, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

Size: px
Start display at page:

Download ", 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )"

Transcription

1 , 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,.

2 ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,., U = U(y).. ζ = ζ(y) + ζ, u = U(y) + u v = v, ζ = dū/dy. (4.2.1), ζ t + U ζ ( ) x + ζ v y + β = 0 (4.2.3). ψ, u = ψ/ y, v = ψ/ x., (4.2.2)., (4.2.3) t 2 ψ + U x 2 ψ + ( ) β d2 U ψ dy 2 x = 0 (4.2.4)., ψ = Ψ(y) e ik(x ct) ( ). (4.2.4), ( ) ( ) d 2 Ψ d 2 (U c) dy U 2 k2 Ψ dy β Ψ = 0 (4.2.5) 2

3 83., y = 0, (y = ±d)., v(±d) = ψ x = ik Ψ(±d) e ik(x ct) = 0 y=±d., Ψ(d) = Ψ( d) = 0 (4.2.6),. (4.2.6) (4.2.5), c. U = U(y), U., (4.2.5) ( d 2 Ψ dy k 2 β ) Ψ = 0 (4.2.7) 2 U c. (4.2.6),. [ ] (2n 1)πy Ψ n = A cos n = 1, 2,... (4.2.8) 2d, [(2n 1)π/2d] 2 = k 2 + β/(u c)., c = U β k 2 + [(2n 1)π/2d] 2 (4.2.9)., 2.5. (4.2.8) Ψ n,. n = 1, d, c = U β/k 2 (4.2.10)., q/ y (2.6.53), (2.6.52). 2, (2.6.52) (2.6.53) (4.2.10)., (2.6.52) L *1., U k q *1 (2.6.52) (2.6.53) c = U β + U/L2 R k 2 (1 + L 2 /L 2 R ) (4.2.11)., L R = (gh) 1/2 /f, L = k 1. U 10 m, L R L 10 6 m, (4.2.10).

4 84 ((2.6.52) ). q = (f + ζ)/h 0 = f/h 0 (H 0 ), q.,, (4.2.10). (4.2.10) Rossby(1939),, (Hough, 1898). U > 0 λ = λ s = 2π(U/β) 1/2,. L < λ s, L > λ s. 500 hpa (4.2.10), (4.2.10). 4.3,. ψ = Ψ(y)e ik(x ct),. c = c r + ic i, Ψ., (4.2.5) Ψ (Ψ ), ) (U c) ( Ψ d2 Ψ dy 2 k2 Ψ Ψ ( d 2 U dy 2 β., Ψ d2 Ψ dy = d ( Ψ dψ ) dψ 2 dy dy dy ) Ψ Ψ = 0 (4.3.12)., 2. ΨΨ = Ψ 2 and dψ dψ dy dy = dψ dy, (4.3.12) U c ±d [ d ( d Ψ dψ ) k 2 Ψ 2 dψ 2] d dy dy dy dy (4.3.13) d (d 2 U/dy 2 β) Ψ 2 = dy U c. Ψ(±d) = 0, Ψ(±d)., Ψ Ψ, d dψ dy

5 85 1. (U c) = (U c r )+ic i, [ d k 2 Ψ 2 + dψ 2] d (d 2 U/dy 2 β)(u c r ) Ψ 2 dy = dy d dy d U c 2 (4.3.14) d (d 2 U/dy 2 β) Ψ 2 ic i dy U c 2 d. 1,, i. c i d d (d 2 U/dy 2 β) Ψ 2 U c 2 dy = 0 (4.3.15) c i 0, c i., d 2 U/dy 2 β d < y < d., y ( y k ) ( ) d 2 U dy β = 0 d < y 2 k < d (4.3.16) y k. Lord Rayleigh(1880), H.L.Kuo(1951),. (4.3.16). d dy ( du dy + f) = 0 or dζ a dy = 0 at y = y k (4.3.17),,.,. (4.2.4) ψ, x, y d [ ψ ψ Uψ t x 2 ψ ( ) ( )] ψ 2 β d2 U dy = 0 (4.3.18) x 2 dy 2 d., ( ) = L 1 L ( ) dx., 0., ψ(x + L, y, t) = ψ(x, y, t) (4.3.19) ψ(x, d, t) = ψ(x, d, t) = 0 (4.3.20)

