Size: px
Start display at page:

Download ""

Transcription

1 2008 (2008/09/30)

2

3 1 ISBN ISBN ISBN RSA (1) (2) (Solovay Strassen )

4

5 10,000 1,000,000 (code) (cryptography) 5

6

7 Chapter 1 ISBN ISBN (International Standard Book Number, ) ( ) ISBN ISBN ISBN 10 ( ) 9 04S1099Z ISBN 1.1 ISBN ISBN 10 9 ISBN ?? = ISBN ? ? ? X ISBN 10 X 7

8 8 CHAPTER 1. ISBN 1.2 ISBN ISBN a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 1,, a a ( X 10 ) ( 9 1=1 ia i ) 11 =? a 10? 9 ia i a 10 1= a ia i + 10 a 10 = ia i 1=1 11 n a, b n a b (mod n) a b n a b (mod n) l a = b + nl a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 ISBN 10 ia i 0 (mod 11) 1=1 4797a ( 5 ) a 5 5a a (mod 11) 1=1

9 a 5 4 (mod 11) 5 a a = 15 4 (mod 11) a 5 = ISBN 123? ?890? 1.3 ISBN ax b (mod 11) x x x 1 (mod 10). x 0, 1, 2, 3, (mod 10) (mod 10) (mod 10) x = 7, 17, 27, l x = l 3 (7 + 10l) = l 1 (mod 10) ax b (mod n) x 0 x 1 x 0 (mod n) x 1. x 1 x 0 (mod n) l x 1 = x 0 + ln ax 1 = a(x 0 + nl) = ax 0 + anl ax 0 b (mod n)

10 10 CHAPTER 1. ISBN n 0 n 1 0 n 1 (n ) x 1 (mod 9) (9 ) x 4 (mod 6), 2x 1 (mod 6) (mod 6) (mod 6) (mod 6) (mod 6) (mod 6) (mod 6) 2x 4 (mod 6) x = 2, 5 2x 1 (mod 6) ISBN ax b (mod n) ax + ny = b x, y a, b d a b x, y ax + by = d ( x, y ) a b (greatest common divisor) gcd(a, b) m d = gcd(a, b) m = dl ax 0 + by 0 = d x 0, y 0 a(x 0 l) + b(y 0 l) = dl = m ax + by = m x = x 0 l, y = y 0 l m d ax + by = m d d x, y

11 a, b d = gcd(a, b) ax + by = m x, y d m ax b (mod n) gcd(a, n) b ax b (mod n) d = gcd(a, n) d 1 a = a o d, n = n 0 d 0 < n 0 < n x 0 ax b (mod n) a(x 0 + n 0 ) = ax 0 + a 0 dn 0 = ax 0 + a 0 n ax 0 b (mod n) x = x 0 + n 0 0 < n 0 < n x 0 + n 0 x 0 (mod n) d = gcd(a, n) = 1 x 0, x 1 ax b (mod n) ax 0 b (mod n), ax 1 b (mod n) a(x 0 x 1 ) 0 (mod n) a(x 0 x 1 ) n a n x 0 x 1 n x 0 x 1 (mod n) ax b (mod n) n ax b (mod n) gcd(a, n) = 1 n a 0 (mod n) ax b (mod n) x + 9y = 1 x, y x + 6y = 4 x, y x + 6y = 1 x, y ISBN 11 ISBN = = ax b (mod n) a, b, n

12 12 CHAPTER 1. ISBN 1.4 ISBN ISBN ISBN ISBN ISBN ISBN X ISBN ( ISBN ISBN X 10 1 ISBN ISBN ) ISBN ( ) ISBN

13 Chapter 2 ISBN ( ) (Hamming code) F 2 = {0, 1} 0 1 F 2 F = 0, = 1, = 1, = = 0, 0 1 = 0, 1 0 = 0, 1 1 = = =, + =, + =, + = =, =, =, = 2 = = 0 a + a = 2a = 0 a = 0 a = a

14 14 CHAPTER 2. F 2 2 n n {0, 1,, n 1} ax b (mod n) ( a ) n n ax 1 (mod n) c c 1 a c a p F p = {0, 1,, p 1} p F 2 p 2 ( ) p n n ( ), ( ) + ( ) = ( ) ( ) ( ) ( 1) = 7 u, v (u, v) (u, v) = (v, u) (u, v) = 0 u v O xy- A(a, b), B(c, d) OA OB ( ) (a b) (c d)

