main.dvi

Size: px
Start display at page:

Download "main.dvi"

Transcription

1 1 10,.,,.,,,.,,, 2. 1,, [1].,,,.,,.,,,.. 100,,., [2]. [3,4,5]. [6,7,8,9,10,11]. [12, 13, 14]. 1 kau@statp.is.tohoku.ac.jp

2 CDMA [15, 16] , , ,,. [17, 18]. [19, 20, 21]. [17, 22].,,.,, Neural Information Processing Systems,, Workshop [23].,,.,, ,,.,.,., M, 1, 2,,M. A, 1 A =1., A, A =1 Pr{A =1}. 1, 2,,M

3 , A = a a =1, 2,,M Pr{A = a}. Pr{A = a} Pr{A = a} 0 a =1, 2,,M, M Pr{A = } =1 1 =1. A Pr{A = a} = P a 2 a P a, P a A. 1 P a 0 a =1, 2,,M, M P =1 3 =1., 2, A 1, A 2, M 1 M 2. A 1 = a 1, A 2 = a 2, A 1 = a 1 A 2 = a 2 Pr{A 1 = a 1,A 2 = a 2 } a 1 =1, 2,,M 1 ; a 2 =1, 2,,M 2 4 A 1 A 2. Pr{A 1 = a 1,A 2 = a 2 } A 2 A 1, Pr{A 1 = a 1 } = Pr{A 2 = a 2 } = M 1 M 2 M 2 δ a1, 1 Pr{A 1 = 1,A 2 = 2 } = Pr{A 1 = a 1,A 2 = 2 } 5 1=1 2=1 M 1 1=1 2=1 2=1 M 2 M 1 δ a2, 2 Pr{A 1 = 1,A 2 = 2 } = Pr{A 1 = 1,A 2 = a 2 } 6. δ a,b 1a = b, δ a,b 0a b., Pr{A k = a k } 1=1 k =1, 2 Pr{A 1 = a 1,A 2 = a 2 } A k.. K, A k, M k. A 1 = a 1 A 1 = a 1 A K = a K. Pr{A 1 = a 1,A 2 = a 2,,A K = a K } a k =1, 2,,M k,k=1, 2,,K 7, {A k k =1, 2,,K} {a k k =1, 2,,K} A, a Pr{A = a}. Pr{A = a} Pr{A = a} 0 a k =1, 2,,M k,k=1, 2,,K, Pr{A = } =1 8

4 ., { k k =1, 2,,K} k. M 1 M 2 1=1 2=1 M K K=1 9 A Pr{A = a} = P a 10 a P a, P a A. 8 P a P a 0, P = Pr{A = a} Pr{A k = a k } = δ ak, k Pr{A = } 12 Pr{A k = a k,a k = a k } = δ ak, k δ ak, k Pr{A = } 13 Pr{A k = a k,a k = a k,a k = a k } = δ ak, k δ ak, k δ ak, k Pr{A = } 14. Pr{A 1 = a 1,A 2 = a 2 } Pr{A 1 = a 1 A 2 = a 2 } Pr{A 2 = a 2 A 1 = a 1 }. Pr{A 1 = a 1 A 2 = a 2 } Pr{A 1 = a 1,A 2 = a 2 } Pr{A 2 = a 2 } Pr{A 2 = a 2 A 1 = a 1 } Pr{A 1 = a 1,A 2 = a 2 } Pr{A 1 = a 1 } 15 Pr{A 1 = a 1,A 2 = a 2 } =Pr{A 1 = a 1 A 2 = a 2 }Pr{A 2 = a 2 } =Pr{A 2 = a 2 A 1 = a 1 }Pr{A 1 = a 1 } 16. Pr{A 2 = a 2 }. Pr{A 1 = a 1 A 2 = a 2 } = Pr{A 2 = a 2 A 1 = a 1 }P {A 1 = a 1 } P {A 2 = a 2 } 17 M 1 M 1 Pr{A 2 = a 2 } = Pr{A 1 = a 1,A 2 = a 2 } = Pr{A 2 = a 2 A 1 = a 1 }Pr{A 1 = a 1 } 18 a 1=1 a 1=1 Pr{A 1 = a 1 A 2 = a 2 } = Pr{A 2 = a 2 A 1 = a 1 }Pr{A 1 = a 1 } M 1 Pr{A 2 = a 2 A 1 = a 1 }Pr{A 1 = a 1 } a 1=1 19

5 A 1 = a 1 Pr{A 1 = a 1 } A 1 = a 1 A 2 = a 2 Pr{A 2 = a 2 A 1 = a 1 }, A 2 = a 2 A 1 = a 1 Pr{A 1 = a 1 A 2 = a 2 }. Pr{A 1 = a 1 }, Pr{A 1 = a 1 A 2 = a 2 }.,, A 1 = a 1, A 2 = a 2,,,,., 3 A 1, A 2, A 3. Pr{A 1 = a 1,A 2 = a 2,A 3 = a 3 } 2. Pr{A 1 = a 1,A 2 = a 2,A 3 = a 3 } =Pr{A 3 = a 3 A 1 = a 1,A 2 = a 2 }Pr{A 1 = a 1,A 2 = a 2 } =Pr{A 3 = a 3 A 1 = a 1,A 2 = a 2 }Pr{A 2 = a 2 A 1 = a 1 }Pr{A 1 = a 1 } 20 Pr{A 1 = a 1,A 2 = a 2,A 3 = a 3 } =Pr{A 1 = a 1,A 2 = a 2 A 3 = a 3 }Pr{A 3 = a 3 } 21, Pr{A 1 = a 1,A 2 = a 2 A 3 = a 3 }Pr{A 3 = a 3 } =Pr{A 3 = a 3 A 1 = a 1,A 2 = a 2 }Pr{A 2 = a 2 A 1 = a 1 }Pr{A 1 = a 1 } 22. a 2, Pr{A 1 = a 1 A 3 = a 3 }Pr{A 3 = a 3 } M 2 = Pr{A 3 = a 3 A 1 = a 1,A 2 = a 2 }Pr{A 2 = a 2 A 1 = a 1 }Pr{A 1 = a 1 } 23 a 2=1, Pr{A 1 = a 1 A 3 = a 3 } 1 M 2 = Pr{A 3 = a 3 A 1 = a 1,A 2 = a 2 }Pr{A 2 = a 2 A 1 = a 1 }Pr{A 1 = a 1 } 24 Pr{A 3 = a 3 } a 2=1 Pr{A 3 = a 3 } = M 1 M 2 Pr{A 3 = a 3 A 1 = a 1,A 2 = a 2 }Pr{A 2 = a 2 A 1 = a 1 }Pr{A 1 = a 1 }25 a 1=1a 2=1. 24 A 1 = a 1, A 2 = a 2, A 3 = a 3, A 3 = a 3 A 1 = a 1,..

