1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

Size: px
Start display at page:

Download "1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +"

Transcription

1 ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University hsuzuki@icu.ac.jp

2 1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + bc (distributive law)) R4 R 0 R 1 1x = x1 = x x R R5 (commutative ring) R5 ab = ba for all a, b R R1 R3 R4 (unital ring) R R2 R4 U(R) 0x = x0 = 0 ( 1) 0 U(R) R {0} R {0} R # (Pf.) 0 = 0x + ( 0x) = (0 + 0)x + ( 0x) = 0x + 0x + ( 0x) = 0x + 0 = 0x 1.2 U(R) = R {0} = R # (skew field) R5 (field) 1.3 R a b 0 ab = 0 [ba = 0] a (left zero divisor) [ (right zero divisor)] (zero divisor) 0 R6 ab = 0 a = 0 or b = 0 R1 R Z 1 1

3 2. Q R C 3. R R Mat n (R) 4. n Z n = Z/nZ = { 0, 1,..., n 1} n n Z R x f(x) = a 0 + a 1 x + + a n x n, a i R for i = 0, 1,..., n x R x R[x] x R f = f(x) = a 0 + a 1 x + + a n x n, g = g(x) = b 0 + b 1 x + + b m x m R[x] f + g = i fg = i (a i + b i )x i ( ) a j b i j x i j R[x] R f = f(x) = a 0 + a 1 x + + a n x n R[x], a n 0 n = deg f f f(x) = 0 deg f = deg 0 = 1.1 R f, g R[x] (1) deg(f + g) max(deg f, deg g) (2) deg(fg) = deg f + deg g R (1) (2) fg = 0 (2) = deg fg = deg f + deg g. deg f = deg g = f = 0 g = R f, g R[x] g R q, r R[x] deg r < deg g f = gq + r R q, r R[x] 1 2

4 f = a n x n + + a 1 x + a 0 a n 0 g = b m x m + + b 1 x + b 0 n < m q = 0 r = f n m n = deg f b m h = f (a n b 1 m )x n m g f deg h < n R[x] q 1, r deg r < deg g h = gq 1 +r f = g(q 1 + (a n b 1 m )x n m ) + r q = q 1 + (a n b 1 m )x n m R f = gq + r = gq + r, deg r, deg r < deg g g(q q ) = r r deg g + deg(q q ) = deg(g(q q )) = deg(r r) max(deg r, deg r) < deg g. g 0 q q = 0 r r = 0 q = q r = r n R[x 1,..., x n ] = (R[x 1,..., x n 1 ])[x n ] a i1,...,i n x i 1 1 x in n, a i1,...,i n R. i 1,...,i n R[x, y] = (R[x])[y] = (R[y])[x] 1 3

5 2 R I R/I R/I xy (x + I)(y + I) (x + I)(y + I) xy + I x = 0 y = 0 xi I Iy I 2.1 R I a, b I a + b I a I, r R ra I, [ar I]. I R [ ] A B R A + B = {a + b a A, b B}. AB = { i a i b i a i A, b B} R I, J I J I + J 2. I, J R IJ IJ I J I R I R R/I (a + I) + (b + I) = (a + b) + I, (a + I) (b + I) = (ab) + I R/I (quotient ring) a R Ra [ar] [ ] (principal) [ ] R Ra = ar (a) 2 1

6 0 = {0} R R R I R [ ] I = R U(R) I. (Pf.) I = R 1 I U(R) U(R) I u U(R) I r R R I I = R r = r(u 1 u) = (ru 1 )u RI I. 2.1 R R R [ ] 0 R ( ) I 0 R a I {0} a U(R) I = R ( ) a 0 a Ra Ra 0 1 R = Ra R b ba = 1 b 0 R = Rb R c cb = 1 c = c1 = c(ba) = (cb)a = 1a = a ab = ba = 1 R 0 R X (well-ordered set) (PID : principal ideal domain) 2. R (well-ordered set) X ρ : R X R (Euclidean domain) (a) 0 a R ρ(0) < ρ(a). (b) a, b R (a 0) b = aq + r, ρ(r) < ρ(a) q, r R 2.2 R I R I = 0 I 0 {ρ(x) 0 x I} X ρ(a) a I b I b = aq + r ρ(r) < ρ(a) q, r R r = b aq I a r = 0 b Ra b I = Ra 2 2