6 86. (4.3.18), (4.3.19), *2. d d u 2 + v 2 dt d 2 d dy = u v d du dy dy (4.3.21), u = ψ/ y, v = ψ/ x., ψ. ψ(x, y, t) = Φ(y, t) cos[kx θ(y, t)] (4.3.22), Φ, θ. u v. u v = ψ ψ y x = Ψ 2 θ y k sin2 (kx θ) + k Ψ Ψ sin(kx θ) cos(kx θ) y (4.3.23), L 2π/k, u v = k θ Ψ2 (4.3.24) 2 y., u v θ/ y. (4.3.24), (4.3.21) d d u 2 + v 2 dt d 2 dy = k 2 d d Ψ 2 θ du y dy dy (4.3.25), ( θ/ y)(du/dy) < 0 ( ), ( θ/ y)(du/dy) > 0 ( ). 4.4, 2. U = U 0 sech 2 (y/y 0 ), (4.4.26) *2 : (4.3.21).

7 87 U = U 0 tanh 2 (y/y 0 ) (4.4.27). (4.4.26), Bickley (4.4.26) (U 0 > 0),. (U 0 < 0), (4.4.27) d 2 U/dy 2, β = 0, (4.3.16)., ( ) ( ) d 2 U d 2 U > β and < β (4.4.28) dy 2 dy 2 max. U 3 (d 2 U/dy 2 ) max (d 2 U/dy 2 ) min, Bickley, min 2 < b < 2/3 (4.4.29) 4.4.1: U = U 0 sech 2 y/y : U = U 0 tanh y/y 0

8 88., b = βy 2 0/U 0 (4.4.30)., b < 4/(3 3) (4.4.31). (4.4.26) (4.4.27) (4.2.5), b ky 0. Kuo(1973), (4.2.5), (4.2.6) c (4.4.26) (4.4.27) , Kuo(1973), (d ) Bickley (4.4.26) c r /U 0 δ = ky 0 c i /U 0. b > 0, b < (a). (b > 0), U 0 50%., (b < 0), U ((4.2.11) ), b (k 0), c r (b), 2 < b < 2/3. β,., (b )., b , (4.4.27) (Kuo(1973) ). (4.4.31), (a), c r = 0 b = 0,. c r U 0 90%, b c r (b), b = 0, b = 4/(3 3)., b. Bickley.,.., Williams et al(1971) U 0 > 0, b = 0, d = 5y , Bickley (ky 0 = 0.9)

9 : Kuo(1973) U = U 0 sech 2 (y/y 0 ). (a)ky 0 c r /U 0 b ; (b)b ky 0 δ. (H.L.Kuo, Dynamics of Quasi-geostrophic Flows. Academic Press, 1973.)

10 : Kuo(1973) U = U 0 tanh (y/y 0 ). (a)b ky 0 c r / U 0 ; (b)b ky 0 δ. (H.L.Kuo, Dynamics of Quasi-geostrophic Flows. Academic Press, 1973.)

11 : Bickley. (a) P ; (b) θ ( ). (Haltiner,G.J., Williams,R.T., 1979 : NUMER- ICAL PREDICTION AND DYNAMIC METEOROLOGY SECOND EDITION. John Wiley & Sons, 477pp). ψ = P (y) cos(k(x c r t) θ(y)), P (y), θ. y = 0,., (4.5)., , U 0 > 0, b = 0 (ky 0 = 0.45)., y = ±y 0, y = 0., ( ).