6 3 A 1, A 2, A 3 Pr{A 1 = a 1,A 2 = a 2,A 3 = a 3 } Pr{A 1 = a 1,A 2 = a 2,A 3 = a 3 } = P a 1,a 2,a 3 26 P a 1,a 2,a 3,, Pr{A 1 = a 1,A 2 = a 2,A 3 = a 3 } =exp Ea 1,a 2,a 3 27 Ea 1,a 2,a 3 lnp a 1,a 2,a =expln, 27 Ea 1,a 2,a exp Ea 1,a 2,a 3 Pr{A 1 = a 1,A 2 = a 2,A 3 = a 3 } = M 1 M 2 M 3 exp E 1, 2, 3 1=1 1=1 1=1., P a 1,a 2,a 3 > 0,. Ea 1,a 2,a 3,..,..,,. 29 3,. K A = {A k k =1, 2,,K} a = {a k k =1, 2,,K} Pr{A = a} = P a m k = a a k P a, V k = a a k m k 2 P a K, OexpK., 100, K = , OK.. Pr{A = a} = P a K P a = P k a k 30 k=1

7 . P k a k P k a k 0a k =1, 2,,M k M k k =1 P k k = 1. A, n. k 1 M l M k K M l M k n k P = P l l n k P k k P l l = n k P k k 31 l=1 l =1 k =1 l=k+1 l =1 k =1 31 m k, V k. Pr{A = a} = P a K W k,k+1 a k,a k+1 k=1 P a = K W k,k+1 k, k+1 k=1. L k 1 k a k R k+1 k a k 2. L k 1 k a k = = = M k 1 k 1 =1 k =1 M k 1 L k 1 k a k = R k+1 k a k = M k 1 k 1 =1 k =1 M k k 1 =1 k =1 R k+1 k a k = = = M k k =1 k+1 =1 M k M k+1 M k+1 k =1 k+1 =1 M 1 M 2 M k 1=1 2=1 M k M k+1 k =1 k+1 =1 k =1 δ ak, k k 1 M K K=1 M k M 1 δ ak, k W k 1,k k 1, k M 1 δ ak, k W k 1,k k 1, k 1 =1 M 2 2 =1 32 W l,l+1 l, l+1 33 l=1 δ ak, k K 1 W l,l+1 l, l+1 34 l=k M 2 1=1 2=1 M k 1 M k 2 k 2 =1 l=1 δ k 1, k 1 k 1 =1 l=1 k 2 W l,l+1 l, l+1 k 2 W l,l+1 l, l+1 M k δ ak, k W k 1,k k 1, k L k 2 k 1 k 1 35 M k M k+1 k =1 k+1 =1 M k+2 δ ak, k W k,k+1 k, k+1 M k+1 δ ak, k W k,k+1 k, k+1 k+1 =1 M k+3 k+2 =1 k+3 =1 M k+2 k+2 =1 M K M K K K=1l=k+1 K δ k+1, k+1 K =1 l=k+1 W l,l+1 l, l+1 W l,l+1 l, l+1 δ ak, k W k,k+1 k, k+1 R k+2 k+1 k L k k+1 a k+1 R k k 1 a k 1. L k k+1 a k+1 = R k k 1 a k 1 = M k M k+1 k =1 k+1 =1 M k 1 k 1 =1 k =1 δ ak+1, k+1 L k 1 k k W k,k+1 k, k+1 37 M k δ ak 1, k 1 L k+1 k k W k 1,k k 1, k 38

8 37 38 L k 1 k a k R k 1 k a k n n k P = M k k L k 1 k k R k+1 k k k =1 M k L k 1 k k R k+1 k k k =1, m k, V k..,. A = {A 1,A 2,,A K } K Ω={1, 2,,K}.., B. A a B Pr{A = a} = P a. B W k,l a k,a l kl B P a = W k,l k, l kl B B = {kl k =1, 2,,K 1, l= k +1} 41, , B kl B kl B\{kl}. B B\{kl}, B, B\{kl} 2, B. B, 40 n. Λ k ka k Λ k ka k = M k M k k =1 k =1 M k n k P = M k n k k =1 M k k =1 δ ak, k W k,k k, k M k k =1 k =1 W k,k k, k Λ l k k l c k. 42 Λ l k k l c k l c k \{k} l c k \{k} Λ l k k Λ l k k k Ω, k c k 43., c k k, c k \{k} c k k 2., Λ k ka k m k, V k. 2, 41 B, c k = {k 1,k+1}, c k \{k±1} = {k 1}.

9 a 30,. b 40 B, , 37, 38, 43 M k k =1,.. b.,,.,,.,,,. 4,,. A a 2 P a Qa, D[P Q] Q Qln 44 P., 2,. i D[P Q] 0 ii P a =Qa D[P Q] =0 x>0 lnx x 1, x =1. ln P Q P Q 1 D[P Q], D[P Q] Q Qln Q 1 P P Q =1 1 = 0 45 P Q D[P Q] 0., D[P Q] =D[Q P ], 2.