7 ρ : Z {0} N ρ(a) = a Z 2.2 Z Z Z 2. K ρ : K[x] {, 0} N ρ(f) = deg f 1.2 K[x] 2.2 K[x] 2 3

8 3 3.1 R R f : R R f(a + b) = f(a) + f(b), f(ab) = f(a)f(b), f(1 R ) = f R f R R ((ring) homomorophism) f R R 3.1 I R (R I) 3.2 R S f : R R/I, (a a + I) a, b S a b S, ab S, 1 R S S R (subring) R S (extension ring) f : R R (1) Kerf = {a R f(a) = 0} (2) Imf = {f(a) a R} R R R f : R R R/Kerf Imf. 3.1 R/Kerf Imf f : R/Kerf Imf, (a + Kerf f(a)) well-defined f((a + Kerf)(b + Kerf)) = f(ab + Kerf) = f(ab) = f(a)f(b) = f(a + Kerf) f(b + Kerf) f(1 R/Kerf ) = f(1 + Kerf) = f(1 R ) = 1 R. f f(a) = f(b) f(a b) = 0 a b Kerf a + Kerf = b + Kerf f well-defined 3 1

9 3.2 K L α L φ : K[x] L (f(x) f(α)) Imφ K[α] K[α] = {f(α) f(x) K[x]} K[x]/Kerφ K[α] Kerφ K[x] p(x) K[x] Kerφ = K[x]p(x) = (p(x)) p(x) = 0 Kerφ = 0 α K p(x) 0 p(x) 1 p(x) Kerφ α K p(x) α K K = Q L = C e π Q Q (transcendental number) α = 1 Kerφ = (x 2 + 1) Q[ 1] = {a + b 1 a, b Q} α = 3 2 Kerφ = (x 3 2) Q[ 3 2] = {a + b c( 3 2) 2 a, b Q} 3.3 A Mat n (C) ψ : C[x] Mat n (C) (f(x) f(a)) Hamilton-Cayley Kerψ (det(xi A)) 0 monic Kerψ = p A (x) p A (x) p A det(xi A) A = ( ), B = ( ), C = ( p A (x) = (x 1)(x + 2), p B (x) = (x 2) 2, p C (x) = x 2 ) 3 2

10 4 R I R/I I 4.1 (1) R I( R) ab I a I b I I (prime ideal) (2) R I( R) I J : R I = J J = R I (maximal ideal) 4.1 R I (1) R/I I (2) R/I I (3) (1) R/I ā, b R/I, ā b = 0 ā = 0 b = 0 a, b R, (a + I)(b + I) = ab + I = I a + I = I b + I = I a, b R, ab I a I b I (x + I = y + I x y I ) (2) 2.1 R/I R/I 0 R/I R J I R I R (3) I R/I R/I I R (0) R (0) R 4.2 R (PID) I R I (0) I I 4 1

11 4.1 I = (a) (0) I J I R R J = (b) a (a) = I J = (b) a = bc c R I = (a) b I c I b I J = (b) (a) = I J I c I = (a) c = ad d R a = bc = bad = abd a(bd 1) = 0 a 0 bd = 1 R = (1) (b) = J J = R I 4.3 n Z (n) (n) n (n) (m) m n (m) = (n) m = ±n (m) (m) (n) (n) = (m) (n) = (1) n ±n ±1 (1) = Z (n) n Z 4.2 Z n = Z/(n) n 4.2 R 1 f(x) R[x] f(x) = g(x)h(x) deg g > 0 deg h > 0 R R 4.4 K f(x) K[x] (f(x)) (f(x)) f(x) f(x) deg f(x) 1 K[x] (f(x)) f(x) 4 2

