FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD i

Size: px
Start display at page:

Download "FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD i"

Transcription

1 FDTD GD191

2 FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD i

3 FDTD FDTD CP-FDTD FDTD FDTD CP-FDTD FDTD CP-FDTD θ = tan θ = tan ii

4 1 1.1 FDTD FDTD Finite Difference Time Domain Method FDTD [1][2] FDTD FDTD FDTD FDTD FDTD FDTD (FFT) FDTD 3 FDTD 1

5 FDTD FDTD FDTD FDTD (EMC) EMC FDTD PHS LAN IC (CAD) FDTD / 1.2 FDTD FDTD E[V/m] H[A/m] D[C/m 2 ], B[T ], ρ[c/m 3 ], J[A/m 2 ] 2

6 roth(r, t) = D(r, t) + J(r, t) t (1.1) B(r, t) rote(r, t) = t (1.2) divb(r, t) = 0 (1.3) dibd(r, t) = ρ(r, t) (1.4) (1) (2) (3) (4) FDTD (3)(4) (1)(2) (1)(2) Yee 3 FDTD x (i, j, k) =H n 1 2 x (i, j, k) t µ {En z (i, j, k +1) En z (i, j 1,k) y En y (i, j, k +1) En y (i, j, k 1) } (1.5) z Ex n+1 (i, j, k) =Ex n (i, j, k)+ t 1 2 ɛ {Hn+ z (i, j +1,k) H n+ 1 2 z (i, j, k) y 1 Hn+ 2 y (i, j, k +1) H n+ 1 2 y (i, j, k) } (1.6) z H n+ 1 2 ( t 2 ) 1.3 CP-FDTD FDTD CP(Contour Path) FDTD[3][4][5] 2.6 H z 3

7 Hz node Ex, Ey node 1.1 : CP-FDTD CP- FDTD [6][7] 1.2 4

8 : 45 FDTD CP-FDTD CP-FDTD 3 FDTD 1 2 θ = tan θ = tan

9 2 45 FDTD CP-FDTD CP-FDTD 45 CP 2.1 FDTD FDTD 2 6

10 z b a c h y x 2.1 : 2.1 : 7.5cm cells x = y = z =5.0mm 20,000 PML 8 7

11 2.1.2 FDTD thin wire approach 2.2 FDTD r r E y,e z,h x 1/r E z,h x H y z H y,e z E x H y (x, y, z) = H y (i + 1 2,j,k+ 1 2 )( x 2 ) 1 x {1+c 1(z (k + 1 ) z)} (2.1) 2 E x (x, y, z) = E x (i + 1 2,j,k) x 1,z = k z 2 x = E x (i + 1 2,j,k+1) x 1,z =(k + 1) z (2.2) 2 x E z (x, y, z) = 0,x= i x = E z (i +1,j,k+ 1 2 ){1+c 2(z (k + 1 ) z)},x=(i + 1) x (2.3) 2 r0 H y E z ( i, j, k + 1 ( i +, j, k ) 2 1 ) 2 E x 1 ( i +, j, k + 1) 2 E z ( i + 1, j, k + 1 ) 2 1 E x ( i +, j, k) : 8

12 (2.1) c E d l = t s B d S (2.4) H y t (i + 1 2,j,k+ 1 2 )= 1 µ 0 z {E x(i + 1 2,j,k) E x(i + 1 2,j,k+1)} 2 + µ 0 xln x E z (i +1,j,k+ 1 r 0 2 ) (2.5) (2.5) H n+ 1 2 y (i + 1 2,j,k )=Hn 2 y (i + 1 2,j,k+ 1 2 ) + t µ 0 z {En x (i + 1 2,j,k) En x (i + 1 2,j,k+1)} + 2 t µ 0 xln x r 0 E n z (i +1,j,k+ 1 2 ) (2.6) H n+ 1 2 y (i 1 2,j,k )=Hn 2 y (i 1 2,j,k+ 1 2 ) + t µ 0 z {En x (i + 1 2,j,k) En x (i + 1 2,j,k+1)} 2 t µ 0 xln x Ez n (i 1,j,k+ 1 r 0 2 ) (2.7) H n+ 1 2 x (i, j + 1 2,k )=Hn 2 y (i, j + 1 2,k+ 1 2 ) t µ 0 z {En y (i, j + 1 2,k) En y (i, j + 1 2,k+1)} 2 t µ 0 yln y Ez n (i, j +1,k+ 1 r 0 2 ) (2.8) H n+ 1 2 x (i, j 1 2,k )=Hn 2 x (i, j 1 2,k+ 1 2 ) t µ 0 z {En y (i, j 1 2,k) En y (i, j 1 2,k+1)} + 2 t µ 0 yln y r 0 E n z (i, j 1,k+ 1 2 ) (2.9) r 0 x, y z x, y z n µ0 9