10 a Ea, Ea P a = exp Ea exp E T>0 46., Ea, T. 44, D[P Q] =F[Q]+ln exp E 47 F[Q] EQ Qln Q 48. F[Q], P a 46, D[P Q], Qa P a, F[Q] Qa. Q =1 F[Q] { Q = argmin F[Q] Q } Q =1 49,., λ. L[Q] F[Q] λ Q 1 50 L[Q] Q. Qa =exp Ea 1+λ λ, Q 46., Q F[ Q] =minf[q] = ln exp E 52 Q. 5.

11 ,.., Ω={x, y x =1, 2,,M, y =1, 2,,N}. x, y S ±1, exp B s + Cs s x+1,y + Cs s +1 Ω Pr{S = s} = P s exp Ω B + C x+1,y + C = Ω =±1. S m 54 Pr{S = } S s m s x+1,y m x+1,y 0 s m s +1 m +1 0 s = {s x, y Ω}.., s m s x+1,y m x+1,y 0. s s x+1,y s m x+1,y + m s x+1,y m m x+1,y 55 s m s +1 m , m {m } 1. m =tanh B + C m x+1,y + m x 1,y + m +1 + m B x-1,y m x-1,y m -1 m +1 m x+1,y x+1,y -1 m 1: 56.. S P s δ s, P s 57

12 . 2 Ω 1., P s Qs Q s 58 Ω Q s δ s, Qs 59 Qs, 48. F[Q] =F MFA [ {Q x, y Ω} ] Ω + Ω ζq ζ B + C ζq x+1,y ζ+c ζq +1 ζ Q ζlnq ζ 60 Q ζ =1 {Q ζ x, y Ω}, D[P Q] Qs P s {Q ζ x, y Ω} { Q ζ x, y Ω}. { Q ζ = argmin F MFA [{Q x, y Ω}] Q } Q ζ =1x, y Ω 61 D[P Q], F[Q], { Q ζ x, y Ω} {P ζ x, y Ω}. Q ζ =1 λ L [ {Q x, y Ω} ] F MFA [ {Q x, y Ω} ] Ω λ Q ζ 1 62, {Q ζ x, y Ω}, λ, { Q ζ x, y Ω}. exp B + C ζ Qx,y ζ ζ Q ζ = exp B + C x,y c ζ =±1 x,y c ζ =±1 ζ Q x,y ζ 63 ζ c { } x +1,y, x 1,y, x, y +1, x, y 1 64, S Q ζ m Q = ζq ζ 65

13 63 56,.,., B = h/t x, y Ω, C = J/T, h, J, T, Ω M N,., S m x, y, m = m. m, s, h, m. 56 h m =tanh T + 4J T m. 56,, h J T. 66 Step 1: J h. Step 2: T T =8 Step 3: m =0 Step 4: ε<10 6 h µ m, m tanh T + 4J T µ, ε m µ Step 5: T T 0.10, T/J < 0.10, Step 4 h = , J =1, m m : h = , J =1 66 m T. T ,, h = h =0

14 6,. 2,,., [9,10,11,24,25,26]., x, y, F G. Ω {x, y x =1, 2,,M, y =1, 2,,N}. 2. F = {F x, y Ω}, g = {g x, y Ω}., f = {f x, y Ω} g = {g x, y Ω} Pr{F = f G = g = Pr{G = g F = f}pr{f = f} Pr{G = g F = }Pr{F = } 67 = Ω =±1 68. Pr{G = g F = f} f g. Pr{F = f} f., Pr{F = f}, f, f Pr{G = g F = f} g., g f Pr{F = f G = g} 3. Pr{F=f} Pr{G=g F=f } Pr{F=f G=g} 3:., 1 1 2,, 2,., m =0 m =0, h = m 0.

15 g f p 1 1, Pr{G = g F = f} Ω 1 pδ f,g + p1 δ f,g 69 f 5. Pr{F = f} Ω Ω exp 12 αf f x+1,y 2 Ω exp 12 α x+1,y 2 Ω exp 1 2 αf f exp 1 2 α +1 2 f f x, y f x±1,y, x, y±1, f. 2. 4, p =0.2 20% p f = -1 g = -1 p g = 1 1-p f = 1 g = 1 p g = -1 4: 2. a b c 5: α aα =0.25. b α =0.5. c α =1.,,

16 ...,. α 5. 70,.,., 5?., , Pr{F = f G = g}. Pr{F = f G = g} = exp Ef g exp E g 71 Ef g Ω 1 2 βg f αf f x+1,y αf f β 1 1 p 2 ln p 73 f = { f x, y Ω} Pr{F = f G = g} f =argmaxpr{f = f G = g} f 74 Pr{F = f G = g} δ f, Pr{F = G = g} 75,. Pr{F = f G = g} Pr{F = f G = g} f. 75 Pr{F = f G = g}, 2 Ω 1,.. 7, 71 F Pr{F = f G = g}, [9, 10, 11, 24, 25, 26]..