15 (u, v + w) = (u, v) + (u, w) ( (u, v) = (u, w) = 0 (u, v + w) = 0 ) m n m n 2 3 ( 1 2 ) i j (i, j)- 0 0 m n A A t A t A n m (i, j)- A (j, i)- m n l m M m n N MN l n (i, j) M i N j ( ) ( ) ( ) = ( ( ) n 1 n n n 1 m n n (n 1 ) m (m 1 ) F 2 )

16 16 CHAPTER F 2 ( ) : (AB)C = A(BC) : (A + B)C = AC + BC, A(B + C) = AB + AC n n 1, 0 n I n l n M, n m N MI n = M, I n N = N 2.2 ( ) 1 4 ( ) 7 7 F 2 G, H G = H = G H F ( R. W. Hamming, ,

17 ) v = ( ) vg ( ) = ( ) ( 4 ) 3 ( ) ( ) H = = = 3 3 ( ) 3 ( ) ( 4 ) ( ) v vg G, H G, H 1. H 1 7 2

18 18 CHAPTER 2. H H = G ( ) vg 4 v 4 H G H G G 1 (1000abc) H a + b + c = 0 b + c = a + c = 0 (a, b, c) = (0, 1, 1) G G H v ( ) = ( ) G 1 v = ( ) vg G 1 3 ( ) = ( ) = ( ) + ( ) vg H H G 0

19 = = w (7 ) i e i i w + e i (F ) w Hw = 0 H(w + e i ) = Hw + He i = He i H e i H i F 2 x + y + z = 6 (1) 2x + 3y + 4z = 20 (2) 3x + 2y + 3z = 16 (3) x = y = z =

20 20 CHAPTER 2. x + y + z = 6 (1) = (1) y + 2z = 8 (2) = (2) (1) 2 y = 2 (3) = (3) (1) 3 x + y + z = 6 (1) = (1) y + 2z = 8 (2) = (2) + 2z = 6 (3) = (3) + (2) x + y + z = 6 (1) = (1) y + 2z = 8 (2) = (2) z = 3 (3) = (3) (1/2) x = 1 (1) (2) (3) y = 2 (2) (3) 3 z = 3 x = 1, y = 2, z = 3 (1) (0 ) (2) (3) ( )

21 (1) (0 ) (2) (3) ( ) { x z = 2 y + 2z = 8 (x, y, z) = ( 2, 8, 0), ( 3, 10, 1) = (1)

22 22 CHAPTER (2) (3) ( ) Step (1) Step 2. a 1/a 1 Step 3. (i, j) (i, j) a 0 i i a (i, j) 0

23 Step 1, 2, 3 (1), (2), (3) ( ) x 1,, x n b b b n (x 1,, x n ) = (b 1,, b n ) ( ) 0 = x 3 x 5 x 3 = s x 5 = t 1 x 1 + x 3 + x 5 = 2 x 3 = s x 5 = t x 1 = s t + 2

24 24 CHAPTER 2. x 1 = s t + 2 x 2 = 2s 2t x 3 = s (s, t ) x 4 = 3t + 3 x 5 = t s, t ( ). x + y + z = 3 x y + z = 1 x + z = x y z = s x = 2 s y = 1 z = s x y = z s ( ) x + y + z = 0 x y + z = 0 x + z = 0 x y z = 0 0 0,, x = s y = 0 z = s x y z = s 1 0 1

25 x + y + z = 4 (1) 2x + y + z = 6 x y + 2z = 3 (3) (5) x + y + z = 3 x + y + 2z = 6 x + y + z = 3 x + y + 2z + 2u = 2 2x + y + z + 2u = 4 x + 2y + 5z + 5u = 6 (2) (4) (6) x + y + z = 3 x + y + 2z = 6 x y + z = 2 { x + 2y + 3z = 4 2x + 3y + 4z = 5 x + 2y + z = 0 2x 3y 3z = 0 3x + y + 2z = 0 4x + y z = F 2 x + y + z = 1 x + y = 1 (1) x + y = 0 (2) x + z = 1 x + z = 0 y + z = 1 R n ( ) n R n F 2 F 2 n F 2 n F 2 R n ( ) a v = (v 1 v n ) av = (av 1 av n ) R n V R n (1) v, w V v + w V (2) v V a av V v 1,, v r n r i=1 a iv i (a i ) R n v 1,, v r r i=1 a iv i (a i ) R n v 1,, v r V v r = 0 V v 1,, v r 1 V V V V V V = R n R n e i i 1 0 e 1,, e n V V n