13 r thin wire approath r0 =0.1mm r0 =0.1mm Return loss [db] mea. r0=1mm r0=0.6675mm r0=0.4mm r0=0.1mm Frequency [GHz] 2.3 : 2.2 : mea. r0 =1mm r0 =0.6675mm r0 =0.4mm r0 =0.1mm

14 (Non-Uniform Mesh)[8] Yee Yee 1 FDTD 2.4 Lz1 z x y V L Lz2 (a) Fine Mesh Lx,y Coarse Mesh (b) 2.4 : 2.1 x = y = z =5mm x = y = z =1mm (L x L y L z1,2 ) 11

15 ( mm) ( x = y = z =5mm) Return loss [db] Mea. FDTD Non Uniform Mesh Frequency [GHz] 2.5 : 12

16 FDTD CP-FDTD CP E 0 FDTD CP CP-FDTD CP-FDTD (2.3) (2.1)(2.2) FDTD H = 1 E (2.10) t µ E = 1 H (2.11) t ε E d l = µ H d S (2.12) c t s C S H E CP-FDTD 2.6(a) ABEF H n+ 1 2 z CP-FDTD (a) (b) S ABF 0.5d x d y S ACDE (a) (b) (c) (d) Courant (2.13) c 13

17 t = 0.9 c (2.13) ( 1 d x ) 2 +( 1 d y ) 2 +( 1 d z ) 2 H n+ 1 2 x (i, j + 1 2,k )=Hn 2 x (i, j + 1 2,k+ 1 2 ) t + µ(s ABF + S BCDEF ) {En z (i, j +1,k+ 1 2 ) l ED E n y (i, j + 1 2,k+1) l DC E n z (i, j, k) (l CB + l BA )} (2.14) C D E B A F A B C F (a) (b) E D D E C F B A F A B E D C (c) (d) 2.6 : CP-FDTD 14

18 2.2.2 CP-FDTD CP-FDTD FDTD 2.7 Yee 2.7 (H x1,h x2 ) k+1 y C1 x z z k Hx1 C2 S1 S2 Hx2 j Ey j+1 y Ez 2.7 : CP C1,C2 (2.15),(2.16) H n+ 1 2 x1 (i, j + 1 2,k )=Hn 2 x1 (i, j + 1 2,k+ 1 2 ) t µs 1 {Ey n (i, j + 1 t,k+ 1) y} + { Ez n (i, j, k + 1 ) z} (2.15) 2 µs 1 2 H n+ 1 2 x2 (i, j + 1 2,k )=Hn 2 x2 (i, j + 1 2,k+ 1 2 ) t µs 2 { Ey n (i, j + 1 t,k) y} + {Ez n (i, j +1,k+ 1 ) z} (2.16) 2 µs (a) 2.8 V 15

19 E n z n Vz (0, 0, 0) = z V z z z z (2.17) E z V = z y x 2.8 : (b) V z y V 1 V 2,V 1,V 2 I 1,I 2. z E = V ( y) ( z) y x 2.9 : 16

20 (a) 7.5cm 36 36cm 2.10(b) (c) CP 2.10(d) CP 1 V Measurement (b) Stair-stepped V V1 V2 (c) Gap-feed (d) Vector-feed 2.10 : 17

21 CP-FDTD 0 Return loss [db] Mea. Stair-stepped Gap feed Vector feed Frequency[GHz] 2.11 : 18

22 2.3 : : [GHz] [ ]

23 [db] [deg.] : zx [db] [deg.] 2.13 : yz Mea. Stair-stepped Gap Feed Vector Feed 20