12 : (4.4.27) (Haltiner,G.J., Williams,R.T., 1979 : NUMERICAL PREDICTION AND DYNAMIC METE- OROLOGY SECOND EDITION. John Wiley & Sons, 477pp) 4.5,.,., β = 0, (4.2.6) (4.2.5).,. (4.2.3) (β ), U = U 0 + Sy., (4.2.4) 2 ψ t.. + U 2 ψ x = 0 (4.5.32) 2 ψ = F (x Ut) (4.5.33), F, F (x) t = 0.,. v = v 0 sin kx

13 93,, t 2 ψ = ζ = kv 0 cos kx at t = 0 2 ψ = kv 0 cos k(x Ut) (4.5.34).,., ψ = A cos k(x Ut),. 2 ψ = Ak 2 cos k(x Ut) AS 2 t 2 k 2 cos k(x Ut) (4.5.34) A.,., ψ = v 0 cos k(x Ut) k(1 + S 2 t 2 ) u = U ψ y = U v 0kSt sin k(x Ut) k(1 + S 2 t 2 ) v = ψ x = v 0 sin k(x Ut) 1 + S 2 t 2 (4.5.35). ψ v t 2, u t. U = U 0 + Sy,.,.,., y = y, c(y ) = U(y )..,.,,., (4.2.8),. Case(1960), (4.2.5) (4.2.6),.,,.,,,.

14 94 4.6,,.,., (Case, 1960).,,. -,., u v.,,,,.,,.,.,, ( ).

15 95 4.7,., Charney(1947) Eady(1949).,., (3.3.66). ( ) t + k ψ q = 0 (4.7.36), q q = 2 ψ + e Z ( f 2 0 e Z Z Γ ) ψ + βy (4.7.37) Z, (potential vorticity)., ψ = f0 1 Φ, Γ (3.3.47) *3., (3.3.55) ( ) ψ t + k ψ Z + f 0 1 ΓŻ = 0 (4.7.38). Z, T/ z Γ., Z., *4,. ψ,. ψ (x, y, Z, t) = ψ(y, z) + ψ(x, y, Z, t) (4.7.39), ψ / ψ., U = ψ/ y. (4.7.36) (4.7.39), ( t + U ) q + ψ q x x y = 0 (4.7.40) *3 (3.3.47). Z, Γ(Z) = ( ) ( ) ( Φ Z Z + κ Φ T = R Z + κ T = H2 g g + 1 T ) T c p H Z. *4 σ(p),. σ(p) = Γ/p 2

16 96., q = 2 ψ + e Z ( f 2 0 e Z ψ Z Γ Z q y = β 2 U y ( f 2 0 e Z 2 ez Z Γ ), (4.7.41) ) U Z (4.7.42). (4.7.42) ( 2 ) ( 3 )., ( t + U ) ψ x Z ψ U x Z + f 0 1 ΓŻ = 0 (4.7.43)., Ż.,. ψ = Ψ(y, Z)e ik(x ct), (4.7.40) [ 2 Ψ (U c) y + ( ) ] f 2 0 e Z Ψ 2 ez k 2 Ψ Z Γ Z., + q y Ψ = 0 (4.7.44) (U c) Ψ Z U Z Ψ ik 1 f 1 0 ΓW = 0 (4.7.45)., Ż = W (y, Z)e ik(x ct). Charney and Stern(1962) Pedlosky(1964a), (4.3.16)., q/ y U/ Z. 3, (4.3.16), (Holton, 1975 ). 4.8 Eady, Eady(1949).. β = 0 (e Z const)

17 97 (Γ = const) y ( / y = 0) rigid-lid(w = 0 at Z = 1), Z U = SZ (4.8.46)., S.,., e Z, Γ, (4.7.44) (U c) ( f 2 0 Γ ) d 2 Ψ dz 2 k2 Ψ = 0 (4.8.47). U c 0,. ( ) ( ) Z Z Ψ = A sinh + B cosh ε 1/2 ε 1/2 (4.8.48), ε = f 2 0 /k 2 Γ ((3.3.48) ). Z = 0, 1 W = 0, (4.7.45), (U c) dψ dz SΨ = 0 at Z = 0, 1 (4.8.49). (4.8.48) Z, (4.8.49) cε 1/2 A SB = 0, (S c)ε 1/2 [A cosh(ε 1/2 ) + B sinh(ε 1/2 )] S[A sinh(ε 1/2 ) + B cosh(ε 1/2 )] = 0 (4.8.50). A, B,.,. c 2 Sc + S 2 (ε 1/2 coth ε 1/2 ε) = 0 (4.8.51) c, c = S 2 ± S [ 1/4 (ε 1/2 coth ε 1/2 ε) ] 1/2 = S {[ ( )] [ ε 1/2 ε 1/2 ε 1/2 2 ± Sε1/2 tanh ( )]} ε 1/2 1/2 (4.8.52) coth 2