26 26 CHAPTER 2. v 1,, v r V v 1,, v r r n M M M M V M M 0 V V M ( 0 r ) v 1 = (1 1 0), v 2 = (1 0 1), v 3 = (2 1 1) (1 0 1), (0 1 1) 2 ( v 1, v 2 ) v 1 = (1 2 3), v 2 = (4 5 6), v 3 = (7 8 9) F 2 v 1 = (1 1 0), v 2 = (1 0 1), v 3 = (0 1 1) ( ). x 1 x 2. = s 1 + s s m a 11 a 12. a 21 a 22. a m1 a m2. x n a 1n a 2n a mn s 1, s 2,, s m R n r m n r m = n r V R n V V V V R n

27 V ( ) V ( ) V r V r n M w V w n Mw = 0 V M x 1. x n = 0 n r (1 1 1) R 3 V V ( ) F 2 4 V V 2.5 k n (n, k) (n, k) H 1. H (n k) n n k H n k H V H n k V F 2 n n k C = V ( C ) C k 2. G k n C (k ) v vg G vg C H vg H 0 0 (vg ) w i 1 0

28 28 CHAPTER 2. n e i w + e i Hw = 0 H(w + e i ) = He i H i H H H H n 1 2 n 1 2 H H n (2 n 1) n H 0 H (2 n 1, 2 n n 1) ( ) F t w w + e e t H(w + e) = He t e He He e t H t e He (23, 12) G G = G C

29 G m n m n m K GK = I m (I m m ). x = x 1. x n e i i 1 n G m Gx = e i y i K = (y 1 y n ) GK = I m K vgk = v K G = ( ) GK = I K YES NO m 50 cm

30 30 CHAPTER cm (n, k) k n 2 k 2 k 2 n F 2 n u, v 2 k d d t = d/2 1 t = (d 1)/2 t F 2 n t n k n F 2 n t ( ) (Singleton ) n k + 1 d n k d (7, 4) =

31 (23, 12) 3 2

32

33 Chapter SHINSHUUNIVERSITY ABCDEFGHIJKLMNOPQRSTUVWXYZ DEFGHIJKLMNOPQRSTUVWXYZABC VKLQVKXXQLYHUVLWB QDJDQRNHQPDWVXPRWRVKL n SHINSHUUNIVERSITY 10 1 J. Caesar, BC100 BC44, CRSXCREEXSFOBCSDI 33

34 34 CHAPTER 3. n 25 (26 ) 26 A Z, B H, C T e z NAGANO A 1, 2, 3 14, 1, 7, 1, 14, ?? ( ). 3.2 RSA m, n mn

35 m , 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 RSA p 1 < p 2 < < p r n = p 1 p 2 p r + 1 p r n m n p i ( ). n 2 n n 1 ( ) n. x m 1 = (x 1)(x m 1 + x m x + 1) n n = lm, l 2, m 2 2 n 1 = (2 l ) m 1 = (2 l 1)((2 l ) m 1 + (2 l ) m (2 l ) + 1) 1 < 2 l 1 < 2 n 1 2 n 1 n 2 n = 2047 = , 2, = Mersenne, ,

36 36 CHAPTER 3. 2 n 1 2 n 1 (2 n 1) ( ) ( ). n 2 n n = 1, 2, 4, 8, 16 ( 2 n + 1 = 3, 5, 17, 257, 65537) n n n n + 1 ( ) n 2 (2 e ). m x m + 1 = (x + 1)(x m 1 x m 2 + x + 1) n m n = lm 2 n + 1 = (2 l ) m + 1 = (2 l + 1)((2 l ) m 1 (2 l ) m l + 1) 1 < 2 l + 1 < 2 n n + 1 n 2 2 n = = , = = ( ). n (n 1)! 1 (mod n) ((n 1)! = 1 2 (n 2) (n 1) ) (3 1)! = 1 2 = 2 1 (mod 3) (5 1)! = = 24 1 (mod 5) (7 1)! = = (mod 7) (11 1)! = = (mod 11) 1 Fermat, ,