24 yz z 5 5 x y 5 5 fine : y = z =1mm coarse : x = y = z =5mm 2.14 : 45 yz y, z x x (a) x +x 5 (b) 0 +x 5 (c) x 1mm 5mm 21

25 2.16 x x x z (a) Non Uniform Mesh -x~+x y z (b) Non Uniform Mesh 0~+x y (c) Uniform Mesh fine : x = y = z =1mm coarse : x = y = z =5mm : x Return loss [db] Mea. Vector feed Non Uniform Mesh -x~+x Non Uniform Mesh 0~+x Uniform Mesh Frequncy [GHz] 2.16 : x 22

26 FDTD CP CP CP CP x y, z 23

27 3 FDTD 2 CP θ = tan 1 2 θ = tan CP-FDTD (a) 3.1(a)(b) 2 (a) (b) FDTD 3.1(a)(b) ( a AB,AH,EF,FG z b AB,BC,EG,AG z y ) 24

28 H G I H A B F K E J A G F E B z C D K L C D (a) (b) x y (i,j,k) 3.1 : (b) FDTD 2 3.1(a)(b) 3.1(a) 3.1(b) E z (i, j, k + AB 2 z ) = E y(i, j, k 1 2 ) E z (i, j, k +1 AH 2 z ) = E y(i, j, k ) (3.1) E z (i, j +1,k+ EF 2 z ) = E y(i, j +1,k 1 2 ) E z (i, j +1,k+1 FG 2 z ) = E y(i, j +1,k+ 3 2 ) (3.2) E z (i, j, k + BC 2 z ) = E y(i, j, k 1 2 ) E z (i, j, k +1 AB 2 z ) = E y(i, j, k ) (3.3) (3.1) (3.3) 3.1 ABCDEFA BCDEB 25

29 H x (i, j +1/2,k 1/2) E y E y (i, j + 1 2,k) = E z(i, j, k 1 2 ) AB y + E z(i, j +1,k 1 2 ) EF y ) (3.4) 3.1(b) BCDEFGB BCDEGB H x (i, j+1/2,k+1/2) E y (i, j+1 EG/2 y, k+ 1) E y (i, j +1 EG 2 x,k+1) = E z(i, j +1,k+ 1 2 ) EF EG (3.5) (3.3)(3.4) 3.1(a) H x (i, j+1/2,k 1/2) ABCDEFA H n+ 1 2 x (i, j + 1 2,k )=Hn 2 y (i, j + 1 2,k 1 2 )+ t µ 0 z y {Ey n (i, j + 1 2,k 1) y + En z (i, j + 1 2,k 1 EF )(1 + 2 z ) y Ez n (i, j, k 1 AB )(1 + ) z} (3.6) 2 z H x (i, j +1/2,k+1/2) AFGHA 3.1(b) H x (i, j +1/2,k+1/2) BCDEFGB H x (i, j +1/2,k+3/2) ABFHIA (3.1) (3.4) 3.1(a) H y (i, j +1/2,k+ 1/2) E z (i, j, k + AB/2 y) E z (i, j, k +1 AH/2 y) H n+ 1 2 y (i + 1 2,j,k+ 1 2 )=Hn 1 2 y (i + 1 2,j,k+ 1 2 )+ t µ 0 z x {[Ex n (i + 1 2,j,k+1) En x (i + 1,j,k+ 1)] x 2 Ez n (i +1,j,k+ 1 2 ) z + En z (i, j, k 1 2 )AB +Ez n (i, j, k + 3 )AH} (3.7) 2 H y (i 1/2,j,k 1/2),H y (i +1/2,j+1,k+1/2) H y (i 1/2,j+1,k 1/2) 3.1(b) H y (i +1/2,j,k+1/2),H y (i 1/2,j,k+1/2) H z (i +1/2,j+1/2,k+ 1),H z (i 1/2,j+1/2,k+1) 26

30 V y z V y z z (a)vector feed 1 x y (b)vector feed : y z θ y z (3.8) y z x = y = 1 tanθ z V y = V z (3.8) 2 y z, y z (3.9) x = y = z V y = 1 tanθ V z (3.9) (3.10) E tan,y z 27

