp 1 p k R r = cp 1 p k r 1. Q(α) Z[α] 2. Z[α] Z[α] x Z/NZ φ(x) x φ Z/NZ x Z[α] φ Z/NZ φ(x) x, y 8.1. N = 2117 f(x) f(x) = x m = 46 f(m) = N f(m) N 0 α = 1 C f(α) = 0 α Z[α] = Z[ 1]
58 a + bα a, b Z Z[α] φ(a + bα) = a + bm mod N β 1 = 1 + α, β 2 = 1 + 2α, β 3 = 2 + 3α, β 4 = 2 + α, β 5 = 3 + α, β 6 = 3 + 4α, β 7 = 5 + α, β 8 = 7 + α, β 9 = α Z[α] π 1 = 1 + α, π 2 = 1 + 2α, π 3 = 2 + α, π 4 = 2 + 3α α 2 = 1 β 1 = α π 1 β 2 = α π 3 β 3 = π 4 β 4 = α π 2 β 5 = α 3 π 1 π 2 2 β 6 = π 3 β 7 = α 3 π 1 π 4 2 β 8 = π 1 π 2 3 β 9 = α π 3 α 4 = 1 β 1 β 9 = α 10 π 4 1 π 4 2 π 6 3 π 2 4 = (απ 2 1 π 2 2 π 3 3 π 4 ) 2 Z/NZ φ(β 1 β 9 ) = ( φ(α)φ(π 1 ) 2 φ(π 2 ) 2 φ(π 3 ) 3 φ(π 4 ) ) 2
59 φ(β 1 ) = 45 = φ(β 2 ) = 91 = 7 13 φ(β 3 ) = 140 = φ(β 4 ) = 44 = φ(β 5 ) = 49 = 7 2 φ(β 6 ) = 187 = φ(β 7 ) = 51 = 3 17 φ(β 8 ) = 39 = 3 13 φ(β 9 ) = 81 = 3 4 φ(β 1 β 9 ) = φ(β 1 ) φ(β 9 ) = = ( ) 2 ( ( ) 2 N φ(α)φ(π1 ) 2 φ(π 2 ) 2 φ(π 3 ) 3 φ(π 4 ) ) 2 x = , y = φ(α)φ(π 1 ) 2 φ(π 2 ) 2 φ(π 3 ) 3 φ(π 4 ) x = , y = = x 2 N y 2 x N ±y gcd(x + y, N) = gcd( , 2117) = 29 N 29 N = 29 73
60 β 1 β 2 Z[α] φ(β 1 )φ(β 2 ) β 1, β 2, Z[α] φ(β i ) β i Z[α] a + bα a b
( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................
76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(
3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(
15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x
A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y
2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................
AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id
1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi
2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp
200 Miller-Rabin 2002 3 Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor 996 2 RSA RSA Solovay-Strassen Miller-Rabin [3, pp. 8 84] Rabin-Solovay-Strassen 2 Miller-Rabin 3 4 Miller-Rabin 5 Miller-Rabin
1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C
0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,
1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.
1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,
2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.
() 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2
0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4
0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)
Block cipher
18 12 9 1 2 1.1............................... 2 1.2.................. 2 1.3................................. 4 1.4 Block cipher............................. 4 1.5 Stream cipher............................
Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F
Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)
16 B
16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..
II Time-stamp: <05/09/30 17:14:06 waki> ii
II [email protected] 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University
ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:[email protected] 0 0 1 1.1 G G1 G a, b,
2014 (2014/04/01)
2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................
2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =
I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x
I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]
1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +
ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8
ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2
[I486S] 暗号プロトコル理論
[I486S] 2018 5 1 (JAIST) 2018 5 1 1 / 22 : I486S I URL:https://wwwjaistacjp/~fujisaki/i486S (Tuesdays) 5 17:10 18:50 4/17, 4/24, 5/1, 5/15, 5/22, 5/29, 6/5, 6/19, 6/26, 7/3, 7/10, 7/17, 7/24, 7/31 (JAIST)
koji07-01.dvi
2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?
) 9 81
4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2
IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a
1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =
A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)
7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =
II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3
II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )
2000年度『数学展望 I』講義録
2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53
DVIOUT
A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
mahoro/2011autumn/crypto/
http://www.ss.u-tokai.ac.jp/ mahoro/2011autumn/crypto/ 1 1 2011.9.29, ( ) http://www.ss.u-tokai.ac.jp/ mahoro/2011autumn/crypto/ 1.1 1.1.1 DES MISTY AES 1.1.2 RSA ElGamal 2 1 1.2 1.2.1 1.2.2 1.3 Mathematica
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります
6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P
6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P
13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x
数学Ⅱ演習(足助・09夏)
II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w
15 2 1 4 1.1........................... 4 1.2.............................. 4 1.3.............................. 5 2 5 2.1....................................... 5 2.2 Fermat....................................
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1
1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q
3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................
VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W
3 30 5 VI VI. W,..., W r V W,..., W r W + + W r = {v + + v r v W ( r)} V = W + + W r V W,..., W r V W,..., W r V = W W r () V = W W r () W (W + + W + W + + W r ) = {0} () dm V = dm W + + dm W r VI. f n
000 001
all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic
I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google
I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59
入試の軌跡
4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf
r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B
1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n
HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】
B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01
x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R
V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x
0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,
[ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =
取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ
B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00
数理解析研究所講究録 第1955巻
1955 2015 158-167 158 Miller-Rabin IZUMI MIYAMOTO $*$ 1 Miller-Rabin base base base 2 2 $arrow$ $arrow$ $arrow$ R $SA$ $n$ [email protected] $\mathbb{z}$ : ECPP( ) AKS 159 Adleman-(Pomerance)-Rumely
1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D
1W II K200 : October 6, 2004 Version : 1.2, [email protected], http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, [email protected] TA Talor Jacobian 4 45 25 30 20 K2-1W04-00
2014 x n 1 : : :
2014 x n 1 : : 2015 1 30 : 5510113 1 x n 1 n x 2 1 = (x 1)(x+1) x 3 1 = (x 1)(x 2 +x+1) x 4 1 = (x 1)(x + 1)(x 2 + 1) x 5 1 = (x 1)(x 4 + x 3 + x 2 + x + 1) 1, 1,0 n = 105 2 1 n x n 1 Maple 1, 1,0 n 2
空き容量一覧表(154kV以上)
1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため
.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(
06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,
2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし
1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)
i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35
6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4
35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m
018 8 17 4 1 5 1.1.......................................... 5 1.1.1.................................. 5 1.1................................... 7 1............................................ 7 1..1...................................
iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................
..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A
.. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.
高校生の就職への数学II
II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................
1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2
1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac
No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y
No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ
FinePix F50fd 使用説明書
http://fujifilm.jp/ BL00629-101(1) NP-50 ab a 2 25 aon 64 b 37 33 90 85 85 98 3 4 B G B H,. /
( )
NAIST-IS-MT0851100 2010 2 4 ( ) CR CR CR 1980 90 CR Kerberos SSH CR CR CR CR CR CR,,, ID, NAIST-IS- MT0851100, 2010 2 4. i On the Key Management Policy of Challenge Response Authentication Schemes Toshiya
HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語
A B C D E F G H I 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 K L J Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C RS-232C RS-232C Cable (cross) LAN cable (CAT-5 or greater) LAN LAN LAN LAN RS-232C BE