12 f(x) f(x) = g(x)h(x) deg g(x) > 1 deg h(x) > 1 (f(x)) (g(x)) K[x] U(K[x]) = U(K) = K (f 1 (x)) = (f 2 (x)) f 1 (x) = cf 2 (x) (c K ). (f(x)) (g(x)) (f(x)) K[x] f(x) = g(x)h(x) f(x) 4.1 x 2 +1 x 2 2 Q (x 2 +1) (x 2 2) Q[x] Q[ 1] Q[x]/(x 2 +1) Q[ 2] Q[x]/(x 2 2) 4.5 [Eisenstein ] p f(x) = a n x n + + a 1 x + a 0 Z[x] a n 0 (mod p), a n 1 a 1 a 0 0 (mod p), a 0 0 (mod p 2 ) f(x) Z f(x) = g(x)h(x), r = deg g > 0, s = deg h > 0, g(x) = b r x r + + b 0, h(x) = c s x s + + c 0 a 0 = b 0 c 0 p p 2 p b 0 c 0 a n = b r c s p c s p c 0 p i c i p c 0 c 1 c i 1 0 c i (mod p). a i = b 0 c i + b 1 c i b i c 0 b 0 c i 0 (mod p). n = i < s = deg h f(x) Z 7.7 Q x n 2 x 3 3x 2 9x 6 Z Q 4 3

13 5 5.1 R 1, R 2,..., R n R = R 1 R 2 R n = {(a 1, a 2,..., a n ) a i R i, i = 1,..., n} (a 1,..., a n ) + (b 1,..., b n ) = (a 1 + b 1,..., a n + b n ) (a 1,..., a n ) (b 1,..., b n ) = (a 1 b 1,..., a n b n ) R R R 1,..., R n R = R 1 R 2 R n. 1 R = (1 R1, 1 R2,..., 1 Rn ) 0 R = (0 R1, 0 R2,..., 0 Rn ) Ri = {(0,..., 0, a, 0,..., 0) a R i } i 0 Ri R R I, J I + J = R I J I + J = R x + y = 1 x I, y J Z (m) (n) (m, n) = 1 m n 1 x + y = 1 x (m), y (n) am + bn = 1 a, b Z (m, n) = (Chinise Remainer s Theorem) 5.1 [ ] R I 1, I 2,..., I n i j I i + I j = R a 1, a 2,..., a n R x a i (mod I i ) i = 1, 2,..., n x R n = 2 1 = c 1 + c 2 c 1 I 1, c 2 I 2 x = a 1 c 2 + a 2 c 1 (mod I 1 ) x a 1 c 2 + a 2 c 1 a 1 c 2 a 1 (1 c 1 ) a 1 a 1 c 1 a 1 5 1

14 x a 2 (mod I 2 ) n > 2 i x i R x i 1 (mod I i ), j i x i 0 (mod I j ). i = 1 j 2 I 1 + I j = R c (j) 1 + c j = 1 c (j) 1 I 1 c j I j n 1 = (c (j) 1 + c j ) c 2 c n (mod I 1 ) j=2 1 c 2 c n = c 1 c 1 I 1 R = I 1 + I 2 I n I 1 I 2 I n n = 2 x 1 R x 1 1 (mod I 1 ), x 1 0 (mod I 2 I n ) j 2 I 2 I n I j x 1 0 (mod I j ) i x i x = a 1 x a n x n x a 1 x a n x n (mod I i ) a i x i (mod I i ) a i (mod I i ) 5 2

15 6 6.1 R S (i) a, b S ab S (ii) 1 S, 0 S S R (multiplicative subset) R 2. P R R P R S R S (a, s) (a, s ) (as a s)t = 0 t S (a, s) a/s S 1 R S 1 R (a 1 /s 1 ) + (a 2 /s 2 ) = (a 1 s 2 + a 2 s 1 )/s 1 s 2 (a 1 /s 1 )(a 2 /s 2 ) = (a 1 a 2 /s 1 s 2 ) S 1 R R S (quotient ring) 1. 0 S 1 R = 0/1 1 S 1 R = 1/1 (a/s) = ( a)/s s S s/1 U(S 1 R) 2. S a/s = a /s as a s = 0 3. φ S : R S 1 R (a a/1) φ S S S R S 1 R R (ring of total quotients) 2. R R (quotient field) Q(R) (a) Q(Z) = Q 6 1