37 (4 1)! = = 6 1 (mod 4) (6 1)! = = (mod 6) n = 13, ( ). p a p a p 1 1 (mod p) p = 5, a = = 81 1 (mod 5) p p = 4, a = = 27 3 (mod 4) a = 1 p p n n n ϕ(n) ( ). n a n a ϕ(n) 1 (mod n) p ϕ(p) = p 1 p p ϕ(4), ϕ(6), ϕ(8), ϕ(9), ϕ(10) 3 ϕ(8) 1 (mod 8) p, q n = pq ( ) ( ). m, n a, b x a (mod m), x b (mod n) x mn 1 Euler, ,

38 38 CHAPTER p, q ϕ(pq) = (p 1)(q 1). pq pq p q q p p q pq pq p + q 1 ϕ(pq) = pq p q + 1 = (p 1)(q 1) p, q a m a m(p 1)(q 1)+1 a (mod pq).. a pq a (p 1)(q 1) 1 (mod pq) a m(p 1)(q 1)+1 = (a (p 1)(q 1) ) m a a (mod pq) a pq (1) a p q (2) a q p (3) a p q 3 (3) a m(p 1)(q 1)+1 0 a (mod pq) (1) a q 1 1 (mod q) a m(p 1)(q 1)+1 = (a q 1 ) m(p 1) a a (mod q). a 0 (mod p) a m(p 1)(q 1)+1 0 (mod p) pq a a m(p 1)(q 1)+1 a (mod pq) (2) 3.3 RSA RSA (Rivest, Shamir, Adleman, 1977) ( ) A A

39 3.3. RSA 39 (1) p, q. ( p, q 200 ) (2) N = pq. (3) L = (p 1)(q 1). (4) L e. (5) ed 1 (mod L) d. N e p, q, L, d M N M M e (mod N) e, N C = M e d C C d (mod N) C d M ed M (mod N) M p = 7, q = 11 N = 7 11 = 77, L = (7 1)(11 1) = 60 e = 7 7d 1 (mod 60) d = 43 ( ) M = 50 M = 50 C = M e = (mod 77) C d = (mod 77) p = 3, q = 11, e = 7 N, L, d M = 15 RSA C d M ed M (mod N) ed 1 (mod L), L = (p 1)(q 1) m ed = m(p 1)(q 1) a a ed a (mod pq) d d ed 1 (mod L) L = (p 1)(q 1)

40 40 CHAPTER 3. d L N = pq p, q pq p, q 200 ( ) RSA 3 RSA RSA p, q 200 N, L, e, d p, q N, L e ed 1 (mod L) d 3. M 400 M e (mod N) ( ) 3.4 (1) ( ). a, b a = qb + r 0 q 0 r < b r ( ). a, b r 0 = a, r 1 = b i > 1 r i 1 = q i 1 r i + r i+1 (0 r i+1 < r i ) 1 Euclid, BC365 BC275,

41 3.4. (1) 41 r i+1 0 r i+1 < r i {r i } r i > 0 n r n+1 = 0 gcd(a, b) = r n gcd(200, 144). gcd(200, 144) = gcd(240, 252) 200 = = = = = a, b a = qb + r (0 b < r, q ) gcd(a, b) = gcd(b, r). d = gcd(a, b) d b r = a qb b r d gcd(b, r) d = gcd(b, r) d b a = qb + r a b d gcd(a, b) d = d gcd(a, b) = gcd(r 0, r 1 ) = gcd(r 1, r 2 ) = = gcd(r n 1, r n ) r n+1 = 0 r n 1 r n gcd(r n 1, r n ) = r n ( 1.3.5). a, b d a b x, y ax + by = d

42 42 CHAPTER 3. x, y x, y ( ) ( ). r 0 = a, r 1 = b, r i 1 = q i 1 r i + r i+1 (0 r i+1 < r i ), r n+1 = 0 r i = x i a + y i b x i, y i x n, y n s, t x i, y i r i+1 = r i 1 q i 1 r i = (x i 1 a + y i 1 b) q i 1 (x i a + y i b) = (x i 1 q i 1 x i )a + (y i 1 q i 1 y i )b x i+1 = x i 1 q i 1 x i, y i+1 = y i 1 q i 1 y i r 0 = a = 1 a + 0 b, r 1 = b = 0 a + 1 b x 0 = 1, y 0 = 0, x 1 = 0, y 1 = 1 x i, y i s + 144t = gcd(200, 144) = 8 s, t x 0 = 1, y 0 = 0 x 1 = 0, y 1 = 1 x 2 = = 1, y 2 = = 1 x 3 = = 2, y 3 = 1 2 ( 1) = 3 x 4 = 1 1 ( 2) = 3, y 4 = = 4 x 5 = = 5, y 5 = 3 1 ( 4) = ( 5) = gcd(220, 252) 220s + 252t = gcd(220, 252) s, t ax b (mod n) gcd(a, n) b ( 1.3.7) gcd(a, n) b b = b 0 gcd(a, n) x, q ax + nq = b ax 0 + nq 0 = gcd(a, n) x 0, q 0 x = b 0 x 0, q = b 0 q 0 ax + nq = b ( ) ( ) x 36 (mod 252) RSA p = 7, q = 11 e = 13 d (ed 1 (mod (p 1)(q 1)) )