18 98., ε 1/2 < 1.20 (4.8.53) 2,. c,. (3.3.48) ε = L 2 /L 2 R ( L R = Γ 1/2 /f 0 ), (4.8.53). λ 2π = L > L R 2.40, kc i = ± S {[ ( )] [ ( ) ]} ε 1/2 ε 1/2 ε 1/2 tanh coth ε 1/2 L R (4.8.54) (4.8.55)., S., L (4.9), S 0. L, L = L R (4.8.56) 1.61., L L R ε 1. ε 1,., c r = S 2 (4.8.57),. Z = 1/2, Z = 1/2 *5.,. *5, Eady.,. (4.8.50), (4.8.48) B, Ψ(Z) Ψ = A [{ sinh ( Z ε ) c r S ε cosh ( Z ε )} c i i S ε cosh ( Z ε., Ψ Ψ kθ (, Ψ(Z) = Ψ(Z) e kθ ). ( ) Z Ψ(Z) 2 = A {sinh 2 c ( )} 2 ( ) r Z ε S ε cosh + A 2 c2 i Z ε S 2 ε cosh2 ε tan kθ = c ( ) [ ( ) i Z Z S ε cosh sinh c ( )] 1 r Z ε ε S ε cosh ε. A. )]

19 99, (4.8.49). Ψ = 0,. Eady,., k 1. Pedlosky(1964b),. Charney Charney(1947) Eady, Eady. Charney,.,., (4.7.42), q y = β + f 2 0 S/Γ (4.8.59), Γ. (S > 0),., Eady., (4.7.44). (SZ c) [ f 2 0 Γ ( d 2 Ψ dz dψ 2 dz ) ] k 2 Ψ + (β + f 0 2 S )Ψ = 0 (4.8.60) Γ q/ y, (4.8.47).,., r = Γ(β + Sf 2 0 /Γ) f 2 0 S(1 + 4Γf 2 0 k 2 ) 1/2 (4.8.61)., c. Gambo(1950), Kuo(1952), Green(1960), Burger(1962), Kuo(1973) ,, ψ, ψ(x, Z, t) = Ψ(Z) e kc it exp [ik(x c r t + θ(z))] (4.8.58). (4.8.53), Ψ θ, Z = 1/2, Z = 1/2.

20 : Green(1960) Charney., Z = 1. (Green, J.S.A, 1960 : A Problem in Baroclinic Stability. Royal Meteorological Socitey) Green(1960), Z = 1. 1/k, S., kc i. ( ), r = 1 Charney, Gambo, Kuo.. Burger, r, r. 2, r = 2, 3.,., 0.1,. S, Eady.

21 Charney, , 1,3, 2. 2, Charney.,. (3.3.76) (3.3.77) : 2

22 102 ( ) t + k ψ ( 2 ψ ω + βy) f 0 p = 0 (4.9.62) ( ) ψ t + k ψ p + σ ω = 0 (4.9.63) f 0 2, (4.9.62) (4.9.63), 2.,. (4.9.62) (4.9.63),. ψ = U(p)y + ψ(x, p, t) ω = ω (x, p, t) (4.9.64), U(p) y. (4.9.64) (4.9.62) (4.9.63), ( t + U ) 2 ψ x x + β ψ 2 x f ω 0 p = 0 (4.9.65) ( t + U ) ψ x p du ψ dp x σ ω = 0 (4.9.66) f 0. (4.9.64), ψ ω. p = p s p = p T ω = 0. p = p T,,., (4.9.65) 1, 3, ( ) t + U 2 ψ 1 1 x x + β ψ 1 2 x f ω 0 p = 0 (4.9.67) ( ) t + U 2 ψ 3 3 x x + β ψ 3 2 x + f ω 0 p = 0 (4.9.68) (4.9.69)., (4.9.66) 2., 2 ψ U 1,3 ψ U, [ t + ( ) ] U1 + U 3 (ψ 1 ψ 3 ) 2 x ( U1 U 3 2 ) ( ψ1 x + ψ 3 x ) ( pσ2 f 0 ) ω 2 = 0 (4.9.70)