16 (b) Q(K[x 1,..., x n ]) = K(x 1,..., x n ) = {f/g f, g K[x 1,... x n ], g 0} (c) P R (R P ) 1 R R P R P (localization) 6.2 R M R (local ring) (0) R M I R Zorn I R I M M R 6.1 R [(1) (2) ] (1) R (2) R U(R) R (1) (2) M R M R M U(R) = M R U(R) a R U(R) Ra R a Ra M R U(R) M M = R U(R) (2) (1) J R J R I = R U(R) J U(R) = J I I R 6.2 P R R P P = {a/s a P, s P } P R P (Pf.) (a/s) + (b/t) = (at + bs)/st a, b P, s, t P at + bs P st P (at + bs)/st P r R (r/t)(a/s) = ar/ts P P R P a/s P a P. (Pf.) ( ) a P a/s P ( ) a/s P a/s = a /s a P s P (as a s)t = 0 t P as t = a st P a P 6 2

17 R P P = U(R P ) (Pf.) ( ) a/s P a P s/a R P a/s U(R P ) ( ) 1 P 1/1 P a/s U(R P ) P a P (a/s)(b/t) = 1/1 b R t P t P abt = stt P P U(R P ) P = R P P = U(R P ) 6 3

18 7 7.1 R a, b R (a) (b) a = bc c R b a (a) = (b) a = bu u U(R) a b R p 0 p = uv u U(R) v U(R) p 7.1 R R (UFD = Unique Factorization Domain) (i) a R a = p 1 p 2 p r (p i ) (ii) a = p 1 p 2 p r = q 1 q 2 q s (p i, q j r = s p i q i 7.1 R 0 p R (1) (p) p (2) R UFD (p) p (1) p = ab a (p) b (p) a (p) (a) (p) = (ab) (a) a p p = au u U(R) a(b u) = p p = 0 R b = u U(R) (2) p ab (p) a b U(R) ab = pc a = p 1 p r b = q 1 q s c = v 1 v t p 1 p r q 1 q s = pv 1 v t p p i p q j p p i a = p 1 p r (p i ) = (p) p q j b = q 1 q s (q j ) = (p) R 7.2 R p 0 (1) p 7 1

19 (2) (p) (3) (p) 4.2 (2) (3) 7.1 (2) (1) (1) (3) (p) I = (q) R p = qa q a (q) = R (p) = (q) (p) 7.3 R 0 a R U(R) (a) R (a) (p 1 ) 7.2 p 1 (a) (p 1 ) a = p 1 a 1 p 1 U(R) (a 1 ) (a) a 1 U(R) p 2 a 1 = p 2 a 2 (a = p 1 p 2 a 2 ) a i (a) (a 1 ) (a 2 ) (a i ) i=1 (a i ) R i=1 (a i ) = (d) i d (a i ) (a i ) = (a i+1 ) r a r p r a r a = p 1 p 2 (p r a r ) a = p 1 p 2 p r = q 1 q 2 q s r s r q 1 q 2 q s = a (p 1 ) (p 1 ) q i (p 1 ) i (q i ) (p 1 ) q i p 1 q 1 = p 1 u u U(R) p 1 p 2 p r = p 1 uq 2 q s p 2 p r = uq 2 q s r = s p i q i Z[x] Q[x 1,, x n ] 7.1 Z[ 5] = {a + b 5 a, b Z} 2 (2) α = a + b 5 N(α) = αᾱ = a 2 + 5b 2 α U(Z[ 5]) N(α) = 1 α = ±1. (Pf.) ±1 U(Z[ 5]) αβ = 1 1 = N(αβ) = N(α)N(β) a 2 + 5b 2 = N(α) = 1 a, b Z b = 0 a = ±1 7 2