31 Etan = E z + E y = ( V )2 =( V z z ) 2 +( V y y ) 2 (3.10) (3.8),(3.9) (3.10) 1 y z V y = V z = 2 y z V y = tanθ 1+(tanθ) V 2 tanθ 1+(tanθ) V (3.11) 2 1 2(1 + (tanθ) 2 ) V V z = 1 2 2(1 + (tanθ) 2 ) V (3.12) CP-FDTD θ = tan 1 2 θ = tan θ = tan θ = tan L θ 3.3 : θ = tan

32 3.4 E y (i, j + BA 2 y,k+1) E y(i, j +1 BC 2 y,k+1) E y(i, j 1,k+1) E y (i, j +1,k+1) E z E y (i, j 1,k+1) l AB z 3.4 H x H z k+2 k+1 D E z H x A B C H E y x k E H x E z F H x j-1 j j+1 j : E z (i, j, k ) = E y(i, j 1 2,k+1) l AB z (3.13) E y (i, j + BA 2 y,k+1) = E y(i, j 1,k+ 1) 2 (3.14) E y (i, j +1 BC 2 y,k+1) = E y(i, j + 3,k+ 1) 2 (3.15) H n+ 1 2 x (i, j + 1 2,k+ 1 2 )=Hn 1 2 y (i, j + 1 2,k+ 1 2 ) t µ 0 z y {En y (i, j + 1 2,k) y Ey n (i, j + 3 2,k+1)l BC + Ez n (i, j +1,k+ 1 ) z} (3.16) 2 29

33 H n+ 1 2 z (i + 1 2,j ,k)=Hn 2 z (i + 1 2,j+ 1 t,k) 2 µ 0 z y {[E n x (i + 1 2,j,k) En x (i + 1 2,j+1,k)] x +Ey n (i +1,j+ 1 2,k) y + En y (i, j 1 2,k) y 2 E y (i, j ,k) y 2 } (3.17) θ = tan θ = tan y z V y V y z V z y =0.25mm, z =0.5mm (3.11) V y V z 2 V 2 y z 5 V y V y z V z y =0.5mm, z =0.5mm (3.12) V y 10 V 10 V z 10 V CP

34 0 Return loss [db] Mea. Stair-stepped Gap feed Vector Feed Freqency [GHz] 3.5 : θ = tan θ = tan :

35 0 Return loss [db] Mea. Stair-stepped Gap feed Vector Feed Freqency [GHz] 3.6 : θ = tan

36 0 Return loss [db] Mea. Vector Feed 1 Vector Feed Freqency [GHz] 3.7 : θ = tan : θ = tan 1 2 mea. 1 2 [GHz] [ ]

37 0 [db] [deg.] 3.8 : θ = tan 1 2zx 0 [db] [deg.] 3.9 : θ = tan 1 2yz Mea. Vector Feed 1 Vector Feed 2 34

38 θ = tan 1 2 x y z x z Return loss [db] Mea. Uniform mesh Non Uniform Mesh -x~+x Non Uniform Mesh x= Freqency [GHz] 3.10 : θ = tan 1 2 fine : x = z =1mm, y =0.5mm coarse : x = z =5mm, y =2.5mm 35

39 3.4 θ = tan θ = tan L θ 3.11 : θ = tan y z V y V y z V z y =0.5mm, z =0.25mm (3.11) V y V z 2 V 2 y z 5 V y V y z V z y =0.5mm, z =0.5mm (3.12) V y 10 V 5 V z 10 V , Return loss [db] Mea. Stair-stepped Gap Feed Vector Feed Freqency [GHz] 3.12 : θ = tan

40 0 Return loss [db] Mea. Stair-stepped Gap Feed Vector Feed Freqency [GHz] 3.13 : θ = tan Return loss [db] Mea. Vector Feed 1 Vector Feed Freqency [GHz] 3.14 : θ = tan : θ = tan mea. 1 2 [GHz] [ ]

41 [db] [deg.] : θ = tan zx [db] [deg.] 3.16 : θ = tan yz Mea. Vector Feed 1 Vector Feed 2 38

42 Mea. Uniform mesh Non Uniform Mesh -x~+x Non Uniform Mesh x= : θ = tan fine : x = y =1mm, z =0.5mm coarse : x = y =5mm, z =2.5mm θ = tan θ = tan x θ = tan