43 3.5. (2) (2) RSA (400 ) a, e, n a e (mod n) (mod 123) = = = ( ) (mod 123) = = 102 ( ) = 102 (26) 102 (25) 102 (22 ) 102 (2i) 102 (2i) = (102 (2i 1) ) (20 ) 102 (21 ) 102 (22 ) 102 (23 ) 102 (24 ) 102 (25 ) 102 (26 ) = = = = = = = (mod 123) a e (mod n) 2 log 2 e e

44 44 CHAPTER mod (mod 71), (mod 127) a e (mod N) e a (2i) (mod N) ( ) 1300 (1) a, e, N (2) ans = 1 (3) e = 0 ans (4) e 1 (mod 2) ans ans a (mod N) (5) e e/2 (6) a a 2 (mod N) (7) (3) a, e, N, ans 4 e (5) (3) e = (mod 123) [1] N = 123 ( ) e = 100, a = 102, ans = 1 ( ) [2] e 0 (mod 2) : ans = 1, e = 50, a = (mod N) = 72 [3] e 0 (mod 2) : ans = 1, e = 25, a = 72 2 (mod N) = 18 [4] e 1 (mod 2) : ans = 1 18 (mod N) = 18, e = 12, a = 18 2 (mod N) = 78 [5] e 0 (mod 2) : ans = 18, e = 6, a = 78 2 (mod N) = 57 [6] e 0 (mod 2) : ans = 18, e = 3, a = 57 2 (mod N) = 51 [7] e 1 (mod 2) : ans = (mod N) = 57, e = 1, a = 51 2 (mod N) = 18 [8] e 1 (mod 2) : ans = (mod N) = 42, e = 0, a = 18 2 (mod N) = 78 [9] e = 0 ans = 42

45 ans e a = = = RSA p = 13, q = 17 N = pq e = 11 (1) L = ϕ(pq) (2) d (d ed 1 (mod L) ) (3) m = 3 (4) (3) (m = 3) 3.6 A A B A A B M N B N A M N A B A A B C C B ( ) B C

46

47 Chapter 4 RSA RSA N 2 N N 2 N N N 3 N 1 N N = mn 2 m, n m, n N N 47

48 48 CHAPTER N 2 N N N 3 N N N 1 N N = mn, m m n N 2 N N N 3 N N N ( ). N (1) 1 N ( ) (2) 1 (3) (N N ) (4) N (3) (5) N N ( ) N N p p a a p 1 1 (mod p) p a a = 2, 3 a p 1 (mod p) 1 p a p p 1 Eratosthenes, BC275 BC194,

49 p a p x x 2 a (mod p) a p ( ) a 1 p ( ) a = p 0 (a p ) 1 (a p ) 1 (a p ) ( ) p = , 2 2 4, 3 2 2, 4 2 2, 5 2 4, , 2, 4 3, 5, 6 ( ) 1 = 7 ( ) 2 = 7 ( ) 4 = 1, 7 ( ) 3 = 7 ( ) 5 = 7 ( ) 6 = ( a 11), a = 1, 2,, 10, p a, b ( ) ( ) a b (1) a b (mod p) = p p (2) ( ) ab = p ( a p ) ( ) b p ( ) ab 2 (3) b p = p (4) ( ) 1 = 1, p ( ) 1 = ( 1) (p 1)/2, p 1 Legendre, , ( ) a p ( ) 2 = ( 1) (p2 1)/8 p