23 103. (4.9.67), (4.9.68), (4.9.70), 3 ψ 1, ψ 3, ω 2.,. (4.9.67) ψ 1, (4.9.68) ψ 3 2, x, [ ] d ( ψ1 / x) 2 + ( ψ 3 / x) 2 dt 2 = f 0 p ω 2(ψ 1 ψ 3 ) (4.9.71).., (4.9.70) λ(ψ 1 ψ 3 ), x. [ ] d λ(ψ1 ψ 3 ) 2 dt 4 = λ ( 4 (U ψ1 1 U 3 ) (ψ 1 ψ 3 ) x + ψ ) 3 x + f 0 p ω 2(ψ 1 ψ 3 ) (4.9.72), λ = 2f 2 0 /( p 2 σ 2 ) (4.9.73). ψ 1 ψ 3, *6. (4.9.72), *6, Φ p = RT p., Φ. Φ = Φ(p) + Φ (x, p, t), Φ p = RT p., Φ = f 0 ψ. 1 3, T 2 = f 0 ψ 1 ψ 3 R ln(p 3 /p 1 )., 2 T p3 T p 2 = 1 (T/p) dp p3 (4.9.74) dlnp p 1, ψ 1 ψ 3, 1 3 T 2.

24 104,. (4.9.71), (4.9.72) 2,., 2 (ψ 1 ψ 3 > 0) (ω 2 < 0), (ψ 1 ψ 3 < 0) (ω 2 > 0).,. U 1 U 3,. (4.9.72) 1, (U 1 U 3 )., 2 (( ψ 1 / x + ψ 3 / x)/2 > 0) (ψ 1 ψ 3 > 0), (( ψ 1 / x + ψ 3 / x)/2 < 0) (ψ 1 ψ 3 < 0),., U 1 U 3.,. ψ 1 = Ψ 1 e ik(x ct) ψ 3 = Ψ 3 e ik(x ct) (4.9.75) ω 2 = ( pf0 1 )W e ik(x ct) (4.9.67), (4.9.68), (4.9.70), k[β k 2 (U 1 c)]ψ 1 + iw = 0 k[β k 2 (U 3 c)]ψ 3 iw = 0 k[u 3 c]ψ 1 k[u 1 c]ψ 3 + i2w/λ = 0 (4.9.76a) (4.9.76b) (4.9.76c). Ψ 1, Ψ 3, W,. c 2. 2k 2 (k 2 + λ)c 2 + [2β(2k 2 + λ) 2k 2 (k 2 + λ)(u 1 + U 3 )]c + 2β 2 β(2k 2 + λ)(u 1 + U 3 ) + 2k 4 U 1 U 3 + k 2 λ(u U 2 3 ) = 0 2 c, c = (U 1 + U 3 )/2 β(2k2 + λ) 2k 2 (k 2 + λ) ± [λ2 β 2 k 4 (λ 2 k 4 )(U 1 U 3 ) 2 ] 1/2 2k 2 (k 2 + λ) (4.9.77). (4.9.77) c,., k 4 λ 2 (U 1 U 3 ) 2

25 105. c,. (k 1 ) (U 1 U 3 ),.. (U 1 U 3 ) 2 λ 2 β 2 = (4.9.78) k 4 (λ 2 k 4 ) λ β,, n = 0.,. k 1 = λ 1/2 = pσ 1/2 2 /(f 0 / 2) (4.9.79) 4.9.9: λ = m 2, β = m 2 s 1 2 n = k c i. n U 1 U 3 k 1., k 1, U 1 U 3, n 10 6 m, ms 1, 10 5 s 1.