17 , 71. Pr{F = f G = g} = 1 W f Z Ω Ef g = Ω W x+1,y f,f x+1,y W f W x+1,y f x+1,y Ω Ω Ω lnw f Ω W +1 f,f +1 W f W +1 f +1 lnw x+1,y f,f x+1,y lnw f lnw x+1,y f x+1,y lnw +1 f,f +1 lnw f lnw +1 f +1 Z, W ξ W x,y ξ,ξ. W ξ exp 1 2 βξ g 2 78 W x,y ξ,ξ exp 1 2 βξ g βξ g x,y αξ ξ Pr{F = f G = g} =minf[q] 80 Q F[Q] E[Q] S[Q] 81 E[Q] E gq, S[Q] QlnQ 82, Qf Q f δ f, Q 83 Q x,y f,f x,y δ f, δ fx,y, x,y Q 84. Q f Q x,y f,f x,y fs =P s h Pr{F = f G = g}. 72, E[Q] = Q ζlnw ζ Ω Q x+1,y Ω ζ =±1 ζ,ζ lnw x+1,y ζ,ζ Q ζlnw ζ Q +1 Ω ζ =±1 ζ,ζ lnw +1 ζ,ζ Q ζlnw ζ Q x+1,y ζlnw x+1,y ζ Q +1 ζlnw +1 ζ 85

18 ., E[Q] Q f, Q x+1,y f,f x+1,y Q +1 f,f +1., S[Q], F[Q] Q f, Q x+1,y f,f x+1,y Q +1 f,f +1,. 76 Qf Qf = Ω Q f Ω Ω Q x+1,y f,f x+1,y Q f Q x+1,y f x+1,y Q +1 f,f +1 Q f Q +1 f +1 Qf , S[Q] 86. S[Q] S + S x+1,y S S x+1,y + Ω Ω Ω S +1 S S S Q ζln Q ζ 88 S x,y ζ =±1 Q x,y ζ,ζ ln Q x,y ζ,ζ 89 S[Q], S. α =0. α..,, S x+1,y S S x+1,y S +1 S S F[f]. F[Q] F Bethe [{Q,Q x+1,y,q +1 x, y Ω}] Q ζln Q ζ W ζ Ω + Q x+1,y Ω ζ =±1 + ζ,ζ ln Qx+1,y ζ,ζ W x+1,y ζ,ζ Q ζln Q ζ W ζ Q x+1,y ζln Q x+1,yζ W x+1,y ζ Q +1 Ω ζ =±1 ζ,ζ ln Q+1 ζ,ζ W +1 ζ,ζ

19 Q ζln Q ζ W ζ Q +1 ζln Q +1ζ W +1 ζ 90 83, 84. Q ζ = Q x+1,y ζ,ζ = Q x 1,y ζ,ζ ζ =±1 ζ =±1 = Q +1 ζ,ζ = Q 1 ζ,ζ ζ = ±1 91, Q s, Q x+1,y F Bethe [{Q,Q x+1,y. { Q, =arg x+1,y Q, +1 Q {Q,Q x+1,y ζ =±1 ζ =±1 ζ,ζ, Q +1 ζ,ζ 91,Q +1 x, y Ω}] x, y Ω } min,q +1 Ω} { [ {Q F Bethe,Q x+1,y,q +1 } ] x, y Ω Q f = = Q x+1,y f,ζ= Q x 1,y ζ,f Q +1 Q 1 ζ,f, Q ζ = f,ζ= Q x+1,y ζ =±1 ζ,ζ = ζ =±1 Q +1 ζ,ζ =1 } 92. L Bethe [ {Q,Q x+1,y L Bethe [ {Q,Q x+1,y,q +1 [ {Q = F Bethe,Q x+1,y,q +1 Ω Λ x+1,y Λ x 1,y Ω Λ +1 Ω Λ 1 Ω Ω } ] x, y Ω,Q +1 } ] x, y Ω ζ Q ζ Q x+1,y ζ,ζ ζ =±1 ζ Q ζ ζ =±1 ζ Q ζ ζ =±1 ζ Q ζ ν Q ζ 1 ν x+1,y Ω ζ =±1 ζ =±1 Q x+1,y ν +1 Q +1 Ω ζ =±1 x 1,y ζ,ζ Q ζ,ζ Q +1 1 ζ,ζ Q ζ,ζ 1 ζ,ζ 1 x, y Ω }] Q ξ, Q x+1,y 93 ξ,ξ, Q +1 ξ,ξ

20 . 1 W ξ ξ Q ξ = W ζ x,y c exp x,y c exp,y c 1 Λx 1,y c 1 Λx, 94 ζ Q x,y ξ,ξ = W x,y ζ =±1 ξ,ξ exp Λ x,y W x,y ζ,ζ exp ξ Λ x,y exp Λ x,y ξ, ζ exp Λ x,y ζ 95 {ν,ν x,y x, y Ω, x,y c }. { Λ x,y ζ,,y Λx ζ x, y Ω, x,y c,ζ {±1} } 91. exp Λ x,y ξ = x,y c \{x,y } M x,y ξ 96, M x,y ξ, Q ξ, Q x+1,y ξ,ξ, Q +1 ξ,ξ. Q x,y ξ,ξ = Q ξ = W x,y ξ,ξ ζ =±1 M x,y ξ = W x,y ζ,ζ W ξ W ζ x,y c \{x,y } M x,y x,y c ξ x,y c M x,y M x,y x,y c \{x,y } W x,y ξ,ζ W ξ ζ =±1 W x,y ζ,ζ W ζ ξ M x,y ζ ζ, 97 x,y c x,y \{} M x,y x,y x,y c x,y \{} x,y c x,y \{} M x,y x,y c x,y \{} ζ M x,y x,y ξ M x,y x,y ζ, x,y ζ c { } x +1,y, x 1,y, x, y +1, x, y { M x,y ξ }.. 97 x, y M x,y x,y c. 6.