50 50 CHAPTER 4. ( p (5) [ ] q p ( ) ( ) q p q = ( 1) (p 1)(q 1)/4 q p ) ( ) q = ( 1) (p 1)(q 1)/4 p ( ) ( ) 1 2. p 1 (mod 4) 1 p 3 (mod 4) 1 p ( ) ( ) p p q p 1, 7 (mod 8) 1 p 3, 5 (mod 8) 1 p 3 q p (mod 4) q 3 (mod 4) 1 1 ( ) (2) ( ) 24 = 31 ( ) 3 ( ) ( ) ( ) = (4) ( ) 2 = ( 1) (312 1)/8 = ( 1) 120 = 1 31 (5), (1) ( ) ( ) ( ) = ( 1) (3 1)(31 1)/4 = ( 1) 15 = ( 1) 1 = ( ) 24 = 1 31 ( ) n a n n = p e 1 1 p e 2 2 p er r ( ) e1 ( a a J(a, n) = p 1 p 2 ) e2 ( ) er a p r 1 n Jacobi, ,

51 n a, b (1) a b (mod n) J(a, n) = J(b, n) (2) J(ab, n) = J(a, n)j(b, n) (3) gcd(a, n) > 1 J(a, n) = 0 (4) J(1, n) = 1, J( 1, n) = ( 1) (n 1)/2, J(2, n) = ( 1) (n2 1)/8 (5) a, b J(a, b)j(b, a) = ( 1) (a 1)(b 1)/4 J(a, b) = ( 1) (a 1)(b 1)/4 J(b, a) J(26, 45) (2) J(26, 45) = J(2, 45)J(13, 45) (4) J(2, 45) = 1 (5) J(2, 13) = 1 J(13, 45) = ( 1) (13 1)(45 1)/4 J(45, 13) = J(6, 13) = J(2, 13)J(3, 13) J(3, 13) = ( 1) (3 1)(13 1) J(13, 3) = J(1, 3) = 1 J(26, 45) = 1 J(a, b) a a = 2 e a 0 (a 0 ) J(a, b) = J(2, b) e J(a 0, b) (5) J(28, 45) a, b J(a, b) p a ( ) a a (p 1)/2 (mod p) p a p ( ) a 0 a = 1 p b a b 2 (mod p) a (p 1)/2 b p 1 1 (mod p) ( ) a a = 1 a (p 1)/2 p (mod p) 2 1 ±1 1

52 52 CHAPTER (Solovay Strassen ) Solovay Strassen (Solovay Strassen ). p (1) 1 < a < p 1 (2) gcd(a, p) > 1 p (3) j a (p 1)/2 (mod p) ( ) (4) J(a, p) (5) j J(a, p) (mod p) p (6) j J(a, p) (mod p) p 1/2 ( ) a p = J(a, p) j J(a, p) (mod p) p p 1/2 (200 p ) p Solovay Strassen a , , , 19, 30, , 14, 18, 47, 51, , 16, 38, 47, 69, , 10, 12, 16, 17, 22, 29, 38, 53, 62, 69, 74, 75, 79, 81, , 13, 41, 64, 92, , , 9, 27, 40, 81, 94, 112, , , 12, 27, 30, 31, 39, 58, 64, 69, 75, 94, 102, 103, 106, 121, , 17, 59, 86, 128, , 55, 64, 89, 98, , , 22, 23, 70, 80, 89, 99, 146, 147, , 51, 124, , 43, 68, 117, 142, 149 a p 3 (p 3)/2 (9, 15, 21, 27, 33, 35, 39, 51, 55, 57, 63, 69, 75, 77, 81, 87, 93, 95,

53 4.4. (SOLOVAY STRASSEN ) 53 99, 111, 115, 119, 123, 129, 135, 141, 143, 147, 155, 159, 161, 171, 177, 183, 187, 189, 195) a Solovay Strassen 1/2 Solovay Strassen a ( Solovay Strassen ) 10 1/2 10 = 1/1024 ( ) p Solovay Strassen a p a

54

55 [4] [3] [2] [1] ( ) 55

56

57 , 1, X , x 7 (mod 9) (x, y) = (4, 3) (x, y) = (2, 4) ( ) s (1) (x, y, z) = (2, 1, 1) (2) (3) (x, y, z) = (0, 0, 3) (4) (x, y, z) = ( 2 + s, 3 2s, s) (5) (x, y, z, u) = ( 6 + s, 16 3s, s, 4) (6) (x, y, z) = (3s, 5s, 7s) (1) (x, y, z) = (1, 1, 1) (2) (1 2 3), (0 1 2) (1 1 0), (0 1 1) (1 0 1), (0 1 1) ( ), ( ), ( ) C C 3 = NAGANOKENMATSUMOTOSHI , 103, ϕ(4) = 2, ϕ(6) = 2, ϕ(8) = 4, ϕ(9) = 6, ϕ(10) = N = 33, L = 30, d = (mod 33), (mod 33) = , = gcd(220, 252) = 4, (s, t) = (8, 7) x = d =