26 106, k 2 λ, (4.9.78). U 1 U 3 = β/k 2 (4.9.80), (4.9.78). (4.9.78) k 1, k 1 = 2 1/4 λ 1/2, U 1 U 3 (U 1 U 3 ) min = 2β/λ = β p2 σ 2 f 2 0 (4.9.81). 2 (two level model),, 2 2 (two layer model)(phillips, 1951). (4.9.79),.,, (4.9.80),., β.,,., β = 0 k 1 > σ 1/2 2 /(f 0 2) U1 U 3 (4.9.82)., Eady k 1 > Γ/(f 0 2.4) S = du/dz 0 (4.9.83).,. β 0, 2 ( 4.9.9), Charney ( 4.8.7).,,.,.,., , (4.9.78)., 2., km.

27 , (4.9.71) (4.9.72). (4.9.77) 2, c +, c. 2.6,, ( ). 2, [ ] ψ 1 = Re ψ 3 = Re ω 2 = pf 1 0 Re a + Ψ + 1 e ik(x c+ t) + a Ψ 1 e ik(x c t) [ a + Ψ + 3 e ik(x c+ t) + a Ψ 3 e ik(x c t) [ a + W + e ik(x c+ t) + a W e ik(x c t) ] ] ( a) ( b) ( c)., Re. ψ = Ψ e iθ, ( ) e ix = cos x + i sin x ( ). ω 2, ψ 1 ψ 3, ( c). c + c, (4.9.76). (4.9.76a) (4.9.76b), Ψ ± 1 = c± (U 3 β/k 2 ) c ± (U 1 β/k 2 ) Ψ± 3 ( )., (4.9.76b). W ± = ik 3 [c ± (U 3 β/k 2 )]Ψ ± 3 ( ) ψ 1 ψ 3, a + a ( a) ( b) , c ±, c + > c., ( ), Ψ ± 1 Ψ± , ( ), 90.

28 108, (4.9.71) (4.9.72), *7. ( ) 2,., (4.9.77) β/k 2., (4.9.77) c ± = U 1 + U 3 2 ± 1 2 [ ] k 2 1/2 λ k 2 + λ (U 1 U 3 ) 2 ( )., ( ) Ψ + 1 /Ψ + 3 > 1, Ψ 1 /Ψ 3 < 1 ( ).,,. W = W e iθ (θ ), Ψ 3 > 0, ( ) ( ) θ = π/2., (ω < 0), (ω > 0)., 4.8 Eady.,. U 1 U 3, (4.9.77) c + = (U 1 + U 3 )/2 β/(k 2 + λ) c = (U 1 + U 3 )/2 β/k 2 ( ). c, ( ) ( ) W = 0 Ψ 1 = Ψ 3, ((4.2.10) )., c +, ( ) ( ) W 0 Ψ + 1 = Ψ + 3,., (U 1 U 3 ) 2, ,. c ± = c r ± in/k *7 Ψ + 1 Ψ+ 3 ( Ψ 1 Ψ 3 ) 180, Ψ+ 1 Ψ 3 ( Ψ 1 Ψ+ 3 )., Ψ+ 1, Ψ+ 3 W ( Ψ 1, Ψ 3 W + ) 90. ( ) 2,.