21 98 f x+1,y ζ,ζ, x, y x +1,y M x,y x,y c \{x +1,y}., x +1,y x, y M x,y x,y c \{x, y}. 7., 102 x,y =x +1,y, x, y x +1,y M x,y x,y c \{x +1,y}, x +1,y M x,y M +1 x-1,y M x-1,y M -1 M x+1,y -1 x+1,y 6: 97 f ζ. a x-1,y +1 M x-1,y M -1-1 M +1 M x+1,y-1 x+1,y x+1,y x+1,y+1 M x+1,y+1 x+1,y M x+2,y x+1,y x+1,y-1 x+2,y b M x-1,y x-1,y+1 x-1,y +2 M x-1,y M x+1,y-1 M M x+1,y+1 +1 M x+1,y x+1,y+1 x+1,y x+1,y-1 7: 98 f x+1,y ζ,ζ f +1 ζ,ζ. a x,y =x +1,y. b x,y =x, y , M x,y x,y ζ ζ 0, 1 M x,y x,y x,y exp λ 1 = 2coshλ x,y, Mx,y x,y x,y expλ 1 = 2coshλ x,y 101, 144. λ x,y tanhαtanh =arctanh βh + x,y c \{x,y } λ x,y ,. f = { f x, y Ω} 74. Pr{F = f G = g} 97-99, x, y Q f

22 a M x-1,y x-1,y M -1 c x-1,y M x-1,y M M +1 M x+1,y M +1 M x+1,y x+1,y x+1,y b M x-1,y x-1,y M -1 d x-1,y M x-1,y M M +1 M x+1,y M +1 M x+1,y x+1,y x+1,y : 102. a x,y =x +1,y. b x,y = x 1,y. c x,y =x, y + 1. d x,y =x, y 1.. α p. Step 1: f = {f x, y Ω}, g = {g x, y Ω} p, α, R,. Step 2: M x,y ξ =0x, y Ω, x,y c, ξ {±1}, T 1+R. Step 3: T T, r 0. Step 4: r r +1,a x,y ζ M x,y ζ x, y Ω, x,y c, ζ {±1}. { } Step 5: M x+1,y ξ, M +1 ξ x, y Ω,ξ {±1}. x,y 1/T W ξ,ζ a x,y W ξ x,y ζ M x,y x,y c x,y \{} ξ x,y 1/T W ζ,ζ W ζ a x,y x,y ζ ζ =±1 x,y c x,y \{} x,y c 103 Step 6: 1 MN Ω x,y c a x,y ζ M x,y ζ < Step 4, Step 7. Step 7: T =1 Step 3, f = { f x, y Ω} f arg max W ξ x M,y ξ x,y c 105, a α =0.5,

23 . α, p. 10a Mandrill., 10 2,. p, α, 70,.. a b c 9: 2 a α =0.5, b p =0.2, 69, 2. c p =0.2, α =0.5 a b c 10: 2 a. b p =0.2. c p =0.2, α =0.35 p α, p α. 70 α α p α, p, [9, 11]. α, p =max Pr{G = g F = }Pr{F = } 106 α,p

24 a b c 11: a. b N [0, 30 2 ]. c σ = 30, α = Pr{G = g} Pr{G = g F = }Pr{F = },. 0, 1,. 0, σ 2 = 1 2β N [0,σ2 ]., Pr{G = g F = f} Ω 1 exp 1 2πσ 2σ 2 f g σ = C URL: http : // kau/smapip-kaukau/. 8.. Pearl [3]., [2].,..., 4, 12,. K. Murphy http : // murphyk/bayes/bayes.html. 4 [ ], [ ], [ ], [ ], true T false F 2

25 A C, A S, A R, A W. Cloudy A =True or False C Sprinklet A =True or False S Rain A =True or False R Wet Grass A =True or False W 12: 4. Pr{A C = a C,A S = a S,A R = a R,A W = a W } =Pr{A W = a W A C = a C,A S = a S,A R = a R }Pr{A C = a C,A S = a S,A R = a R } =Pr{A W = a W A C = a C,A S = a S,A R = a R }Pr{A R = a R A C = a C,A S = a S } Pr{A C = a C,A S = a S } =Pr{A W = a W A C = a C,A S = a S,A R = a R }Pr{A R = a R A C = a C,A S = a S } Pr{A S = a S A C = a C }Pr{A C = a C } 108.,... Pr{A W = a W A C = a C,A S = a S,A R = a R } A C, Pr{A R = a R A C = a C,A S = a S } S Pr{A W = a W A C = a C,A S = a S,A R = a R } =Pr{A W = a W A S = a S,A R = a R } Pr{A R = a R A C = a C,A S = a S } =Pr{A R = a R A C = a C } 109., Pr{A C = a C,A S = a S,A R = a R,A W = a W }. Pr{A C = a C,A S = a S,A R = a R,A W = a W } =Pr{A W = a A A S = a S,A R = a R }Pr{A R = a R A C = a C } Pr{A S = a S A C = a C }Pr{A C = a C } Pr{A W = a A A S = a S,A R = a R },Pr{A R = a R A C = a C },Pr{A S = a S A C = a C },Pr{A C = a C } 1.,

26 1: 110 Pr{A W = a A A S = a S,A R = a R },Pr{A R = a R A C = a C },Pr{A S = a S A C = a C },Pr{A C = a C }. T true, F false. a C Pr{A C = a C } T 0.5 F 0.5 a S Pr{A S = a S A C =T} Pr{A S = a S A C =F} T F a R Pr{A R = a R A C =T} Pr{A R = a R A C =F} T F a W Pr{A W = a W A S =T,A R =T} Pr{A W = a W A S =T,A R =F} T F a W Pr{A W = a W A S =F,A R =T} Pr{A W = a W A S =F,A R =F} T F , Pr{A R = a R A W = a W } = Pr{A R = a R,A W = a W } Pr{A W = a W } Pr{A S = a S A W = a W } = Pr{A S = a S,A W = a W } Pr{A W = a W } Pr{A R = a R,A W = a W } = Pr{A S = a S,A W = a W } = Pr{A W = a W } = a C=T,Fa S=T,F a C=T,Fa R=T,F a C=T,Fa S=T,Fa R=T,F Pr{A C = a C,A S = a S,A R = a R,A W = a W } 112 Pr{A C = a C,A S = a S,A R = a R,A W = a W } 113 Pr{A C = a C,A S = a S,A R = a R,A W = a W } 114, Pr{A S =true,a W =ture=0.2781, Pr{A R =true,a W =true=0.4581, Pr{A W = true = Pr{A R =true A W =true} = Pr{a R =true,a W =true} Pr{A W =true} Pr{A S =true A W =true} = Pr{A S =true,a W =true} Pr{A W =true} = = = =