58 58 CHAPTER , (mod 71), (mod 127) (1) L = 192 (2) d = 35 (3) (mod 221) (4) (mod 221) , 1, 1, 1, 1, 1, 1, 1, 1,

59 [1] (ISBN ) [2] (ISBN ) [3] (ISBN ) [4] SGC 5, (ISSN ) 59

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

1 + 1 + 1 + 1 + 1 + 1 + 1 = 0? 1 2003 10 8 1 10 8, 2004 1, 2003 10 2003 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ( )?, 1, 8, 15, 22, 29?, 1 7, 1, 8, 15, 22,

More information

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp 200 Miller-Rabin 2002 3 Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor 996 2 RSA RSA Solovay-Strassen Miller-Rabin [3, pp. 8 84] Rabin-Solovay-Strassen 2 Miller-Rabin 3 4 Miller-Rabin 5 Miller-Rabin

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y

More information

30 2018.4.25 30 1 [email protected] 2018 4 11 2018 4 25 30 2018.4.25 1 1 2 8 3 21 4 28 5 37 6 43 7 47 8 52 30 2018.4.25 1 1 Z Z 0 Z >0 Q, R, C a, b a b a = bc c 0 a b b a b a a, b, c a b b c a

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

) 9 81

) 9 81 4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2

More information

.,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i

.,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i 2006 D r. H e n e r 18 4 1 .,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i 1 2 1 1.1 2 10..................................... 1 1.2 2......................................

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II [email protected] 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 n =3, 200 2 10 1 1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 a, b (a, b) =1a b 1 x 2 + y 2 = z 2, (x, y) =1, x 0 (mod 2) (1.1) x =2ab, y = a 2 b 2, z =

More information

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13: B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

インターネット概論 第07回(2004/11/12) 「SFC-CNSの現状」

インターネット概論 第07回(2004/11/12) 「SFC-CNSの現状」 / / / : AES 128bit) 196bit 256bit 128bit) 10 12 14 196bit) 12 12 14 256bit) 14 14 14 (n, e) (n, d) M M : 2 ( 101 5) [e ] [e ] n = p * q (p q ) (n) = (p-1)(q-1) gcd( (n), e) = 1; 1 < e < (n) d = e^-1

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

ver 0.3 Chapter 0 0.1 () 0( ) 0.2 3 4 CHAPTER 0. http://www.jaist.ac.jp/~t-yama/k116 0.3 50% ( Wikipedia ) ( ) 0.4! 2006 0.4. 5 MIT OCW ( ) MIT Open Courseware MIT (Massachusetts Institute of Technology)

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin 121 6,.,,,,,,. 2, 1. 6.1,.., M, A(2 R).,. 49.. Oxy ( ' ' ), f Oxy, O 1 x 1 y 1 ( ' ' ). A (p q), A 0 (p q). y q A q q 0 y 1 q A O 1 p x 1 O p p 0 p x 6.1: ( ), 6.1, 122 6 A 0 (p 0 q 0 ). ( p 0 = p cos

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1 ... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =

More information

mahoro/2011autumn/crypto/

mahoro/2011autumn/crypto/ http://www.ss.u-tokai.ac.jp/ mahoro/2011autumn/crypto/ 1 1 2011.9.29, ( ) http://www.ss.u-tokai.ac.jp/ mahoro/2011autumn/crypto/ 1.1 1.1.1 DES MISTY AES 1.1.2 RSA ElGamal 2 1 1.2 1.2.1 1.2.2 1.3 Mathematica

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

ito.dvi

ito.dvi 1 2 1006 214 542 160 120 160 1 1916 49 1710 55 1716 1 2 1995 1 2 3 4 2 3 1950 1973 1969 1989 1 4 3 3.1 3.1.1 1989 2 3.1.2 214 542 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

Block cipher

Block cipher 18 12 9 1 2 1.1............................... 2 1.2.................. 2 1.3................................. 4 1.4 Block cipher............................. 4 1.5 Stream cipher............................