43 3.5 FDTD 2 CP 2 θ = tan 1 2 θ = tan CP x

44 4 FDTD r 0 =0.4mm CP x y z 0.71 CP 1 2 θ = tan 1 2 θ = tan

45 OB 42

46 [1], FDTD,, [2], FD-TD, ( 17/18 ). [3] T.G.Jurgens, A.Taflove, K.Umashankar and T.G.Moore, Finite-Difference Time- Domain Modeling of Curved Surfaces, IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, Vol40, No.4, APPIL [4],, FDTD,, Vol.100, No.340AP ,2000. [5],, CP F FDTD,, AP , pp [6],, CP FDTD,, AP ( ). [7] K.Yamamoto and H.Iki, Slant Wire Models Using Accurate Correction Techniques in FDTD Method, International Conference on Power Systems Transients- IPST2003. [8],, FDTD,, AP98-8, pp.7-12, May

47 1.,,, FDTD,, B-1-77, T.Lu, N.Michishita and H.Arai, Oblique Voltage Excitation for CP-FDTD, 2004 International Symposium on Antennas and Propagation, 2C4-1, Sendai, Japan, Aug ,,, FDTD,, B-1-76,

15228 98441 IMT- 2International Mobile Telecommunication 2 FBFront to Back IMT-2 H E 8 2/15 (2mm)H 5/4 (187mm)E 1 (15mm) FB 24.8dB E 3dB FB (H ) H 45 FB 23.8dB -6.2dB i 1 1 2 6 2.1.....................................

More information

main.dvi

main.dvi FDTD S A Study on FDTD Analysis based on S-Parameter 18 2 7 04GD168 FDTD FDTD S S FDTD S S S S FDTD FDTD i 1 1 1.1 FDTD.................................... 1 1.2 FDTD..................... 3 2 S 5 2.1 FDTD

More information

2005 1

2005 1 2005 1 1 1 2 2 2.1....................................... 2 2.2................................... 5 2.3 VSWR................................. 6 2.4 VSWR 2............................ 7 2.5.......................................

More information

3 16 2 27 4497 LAN(Local Area Network) OFDM(Orthogonal Frequency Division Multiplexing) 12 3 3 12 3 12 33. F/B 22.7dB 3 F/B i 1 1 2 3 8 2.1................................. 8 2.2.............................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

Doctor Thesis Template

Doctor Thesis Template A Study of Variable Beam-tilted Microstrip Array Antenna LAN(Local Area Network) LAN PC LAN LAN LAN 5.2GHz 20 25Mbps OFDM(Orthogonal Frequency Division Multiplexing) 2 2 90 2 60 30 45 60 1....2 1.1....

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

読めば必ずわかる 分散分析の基礎 第2版

読めば必ずわかる 分散分析の基礎 第2版 2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

gk9c02a.dvi

gk9c02a.dvi y y y Field Analysis in a Lossy Dielectric Sandwiched between Flanged Rectangular Waveguide and Conducting Plane Makoto HIRANO y, Masaharu TAKAHASHI y, and Minoru ABE y. ( ) [] [],[3] y Department of Electronics

More information

A Study of Small Built-in Antenna for Hand held Terminal

A Study of Small Built-in Antenna for Hand held Terminal A Study of Smll Built-in Antenn for Hnd held Terminl 6 9 IMT-2 Interntionl Mobile Telecommunictions-2 2GHz /4 PDA Personl Digitl Assistnt 2 FDTD Finite Difference Time Domin method 6 FDTD 3.6 2.5mm 2.25GHz

More information

JIS Z803: (substitution method) 3 LCR LCR GPIB

JIS Z803: (substitution method) 3 LCR LCR GPIB LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter

More information

‚å™J‚å−w“LŁñfi~P01†`08

‚å™J‚å−w“LŁñfi~P01†`08 156 2003 2 3 4 5 6 7 8 9 c f c a g 10 d c d 11 e a d 12 a g e 13 d fg f 14 g e 15 16 17 18 19 20 21 db de de fg fg g gf b eb g a a e e cf b db 22 d b e ag dc dc ed gf cb f f e b d ef 23 f fb ed e g gf