27 , Asia, [4]. Visit to Asia: A 1 Visit : A 1 = -1 No Visit : A 1 = +1 Smoking: A 2 Smoker : A 2 = -1 Non Smoker : A 2 = +1 Tuberculosis: A 3 Present : A 3 = -1 Absent : A 3 = +1 Lung Cancer: A 4 Present : A 4 = -1 Absent : A 4 = +1 Bronchitis: A 5 Present : A 5 = -1 Absent : A 5 = +1 Tuberculosis or Cancer: A 6 True : A 6 = -1 False : A 6 = +1 X-ray Result: A 7 Abnormal : A 7 = -1 Normal: A 7 = +1 Dyspnea: A 8 Present : A 8 = -1 Absent : A 8 = +1 13: A 1 A 2 A3 A4 A5 A 6 A7 A8 14: ,. Pr{A 1 = a 1,A 2 = a 2,A 3 = a 3,A 4 = a 4,A 5 = a 5,A 6 = a 6,A 7 = a 7,A 8 = a 8 } =Pr{A 7 = a 7,A 8 = a 8 A 1 = a 1,A 2 = a 2,A 3 = a 3,A 4 = a 4,A 5 = a 5,A 6 = a 6 } Pr{A 1 = a 1,A 2 = a 2,A 3 = a 3,A 4 = a 4,A 5 = a 5,A 6 = a 6 }

28 =Pr{A 7 = a 7,A 8 = a 8 A 1 = a 1,A 2 = a 2,A 3 = a 3,A 4 = a 4,A 5 = a 5,A 6 = a 6 } Pr{A 5 = a 5,A 6 = a 6 A 1 = a 1,A 2 = a 2,A 3 = a 3,A 4 = a 4 } Pr{A 1 = a 1,A 2 = a 2,A 3 = a 3,A 4 = a 4 } =Pr{A 7 = a 7,A 8 = a 8 A 1 = a 1,A 2 = a 2,A 3 = a 3,A 4 = a 4,A 5 = a 5,A 6 = a 6 } Pr{A 5 = a 5,A 6 = a 6 A 1 = a 1,A 2 = a 2,A 3 = a 3,A 4 = a 4 } Pr{A 3 = a 3,A 4 = a 4 A 1 = a 1,A 2 = a 2 } Pr{A 1 = a 1,A 2 = a 2 } Pr{A 7 = a 7,A 8 = a 8 A 1 = a 1,A 2 = a 2,A 3 = a 3,A 4 = a 4,A 5 = a 5,A 6 = a 6 } = V 56 8 a 8 a 5,a 6 V 6 7 a 7 a 6 Pr{A 5 = a 5,A 6 = a 6 A 1 = a 1,A 2 = a 2,A 3 = a 3,A 4 = a 4 } = V 2 5 a 5 a 2 V 34 6 a 6 a 3,a 4 Pr{A 3 = a 3,A 4 = a 4 A 1 = a 1,A 2 = a 2 } = V 1 3 a 3 a 1 V 2 4 a 4 a 2 Pr{A 1 = a 1,A 2 = a 2 } = V 1 a 1 V 2 a Pr{A 1 = a 1,A 2 = a 2,A 3 = a 3,A 4 = a 4,A 5 = a 5,A 6 = a 6,A 7 = a 7,A 8 = a 8 } = V 56 8 a 8 a 5,a 6 V 6 7 a 7 a 6 V 34 6 a 6 a 3,a 4 V 2 5 a 5 a 2 V 2 4 a 4 a 2 V 1 3 a 3 a 1 V 2 a 2 V 1 a 1 118, W 568 a 5,a 6,a 8 =V 56 8 a 8 a 5,a 6 W 67 a 6,a 7 =V 6 7 a 7 a 6 W 346 a 3,a 4,a 6 =V 34 6 a 6 a 3,a 4 W 25 a 2,a 5 =V 2 5 a 5 a 2 V 2 a 2 W 24 a 2,a 4 =V 2 4 a 4 a 2 V 2 a 2 W 13 a 1,a 3 =V 1 3 a 3 a 1 V 1 a 1 W 2 a 2 =V 2 a 2 W 3 a 3 =W 4 a 4 =W 5 a 5 =W 6 a 6 =1 119, 118 Pr{A 1 = a 1,A 2 = a 2,A 3 = a 3,A 4 = a 4,A 5 = a 5,A 6 = a 6,A 7 = a 7,A 8 = a 8 } = 1 W 568 a 5,a 6,a 8 W 67 a 6,a 7 W 346 a 3,a 4,a 6 W 25 a 2,a 5 W 24 a 2,a 4 W 13 a 1,a 3 Z W 2 a W 3 a 3 W 4 a 4 W 5 a 5 W 6 a 6., Z. { } C 568, 67, 346, 25, 24, 13, 2, 3, 4, 5, { µ568 = µ67 = µ346 = µ25 = µ25 = µ24 = µ13 = 1 µ2 = 2, µ3 = µ4 = µ5 = µ6 = 1, 122 } } i α i α A α {A i, a α {a i α C 123

29 . C, 2 < 24, 2 < 25, 3 < 13, 3 < 346, 4 < 24, 4 < 346, 5 < 25, 5 < 568, 6 < 346, 6 < 67, 6 < 568, 124, C. i<α i 2 α. i α. α. 118 W α a α µα α C Pr{A = a} = 125 W α α µα α C. W α a α µα Eα: 8 i=1 i=±1 126 Ea α Cµαln W α a α 127, Pr{A = a} Pr{A = a} = exp Ea exp E 128, Ea. 3 Pr{A = a}. Pr{A = a} =minf[q] 129 Q F[Q] E[Q] S[Q] 130 E[Q] EQ, S[Q] QlnQ 131, Qf Q α a α δ ai, i Q 132 {i i α}, α Q α α =1α C 133