More information

( ) >

( ) > (Ryūta Hashimoto) α α p q < p/q α q Lagrange 0 0. 3.4.4.96.5.5.5.4 <

More information

untitled

untitled [email protected] http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

°Å¹æµ»½Ñ¤Î¿ôÍý¤È¤·¤¯¤ß --- ¥á¡¼¥ë¤Ç¤¸¤ã¤ó¤±¤ó¡©¤¹¤ëÊýË¡ ---

°Å¹æµ»½Ñ¤Î¿ôÍý¤È¤·¤¯¤ß  --- ¥á¡¼¥ë¤Ç¤¸¤ã¤ó¤±¤ó¡©¤¹¤ëÊýË¡ --- .... 1 22 9 17 1 / 44 1 (9/17) 2 (10/22) P2P 3 (11/12) 2 / 44 ogawa is.uec.ac.jp http://www.quest.is.uec.ac.jp/ogawa/ http://www.is.uec.ac.jp/ 3 / 44 ARPANet (1969) 4 / 44 M. Blum ( ), Coin Flipping by

More information

i 1 1 1.1.......................................... 1 1.1.1......................................... 1 1.1.2...................................... 1 1.1.3....................................... 2 1.1.4......................................

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)

More information

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y 01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

018 8 17 4 1 5 1.1.......................................... 5 1.1.1.................................. 5 1.1................................... 7 1............................................ 7 1..1...................................

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) = ,, uvw,, Bernoull-Euler u v, w θ dv ( ) dw u (,, ) u( ) ω(, ) φ d d v (,, ) v( ) θ ( ) w (,, ) w( ) θ ( ) (11.1) ω φ φ dθ / dφ v v θ u w u w 11.1 θ θ θ 11. vw, (11.1) u du d v d w ε d d d u v ω γ φ w u

More information

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2 θ i ) AB θ ) A = B = sin θ = sin θ A B sin θ) ) < = θ < = Ax Bx = θ = sin θ ) abc θ sin 5θ = sin θ fsin θ) fx) = ax bx c ) cos 5 i sin 5 ) 5 ) αβ α iβ) 5 α 4 β α β β 5 ) a = b = c = ) fx) = 0 x x = x =

More information

( ) x y f(x, y) = ax

( ) x y f(x, y) = ax 013 4 16 5 54 (03-5465-7040) [email protected] hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy

More information

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7 30キ36ヲ0 7 7 ュ6 70キ3 ョ6ァ8056 50キ300 縺6 5 ッ05 7 07 ッ 7 ュ ッ04 ュ03 ー 0キ36ヲ06 7 繖 70キ306 6 5 0 タ0503070060 08 ョ0303 縺0 ァ090609 0403 閨0303 003 ァ 0060503 陦ァ 06 タ09 ァ タ04 縺06 閨06-0006003 ァ ァ 04 罍ァ006 縺03 0403

More information

(()) () ( ) () () () () () () ( ) () () () () () () () () () () () () ( ) () ( ) () () () ( ) () () () () () ( ) () () () () ( ) () ( ) () () ( ) () ( ) () () () () () () () () () () () () () () () ()

More information

1 105 2 4 50 3 ISBN 4 25 2013 1 ISBN 5 128p ISBN978-4-8340-0013-9 ISBN 2

1 105 2 4 50 3 ISBN 4 25 2013 1 ISBN 5 128p ISBN978-4-8340-0013-9 ISBN 2 1 2 39 3 14 13 16 17 36 21 30 32 1 1 105 2 4 50 3 ISBN 4 25 2013 1 ISBN 5 128p ISBN978-4-8340-0013-9 ISBN 2 39 32p ISBN978-4-251-00517-5 62p ISBN978-4-00-110579-7 1 33p ISBN978-4-477-01141-7 3 32p ISBN978-4-591-01270-3

More information

ISBN 0 00 00 00 0 0 ISBN 0 0 ISBN---.000-0

ISBN 0 00 00 00 0 0 ISBN 0 0 ISBN---.000-0 ISBN 0 00 00 00 0 0 ISBN 0 0 ISBN---.000-0 0 ISBN 0 00 00 00 0 0 ISBN 0 0 ISBN---.000-0 ISBN 0 00 00 00 0 0 ISBN 0 0 ISBN---.000-0 ISBN 0 00 00 00 0 0 ISBN 0 0 ISBN---.000-0 ISBN 0 00 00 00 0 0 ISBN 0

More information

() () () () ( ) () () () () () () () () () () () () () () () () () () () () () () ( () () () () () () () () () () () () ) () ( ) () () ( ) () () () () () () () () () () () () () () () () () () () ()()

More information