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

地中レーダによる地下計測

地中レーダによる地下計測 2001 7 sato@cneas.tohoku.ac.jp Tel&Fax:022-217-6075 1 (Ground Penetrating radar: GPR) ( ) 2 2.1 10MHz ε r c 3 v = = 10 8 ( m/ s) (1) ε ε r r 1 f (Hz) λ (m) ε r λ = vt = v f ( m) (2) 2.2 1 1 τ (s) d(m)

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】 B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00

More information

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13: B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O

More information

untitled

untitled ( ) (mm) (GHz)=300( ) 30 300GHz=1 10mm ( 2GHz2Mbps) Gbps= Mbps ( m),? S G=P/Pi30dB=1000 Gm=4πS/λ 2, S= 80λ 2 Gm=30dB η=g/gm, S= 80λ 2,G=27dB η=50% (GHz) 80 70 60 50 40 30 20 10 16 19 22 25 28 31 34 37

More information

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (, [ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語 A B C D E F G H I 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 K L J Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C RS-232C RS-232C Cable (cross) LAN cable (CAT-5 or greater) LAN LAN LAN LAN RS-232C BE

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

Microsoft Word - GrCadSymp1999.doc

Microsoft Word - GrCadSymp1999.doc u u Ê É Îf ÈÉ uõòñõçí uõòñõëêi oy * ÎÏ Ó ÏÕ( ) **Ï ÓÐ ÕÖ *** ÎÏ Ó ÏÕ( ) APÑÖÕ ÑÕ { itot, inoue, furuhata} @trl.ibm.co.jp shimada@cmu.edu Automated Conversion of Triangular Mesh to Quadrilateral Mesh with

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0 4 4.1 conductor E E E 4.1: 45 46 4 E E E E E 0 0 E E = E E E =0 4.1.1 1) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0 4.1 47 0 0 3) ε 0 div E = ρ E =0 ρ =0 0 0 a Q Q/4πa 2 ) r E r 0 Gauss

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

Quz Quz

Quz Quz http://www.ppl.app.keo.ac.jp/denjk III (1969). (1977). ( ) (1999). (1981). (199). Harry Lass Vector and Tensor Analyss, McGraw-Hll, (195).. Quz Quz II E B / t = Maxwell ρ e E = (1.1) ε E= (1.) B = (1.3)

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

, ,279 w

, ,279 w No.482 DEC. 200315 14 1754,406 100.0 2160,279 w 100 90 80 70 60 50 40 30 20 10 28.9 23.8 25.0 19.3 30.4 25.0 29.5 80.7 75.0 75.0 70.5 71.1 69.6 76.2 7 8 9 10 11 12 13 23.2 76.8 14 14 1751,189 100.0 2156,574

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

6.1号4c-03

6.1号4c-03 6.1 0 1 1 1 1 BF 1 C DB C 1* F E C 1 F 1 E C 1 E D 1 D 1 BF C G 1 DF 1 E 1 BF 1 BF 1 BF 1 BG 1 BG 1 BG 1 BF 1 BG 1 E 1 D F BF 1 BF 1 F 1 BF 1 F C 1 d 0 1 A 0 1 14 A G 0 1 A 1 G 0 1 1 1 E A 01 B 1 1 1 1

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B ( 8 ) ) [ ] [ ) 8 5 5 II III A B ),,, 5, 6 II III A B ) ),,, 7, 8 II III A B ) [ ]),,, 5, 7 II III A B ) [ ] ) ) 7, 8, 9 II A B 9 ) ) 5, 7, 9 II B 9 ) A, ) B 6, ) l ) P, ) l A C ) ) C l l ) π < θ < π sin

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

2

2 1 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234

More information

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 版が発効します 原文及び詳細はCPCホームページのCPC Revision

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 版が発効します 原文及び詳細はCPCホームページのCPC Revision 欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 2019.08 版が発効します 原文及び詳細はCPCホームページのCPC Revisions(CPCの改訂 ) をご覧ください https://www.cooperativepatentclassification.org/cpcrevisions/noticeofchanges.html