20 2 (Pf.) 2 = αβ N(α) 1 N(β) 1 α = a + b 5 4 = N(2) = N(αβ) = N(α)N(β) a 2 + 5b 2 = N(α) = 2 N(α) = 1 N(β) = 1 α, β (2) (Pf.) (1 + 5)(1 5) = 6 (2) 1 ± 5 (2) 1 ± 5 = 2γ 6 = N(1 ± 5) = 4N(γ) 1 ± 5 (2) (2) 7 3

21 7.2 R K = Q(R) d a 1,..., a n R 1. d a i, i = 1, 2,..., n 2. c a i, i = 1, 2,..., n c d l a 1,..., a n R 1. a i l, i = 1, 2,..., n 2. a i m, i = 1, 2,..., n l m a 1, a 2,..., a n 1 a 1, a 2,..., a n (coprime) a 0, a 1,..., a n f(x) = a 0 + a 1 x + + a n x n R[x] (primitive polynomial) R R R = Z 4 6 ±2 7.4 R R[x 1, x 2,..., x n ] 7.5 f(x) K[x] c K f 0 (x) R[x] f(x) = cf 0 (x) c R I(f) f(x) = (b 0 /a 0 ) + (b 1 /a 1 )x + + (b n /a n )x n 0 a i, b j R m a 0, a 1,..., a n m = a i c i d b 0 c 0, b 1 c 1,..., b n c n de i = b i c i e 0, e 1,..., e n f(x) = (b 0 /a 0 ) + (b 1 /a 1 )x + + (b n /a n )x n = 1 m (b 0c 0 + b 1 c 1 x + + b n c n x n ) = d m (e 0 + e 1 x + + e n x n ) c = d/m f 0 (x) = e 0 + e 1 x + + e n x n f(x) = cf 0 (x) = c f 0(x) f 0 (x) f 0(x) R c = b/a c = b /a a b a b R a bf 0 (x) = ab f 0(x) 7 4

22 f 0 (x) f 0(x) a b = ab u u U(R) c = b/a = (b /a )u = c u K c, c c = cu u U(R) c c f(x) K[x] f(x) R[x] I(f) R f(x) I(f) (1) (2) f(x), g(x) K[x] I(fg) I(f)I(g) (1) f(x) = a 0 + a 1 x + + a l x l g(x) = b 0 + b 1 x + + b m x m h(x) = f(x)g(x) = c 0 + c 1 x + + c n x n, p c i, ; i = 0, 1,..., n p a i p i i 0 b j p j j 0 c i0 +j 0 = a 0 b i0 +j a i0 1b j a i0 b j0 + a i0 +1b j a i0 +j 0 b 0 a i0 b j0 (mod (p)) 0 (mod (p)) (2) f(x) = I(f)f 0 (x) g(x) = I(g)g 0 (x) f 0 (x) g 0 (x) f(x)g(x) = I(f)I(g)f 0 (x)g 0 (x) f 0 (x)g 0 (x) (1) I(f)I(g) I(fg) 7.7 f(x) R[x] f(x) R[x] K[x] f(x) K[x] R[x] K[x] f(x) = g(x)h(x) g(x), h(x) K[x] g(x) = I(g)g 0 (x) h(x) = I(h)h 0 (x) f 0 (x), g 0 (x) f(x) = I(g)I(h)g 0 (x)h 0 (x) f(x) R[x] I(g)I(h) I(gh) R deg g 0 = deg g = 0 deg h 0 = deg h = 0 K[x] 7.8 f(x) R[x] (i) deg f = 0 f R (ii) deg f > 0 f 7 5

23 U(R[x]) = U(R) (i), (ii) f(x) f = gh g, h U(R[x]) = U(R) f R deg f = 0 f R deg f > 0 f f = I(f)f 0 I(f) U(R) f (ii) 7.4 R[x 1,..., x n 1, x n ] = (R[x 1,..., x n 1 ])[x n ] n = 1 R R[x] 0 f(x) R[x] deg f deg f = 0 R 7.8 (i) R[x] deg f > 0 f = gh deg g > 0, deg h > 0 deg g < deg f deg h < deg f g h f f = I(f)f 0 f 0 f (ii) I(f) R R[x] f = p 1 p k f 1 f l = q 1 q m g 1 g n f p 1,..., p k, q 1,..., q m R f 1,..., f l, g 1,..., g n 1 f 1 f l g 1 g n 7.6 I(f) p 1 p k q 1 q m u U(R) up 1 p k = q 1 q m R K[x] uf 1 f l = g 1 g n c i f i = g i c i K I(g i ) = 1 c i R g i c i U(R) 7 6