30 Q α a α = γ {i i α} δ ai, i Q γ γ α<γ C 134 α {i i α} i=±1 135., 132 E[Q] Q α a α α C E[Q] = α Cµα α Q α α ln W α α 136. Qa Qa = Q 568a 5,a 6,a 8 Q 67 a 6,a 7 Q 346 a 3,a 4,a 6 Q 25 a 2,a 5 Q 24 a 2,a 4 Q 13 a 1,a 3 Q 2 a 2 2 Q 3 a 3 Q 4 a 4 Q 5 a 5 Q 6 a Qa = α CQ α a α µα 138, Q α a α = Q α a α Pr{A α = a α }. S[Q] S[Q] = α Cµα α Q α α ln Q α α F[Q] F CVM [{Q α α C}] µα Q α α ln Q α α α C Q α α α 140 F[Q] {Q α α C} F CVM [{Q α α C}]. { Q { α α C} arg min F CVM [{Q α α C}] Q α α =1α C, {Q α α C} α Q α a α = } δ ai, i Q γ γ α<γ C. 141 γ {i i α},,,, { Q α α C}. Q i a i = W i a i i W i i {α α c i} {α α c i} M α i a i M α i i, 142

31 Q α a α = W α a α M γ i a i α W α α {i i α}{γ γ c i\{α}} {i i α}{γ γ c i\{α}} M γ i i, 143 M α i a i = δ ai, i α α Wα α W i i Wα α W i i {j j<α}{γ γ c j\{α}} {j j<α}{γ γ c j \{α}} M γ j j M γ j j. 144?.,.. i C. ii Ω C Ω C\Ω γ γ γ<γ γ>γ. iii µγ µγ = 1 γ C\Ω, µi = 1 µγ i Ω. {γ γ>i, γ C} iv Pr{A = a} V 56 8 a 8 a 5,a 6, V 34 6 a 6 a 3,a 4, V 6 7 a 7 a 6 V 2 5 a 5 a 2, V 2 4 a 4 a 2, V 1 3 a 3 a 1, V 1 a 1, V 2 a 2 2, Q i +1, Q i P i +1,P i 1 3. Q 25 a 2,a 5, Q36 a 3,a 6 Pr{A 2 = a 2 A 5 = a 5 } Q 25 a 2,a 5 / Q 5 a 5, Pr{A 3 = a 3 A 6 = a 6 } Q 36 a 3,a 6 / Q 6 a , [22, 27].,,, 1 8,,.,,. [28]. 9,.

32 2: 118 V 56 8 a 8 a 5,a 6, V 34 6 a 6 a 3,a 4, V 6 7 a 7 a 6 V 2 5 a 5 a 2, V 2 4 a 4 a 2, V 1 3 a 3 a 1, V 1 a 1, V 2 a 2. a 1 V 1 a 2 V a 1 a 3 V 1 3 a 2 a 4 V a 2 a 5 V 2 5 a 6 a 7 V a 3 a 4 a 6 V 34 6 a 5 a 6 a 8 V [22]. if-then-else,..,,, URL:

33 3: Q i +1, Q i P i +1,P i 1 i Q i +1, Q i 1 P i +1,P i , , , , , , , , , , , , , , , , : Q 25 a 2,a 5 Pr{A 2 = a 2 A 5 = a 5 } Q 25 a 2,a 5 / Q 5 a 5 a 2 a 5 Q25 a 2,a 5 Pr{A 2 = a 2 A 5 = a 5 } [1],,,, vol.42, no.8, pp , [2],,, vol.17, no.5, pp , [3] J. Pearl: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, [4] S. L. Lauriten and D. J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems, J. Royal Statistics Society B, vol.50, no.2, pp , [5],, , No.489, [6] R. Chellappa and A. Jain eds, Markov Random Fields: Theory and Applications, Academic Press, New York, : Q 36 a 3,a 6 Pr{A 3 = a 3 A 6 = a 6 } Q 36 a 3,a 6 / Q 6 a 6 a 3 a 6 Q36 a 3,a 6 Pr{A 3 = a 3 A 6 = a 6 }

34 [7] S. Z. Li, Markov Random Field Modeling in Computer Vision, Springer-Verlag, Tokyo, [8],,, vol.54, no.1, pp.25-33, [9] K. Tanaka, Statistical-mechanical approach to image processing, Journal of Physics A: Mathematical and General, vol.35, no.20, pp.r81-r150, [10],,, vol.42, no.8, pp , [11],, , No.489, pp.15-21, [12],,, vol.58, no.4, pp , [13] Y. Kabashima, T. Murayama and D. Saad, Cryptographical Properties of Tsing Spin Systems, Physical Peview Letters, vol.84, no.9, pp , [14] T. Murayama, Statistical mechanics of data compression theorem, Journal of Physics A: Mathematical and General, vol.35, no.8, pp.l95-l100, [15],,, vol.56, no.9, pp , [16] T. Tanaka, A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors, IEEE Transactions on Information Theory, vol.48, no.11, pp , [17] M. Opper and D. Saad eds, Advanced Mean Field Methods Theory and Practice, MIT Press, [18], /,, [19] /,, [20],,,, [21] H. Nishimori, Statistical Physics of Spin Glasses and Information Processing: An Introduction, Oxford University Press, Oxford, [22] J. S. Yedidia, W. T. Freeman and Y. Weiss: Generalied belief propagation, Advances in Neural Information Processing Systems, vol.13, pp , 2001 Cambridge, MA: MIT Press. [23],, M. Welling, NIPS*2002 post conference workshop on Propagation Algorithms on Graphs with Cycles: Theory and Applications December 13th and 14th, 2002, Whistler, Canada, URL: [24],, A, vol.j83-a, no.10, pp , [25] K. Tanaka, Maximum Marginal Likelihood Estimation and Constrained Optimiation in Image Restoration,, vol.16, no.2, pp , [26] K. Tanaka, J. Inoue and D. M. Titterington, Probabilistic image processing by means of Bethe approximation for Q-Ising model, J. Phys. A: Math. & Gen., vol.36, no.43, pp , [27] H. J. Kappen and W. Wiegerinck: Novel iteration schemes for the cluster variation method, Advances in Neural Information Processing System, vol.14, pp , 2002 Cambridge, MA: MIT Press. [28] K. Tanaka, Probabilistic Inference by means of Cluster Variation Method and Linear Response Theory, IEICE Transactions on Information and Systems, vol.e86-d, no.7, pp , 2003.