29 109, c r = (U 1 + U 3 )/2 β(2k 2 + λ)/[2k 2 (k 2 + λ)] n = [k 4 (λ 2 k 2 )(U 1 U 3 ) 2 λ 2 β 2 ] 1/2 /[2k(k 2 + λ)] ( ), n., ψ 1,3 = Re [ a + Ψ + 1,3e ik(x crt) e nt + a Ψ 1,3e ik(x crt) e nt] ( ). a + = 0,,.,. c, ( ) ( ),. ( ), ( ) ( ). Ψ ± 1 = {c r [(U 1 + U 3 )/2 β/k 2 ]} 2 (U 1 U 3 ) 2 /4 + n 2 /k 2 in(u 1 U 3 )/k [c r (U 1 β/k 2 )] 2 + n 2 /k 2 Ψ ± 3 ( ) W ± = k 3 {±n/k i[c r (U 3 β/k 2 )]}Ψ ± 3 ( ) ( ),. 2, *6. T 2 = f 0 (ψ 1 ψ 3 )/[R ln(p 3 /p 1 )] ( ),. f 0 = 10 4 s 1, β = m 1 s 1, 2π/k = 4000 km, λ = m 2, p s = 1000hPa, p = 400hPa, U 1 U 3 = 20 ms 1, a = 0, a + Ψ + 3 = 10 ms 1 /k, 3. ( ), ( ) ψ 1 ψ 3. ψ 1 = (14.2 ms 1 )k 1 cos[k(x c r t) + 64 ] e nt ψ 3 = (10 ms 1 )k 1 cos[k(x c r t)] e nt ( ),, ( c), ( ). ω 2 = hpa s 1 cos[k(x c r t) ] e nt ( )

30 110, ψ 1, ψ 3 ( ), T 2 = (4.24 K) cos[k(x c r t) ] e nt ( )., y k. ( ), ( ), ( ), : ( ), ( ), ( ).

31 111. ψ 1 ψ 3, T, R.., ( ) 1, *8., W C.,,.,., 2.,.,, ,,. (4.9.71) (4.9.72), ( ), ( ), ( ).,,,.,.,.,. Oort(1964), , K, P., K ( ), P.,. { P P }, {P K }, (4.9.72), (4.9.71)., {K K} (4.3.21). { P K ω T, , Q P, P K.,.,,,. K K *8 β = 0, ( ) 1.

32 : Oort(1964)., J m 2., Wm 2. (Oort, A.H., 1964: On Estimates of the Atmospheric Energy Cycle., American Meteorological Society )

33 113, 4.6. P K.,.,.,,.,,.,. (4.9.62), (, ) ( ω/ p > 0),.,.,. Eady Charney,. Gall(1976), Simmons and Hoskins(1977),., 2000 km.,, 4000 km.,. Staley and Gall(1977),. Gall, etal(1979),.,.

34 ,.,,. (2.4.11), ρ 1/2,.,,.,.,., Eliassen and Palm(1960), Charney and Drazin(1961). c, (4.7.43), (U c) 2 ψ x Z ψ U x Z + f 0 1 ΓŻ = 0 ( )., ψ x, ψż = f 0Γ 1 (U c) ψ ψ x Z ( ). ψ Φ,., ψ/ x ψ/ Z. ( ),,.,. U(Z),., Charney and Drazin(1961), (4.7.40). U y, ψ = Ψ(Z) cos αy e ik(x ct) (4.7.40), [ (U c) e Z ( ) ] f 2 0 e Z Ψ (k 2 + α 2 )Ψ + q Z Γ Z y Ψ = 0 ( )

35 115.,., q y = β ( ) f 2 0 e Z U ez Z Γ Z Q = f 0 (e Z /Γ) 1/2 Ψ ( ), ( )., ( )., d 2 Q dz 2 + n2 Q = 0. ( ) n 2 = Γ f 2 0 (k 2 + α 2 ) Γ 1/2 Z/2 d2 e dz 2 (e Z/2 Γ 1/2 Γ q/ y ) + f0 2 (U c) ( ). ( ), n(z).,. n 2 > 0 : Q(Z) Z,. n 2 < 0 : Q(Z) Z,., U Γ,., ( ), n 2 = Γ [ k 2 + α 2 + f ] 0 2 f0 2 4Γ β ( ) (U c), n 2., ( ) e inz e inz. n,, e Z/2 (( ) ). n, e n Z e n Z.,, (e n Z ). Charney and Drazin(1961),, ( ). ( ) c = 0, (n 2 > 0), 0 < U < β k 2 + α 2 + f 2 0 /4Γ ( )

36 116.,,,.,, ( ) 38 m/s.. ( ), U Z,.,,., Matsuno(1970),,. ( ) ( k),. Charney and Pedlosky(1963),. Holton(1975),.,., 7 10.