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

untitled

untitled 50cm 2500mm 300mm 15 CCD 15 100 1 2 3 4 23 SORA Kwak SeungJo 1 1.1 1995 20 2015 6 18 1931 1 2 3 2 ˆ 300mm 2500mm ˆ 2 1.2 WASP 1: 15 2048 2048 CCD 200mm 70 13 WASP 8 1.3 50cm 1 1: CCD 2: 1.4 MOST MOST 15

More information

5b_08.dvi

5b_08.dvi , Circularly Polarized Patch Antennas Combining Different Shaped Linealy Polarized Elements Takanori NORO,, Yasuhiro KAZAMA, Masaharu TAKAHASHI, and Koichi ITO 1. GPS LAN 10% [1] Graduate School of Science

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

デジタルICの電源ノイズ対策・デカップリング

デジタルICの電源ノイズ対策・デカップリング RoHS RoHS 2011/65/EU RoHS Web RoHS http://www.murata.co.jp/info/rohs.html IC 1-1 IC Power Distribution Network PDN 1-2 Power Integrity PI 1) 2) 1-3 3) 4) 5) 1-4 1 2 IC IC IC 1-3 1-3 (1) (2) (3) 3 IC

More information

1

1 1 - 2 - ... - 4 -... - 4 -... - 4 -... - 4 -... - 5 -... - 5 -... - 8 -... - 9 -... - 9 -... - 9 -... - 9 -... - 9 -... - 9 -... - 10 -... - 10 -... - 10 -... - 10 -... - 10 -... - 11 -... - 11 -... -

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

スライド 1

スライド 1 Antenna De-embedding in Propagation Simulation using FDTD Method D2 Jun-ichi Naganawa 2013/06/27 MCRG Seminar Based on: IEICE General Conf. (Mar. 2013) 1 Background and Purpose Outline Antenna De-embedding

More information

1

1 5-3 Photonic Antennas and its Application to Radio-over-Fiber Wireless Communication Systems LI Keren, MATSUI Toshiaki, and IZUTSU Masayuki In this paper, we presented our recent works on development of

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 1 月 17 日 CPC 版のプレ リリースが公開されました 原文及び詳細はCPCホームページの C

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 1 月 17 日 CPC 版のプレ リリースが公開されました 原文及び詳細はCPCホームページの C 欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 1 月 17 日 CPC 2019.02 版のプレ リリースが公開されました 原文及び詳細はCPCホームページの CPC Revisions(CPCの改訂 ) 内のPre-releaseをご覧ください http://www.cooperativepatentclassification.org/cpcrevisions/prereleases.html

More information

CVaR

CVaR CVaR 20 4 24 3 24 1 31 ,.,.,. Markowitz,., (Value-at-Risk, VaR) (Conditional Value-at-Risk, CVaR). VaR, CVaR VaR. CVaR, CVaR. CVaR,,.,.,,,.,,. 1 5 2 VaR CVaR 6 2.1................................................

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

10 117 5 1 121841 4 15 12 7 27 12 6 31856 8 21 1983-2 - 321899 12 21656 2 45 9 2 131816 4 91812 11 20 1887 461971 11 3 2 161703 11 13 98 3 16201700-3 - 2 35 6 7 8 9 12 13 12 481973 12 2 571982 161703 11

More information

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 24 11 10 24 12 10 30 1 0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 23% 29% 71% 67% 6% 4% n=1525 n=1137 6% +6% -4% -2% 21% 30% 5% 35% 6% 6% 11% 40% 37% 36 172 166 371 213 226 177 54 382 704 216

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

difgeo1.dvi

difgeo1.dvi 1 http://matlab0.hwe.oita-u.ac.jp/ matsuo/difgeo.pdf ver.1 8//001 1 1.1 a A. O 1 e 1 ; e ; e e 1 ; e ; e x 1 ;x ;x e 1 ; e ; e X x x x 1 ;x ;x X (x 1 ;x ;x ) 1 1 x x X e e 1 O e x x 1 x x = x 1 e 1 + x

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 = x n 1 1.,,.,. 2..... 4 = 2 2 12 = 2 2 3 6 = 2 3 14 = 2 7 8 = 2 2 2 15 = 3 5 9 = 3 3 16 = 2 2 2 2 10 = 2 5 18 = 2 3 3 2, 3, 5, 7, 11, 13, 17, 19.,, 2,.,.,.,?.,,. 1 , 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information