24 8 8.1 R M R M M, (r, m) rm M R- R- r(x + y) = rx + ry, (r + s)x = rx + ry, (rs)x = r(sx), 1x = x (x, y M, r, s R) R- R R- N M R- N rx N r R x N RN N N R f : M M R- f(a + b) = f(a) + f(b), f(ra) = rf(a), (r R, a, b M) f(ra) = rf(a) f R Z- 2. R R- I R- R I R 3. K K- K M R- S M { } < U >= r i u i r i R, u i U i U R- 2. U < U M =< U > M R- u 1, u 2,..., u n M = Ru 1 + Ru Ru n 3. r 1 u 1 + r 2 u r n u n = 0 (r i R) r 1 = r 2 = = r n = 0 u 1, u 2,..., u n R- M U R- U R- M U R- 8 1

25 V K K- V K- 8.3 R R- A A R R- a, b A, r R (ra)b = a(rb) = r(ab) R R 2. G = {1 = u 1, u 2,..., u n } G R- R[G] = Ru 1 Ru n ( n ) n n α i u i β j u j = α i β j u i u j. i=1 j=1 i,j=1 G A = C[G] V A- g G φ(g) : V V, (v gv) φ(g) GL(V ) φ : G GL(V ), (g φ(g)) φ : G GL(V ) V A M R- M 0 M M 8.1 (Schur s Lemma) M N R- (1) f : M N R- 0 f (2) End R (M) M M End R (M) f R- Kerf Imf R- (1) f 0 Kerf M Imf 0 Kerf = 0 Imf = N f (2) (1) 8 2

26 R-( ) M R- [ ] M [ ] 2. R R-( ) [ ] R ( )- [ ] 3. M R- M 1 M 2 M i (M 1 M 2 M i ) n M n = M n+1 = M [ ] 9.1 R- M [ ] M [ ] R- M M 1 M 2 {M i i N} M n M n = M n+1 = S M 1 M 2 M i M i S M i M i+1, M i M i R- M (i) M (ii) M R- R- (i) (ii) N M R- S N R- R- S N 0 N N 0 x N N 0 Rx + N 0 N 0 N 0 N = N 0 N (ii) (i) M 1 M 2 M N = i M i R- N =< u 1, u 2,..., u n > N M m u 1, u 2,..., u n N M m M m+1 N. M 9.1 M

27 1 9.4 R R[x 1, x 2,..., x n ] n = 1 I R[x] I i = {r R f(x) = a i x i + + a 1 x + a 0 I a i = r } R f(x) = a i x i + + a 1 x + a 0 I xf(x) = a i x i a 1 x 2 + a 0 x I I 0 I 1 I 2 R 9.1 I r = I r+1 = r 9.2 I 0, I 1,..., I r a i1,..., a isi I i (i = 0, 1,..., r) R f ij a ij I i I r s i I = R[x]f ij (x). i=0 j=1 f = a m x m + + a 1 x + a 0 I m = deg f m = 0 f = a 0 I 0 = s 0 j=1 Ra 0j = s 0 j=1 Rf 0j m > 0 r < m e = m r r m e = 0 a m I m = I m e = a m = s m e j=1 c j a (m e)j s m e deg(f(x) x e j=1 s m e j=1 Ra (m e)j c j f (m e)j (x)) < deg f(x) f r i=0 si j=1 R[x]f ij (x) R[x] 9.2 R[x] S R s 1,..., s n S R {s 1,..., s n } S S {s 1,..., s n } R- S Z[x] x Z- Z[x] Z- Z + Zx R R- R R 9 2

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 +

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 + III 2005 1 6 1 1 ( 11 0 0, 0 deg (f(xg(x deg f(x + deg g(x 12 f(x, g(x ( g(x 0 f(x q(xg(x + r(x, r(x 0 deg r(x < deg g(x q(x, r(x q(x, r(x f(x g(x r(x 0 f(x g(x g(x f(x g(x f(x g(x f(x 13 f(x x a q(x,

More information

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q

More information

2, Steven Roman GTM [8]., [3].,.