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

main.dvi

main.dvi CDMA 1 CDMA ( ) CDMA CDMA CDMA 1 ( ) Hopfield [1] Hopfield 1 E-mail: okada@brain.riken.go.jp 1 1: 1 [] Hopfield Sourlas Hopfield [3] Sourlas 1? CDMA.1 DS/BPSK CDMA (Direct Sequence; DS) (Binary Phase-Shift-Keying;

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2 Takio Kurita Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aistgojp (Support Vector Machine, SVM) 1 (Support Vector Machine, SVM) ( ) 2

More information

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw ,.,. NP,.,. 1 1.1.,.,,.,.,,,. 2. 1.1.1 (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., 152-8552 2-12-1, tatsukawa.m.aa@m.titech.ac.jp, 190-8562 10-3, mirai@ism.ac.jp

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai, 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] 1 599 8531 1 1 Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai, Osaka 599 8531, Japan 2 565 0871 Osaka University 1 1, Yamadaoka, Suita, Osaka

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,

More information

薄膜結晶成長の基礎3.dvi

薄膜結晶成長の基礎3.dvi 3 464-8602 1 [1] 2 3 (epitaxy) (homoepitaxy) (heteroepitaxy) 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 2 3.1 [2] (strain) r u(r) ɛ αγ (r) = 1 ( uα + u ) γ (3.1) 2

More information

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) START: 17th Symp. Auto. Decentr. Sys., Jan. 28, 2005 Symplectic cellular automata as a test-bed for research on the emergence of natural systems 1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) 2 SCA 2.0 CA ( ) E.g.

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 4 2010 9 3 3 4-1 Lucas-Kanade 4-2 Mean Shift 3 4-3 2 c 2013 1/(18) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 -- 4 4--1 2010 9 4--1--1 Optical Flow t t + δt 1 Motion Field

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15. 1. 2. 3. 16 17 18 ( ) ( 19 ( ) CG PC 20 ) I want some rice. I want some lice. 21 22 23 24 2001 9 18 3 2000 4 21 3,. 13,. Science/Technology, Design, Experiments,

More information

(Onsager )

(Onsager ) 05819311 (Onsager ) 1 2 2 Onsager 4 3 11 3.1................ 11 3.2............ 14 3.3................... 16 4 18 4.1........... 18 4.2............. 20 5 25 A 27 A.1................. 27 A.2..............

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

「国債の金利推定モデルに関する研究会」報告書

「国債の金利推定モデルに関する研究会」報告書 : LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: kijima@center.tmu.ac.jp, E-mail: tanaka-keiichi@tmu.ac.jp 1 L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t)

More information

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q x-means 1 2 2 x-means, x-means k-means Bayesian Information Criterion BIC Watershed x-means Moving Object Extraction Using the Number of Clusters Determined by X-means Clustering Naoki Kubo, 1 Kousuke

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

,,.,.,,.,.,.,.,,.,..,,,, i

,,.,.,,.,.,.,.,,.,..,,,, i 22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

CVaR

CVaR CVaR 20 4 24 3 24 1 31 ,.,.,. Markowitz,., (Value-at-Risk, VaR) (Conditional Value-at-Risk, CVaR). VaR, CVaR VaR. CVaR, CVaR. CVaR,,.,.,,,.,,. 1 5 2 VaR CVaR 6 2.1................................................

More information

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

通信容量制約を考慮したフィードバック制御 -  電子情報通信学会 情報理論研究会(IT)  若手研究者のための講演会 IT 1 2 1 2 27 11 24 15:20 16:05 ( ) 27 11 24 1 / 49 1 1940 Witsenhausen 2 3 ( ) 27 11 24 2 / 49 1940 2 gun director Warren Weaver, NDRC (National Defence Research Committee) Final report D-2 project #2,

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2 2013 1 nabe@ier.hit-u.ac.jp 2013 4 11 Jorgenson Tobin q : Hayashi s Theorem : Jordan : 1 investment 1 2 3 4 5 6 7 8 *1 *1 93SNA 1 p.180 1936 100 1970 *2 DSGEDynamic Stochastic General Equilibrium New Keynesian

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

18 2 20 W/C W/C W/C 4-4-1 0.05 1.0 1000 1. 1 1.1 1 1.2 3 2. 4 2.1 4 (1) 4 (2) 4 2.2 5 (1) 5 (2) 5 2.3 7 3. 8 3.1 8 3.2 ( ) 11 3.3 11 (1) 12 (2) 12 4. 14 4.1 14 4.2 14 (1) 15 (2) 16 (3) 17 4.3 17 5. 19

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

untitled

untitled 1 1 Ax = b A R m m A b R m x R m A shift-and invert Lanczos - LU CG A = LU LU Ly = b Ux = y A LU A A = LL T 1 LU b,, Vol. 11, No. 4, pp. 14 18 (2006). x * x (0), x (1), x (2), A Ap A # x (n+1) = Cx (n)

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C 27 nabe@ier.hit-u.ac.jp 27 4 3 Jorgenson Tobin q : Hayashi s Theorem Jordan Saddle Path. GDP % GDP 2. 3. 4.. Tobin q 2 2. Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta 1 1 1 1 2 1. Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Takayuki Okatani 1 and Koichiro Deguchi 1 This paper presents a method for recognizing the pose of a wire harness

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information