2, Steven Roman GTM [8]., [3].,. ( ) : 28 7 22 2, Steven Roman GTM [8]., [3].,. 1 5 1.1........................................................... 5 1.2......................................................... 6 1.3....................................................

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1 1.1 n 3 X n + Y n = Z n Fermat Fermat Diophantus 2 Bachet x 2 + y 2 = z 2 Fermat Wiles 4 Kummer 5 Dedekind 6 ζ n 1 n ζ n =

1 1.1 n 3 X n + Y n = Z n Fermat Fermat Diophantus 2 Bachet x 2 + y 2 = z 2 Fermat Wiles 4 Kummer 5 Dedekind 6 ζ n 1 n ζ n = 2013 2 26 2 26 1 2 2 5 3 8 4 11 5 13 6 19 6.1...................................... 19 6.2...................................... 39 6.3...................................... 47 6.4 Noether Dedekind............................

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

1 Groebner hara/

1 Groebner hara/ 1 Groebner 2005 1 sinara@blade.nagaokaut.ac.jp http://blade.nagaokaut.ac.jp/ hara/ 2005 7 19 3 1 1 1.................................................. 1 2 1..............................................

More information

p-sylow :

p-sylow : p-sylow :15114075 30 2 20 1 2 1.1................................... 2 1.2.................................. 2 1.3.................................. 3 2 3 2.1................................... 3 2.2................................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

B ( ) :

B ( ) : B ( ) : 29 2 6 2 B. 5............................................................ 5......................................................... 5..2..................................................... 5..3........................................................

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

2016

2016 2016 1 G x x G d G (x) 1 ( ) G d G (x) = 2 E(G). x V (G) 2 ( ) 1.1 1: n m on-off ( 1 ) off on 1: on-off ( on ) G v v N(v) on-off G S V (G) N(v) S { 3 G v S v S G G = 1 OK ( ) G 2 3.1 u S u u u 1 G u S

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

2014 x n 1 : : :

2014 x n 1 : : : 2014 x n 1 : : 2015 1 30 : 5510113 1 x n 1 n x 2 1 = (x 1)(x+1) x 3 1 = (x 1)(x 2 +x+1) x 4 1 = (x 1)(x + 1)(x 2 + 1) x 5 1 = (x 1)(x 4 + x 3 + x 2 + x + 1) 1, 1,0 n = 105 2 1 n x n 1 Maple 1, 1,0 n 2

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

ii-03.dvi

ii-03.dvi 2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

18 5 10 1 1 1.1 1.1.1 P Q P Q, P, Q P Q P Q P Q, P, Q 2 1 1.1.2 P.Q T F Z R 0 1 x, y x + y x y x y = y x x (y z) = (x y) z x + y = y + x x + (y + z) = (x + y) + z P.Q V = {T, F } V P.Q P.Q T F T F 1.1.3

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m 2009 IA I 22, 23, 24, 25, 26, 27 4 21 1 1 2 1! 4, 5 1? 50 1 2 1 1 2 1 4 2 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k, l m, n k, l m, n kn > ml...? 2 m, n n m 3 2

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S 12 2 e 2.1 2.1.1 S,T S s S T t T (map α α : S T s t = α(s (2.1 S (domain T (codomain (target set, {α(s} T (range (image 2.1.2 s, s S t T s S t T, α s, s S s s, α(s α(s (2.2 α (injection 4 T t T (coimage

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

直交座標系の回転

直交座標系の回転 b T.Koama x l x, Lx i ij j j xi i i i, x L T L L, L ± x L T xax axx, ( a a ) i, j ij i j ij ji λ λ + λ + + λ i i i x L T T T x ( L) L T xax T ( T L T ) A( L) T ( LAL T ) T ( L AL) λ ii L AL Λ λi i axx

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information