37 ,.,.,.,., Matsuno(1966a).,, (f = βy).,., φ = gh, Φ = gh. u t + φ βyv = 0, x v t + φ + βyu = 0, ( ) y ( φ u + Φ x + v ) = 0. y

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V 62 3 3.1,,.,. J. Charney, 1948., Burger(1958) Phillips(1963),.,. L : ( 1/4) T : ( 1/4) V :,. v x u x V L, etc, u V T,,.,., ( )., 2.1.1. 63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1).,

More information

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c 29 2 1 2.1 2.1.1.,., 5.,. 2.1.1,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c v., V = (u, w), = ( / x, / z). 30 2.1.1: 31., U p(z),

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons Onsager 2 9 207.2.7 3 SOLUTION OF THE EIGENWERT PROBLEM O-29 V = e H A e H B λ max Z 2 OnsagerO-77O-82 O-83 2 Kramers-Wannier Onsager * * * * * V self-adjoint V = V /2 V V /2 = V /2 V 2 V /2 = 2 sinh 2H

More information

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d 1 13 Fall Semester N. Yamada Version:13.9.3 Chapter. Preliminalies (1 3) Chapter 1. (4 16) Chapter. (17 9) Chapter 3. (3 49) Chapter 4. (5 63) Chapter 5. (64 7) Chapter 6. (71 8) 11, ISBN 978-4-535-618-4.

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

支持力計算法.PDF

支持力計算法.PDF . (a) P P P P P P () P P P P (0) P P Hotω H P P δ ω H δ P P (a) ( ) () H P P n0(k P 4.7) (a)0 0 H n(k P 4.76) P P n0(k P 5.08) n0(k P.4) () 0 0 (0 ) n(k P 7.56) H P P n0(k P.7) n(k P.7) H P P n(k P 5.4)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s . 00 3 9 [] sinh x = ex e x, cosh x = ex + e x ) sinh cosh 4 hyperbolic) hyperbola) = 3 cosh x cosh x) = e x + e x = cosh x ) . sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y =

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

Korteweg-de Vries

Korteweg-de Vries Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1 (3.5 3.8) 03032s 2006.7.0 n (n = 0,,...) n n = δ nn n n = I n=0 ψ = n C n n () C n = n ψ α = e 2 α 2 n=0 α, β α n n (2) β α = e 2 α 2 2 β 2 n=0 =0 = e 2 α 2 β n α 2 β 2 n=0 = e 2 α 2 2 β 2 +β α β n α!

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

微粒子合成化学・講義

微粒子合成化学・講義 http://www.tagen.tohoku.ac.jp/labo/muramatsu/mura/main.html E-mail: mura@tagen.tohoku.ac.jp 1 Derjaguin Landau Verway Overbeek B.V.Derjaguin and L.Landau;Acta Physicochim.,URSS, 14, 633 1941. E.J.W.Verwey

More information

微粒子合成化学・講義

微粒子合成化学・講義 http://www.tagen.tohoku.ac.jp/labo/muramatsu/mura/main.html E-mail: mura@tagen.tohoku.ac.jp 1 2 1 mol/l KCl 3 4 Derjaguin Landau Verway Overbeek B.V.Derjaguin and L.Landau;Acta Physicochim.,URSS, 14, 633

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

1 flux flux Plumb (1985) flux F s Plumb (1985) Karoly et al. (1989) flux flux Plumb (1985) Plumb (1986) Trenberth (1986) Andrews (1983) review flux Pl

1 flux flux Plumb (1985) flux F s Plumb (1985) Karoly et al. (1989) flux flux Plumb (1985) Plumb (1986) Trenberth (1986) Andrews (1983) review flux Pl wave-activity flux flux flux ( ) E-mail: takaya@jamstec.go.jp 1 Introduction ( ) (e.g., Nakamura et al. 1997) storm track cyclogenesis downstream development (e.g., Chang 1993) wave-activity ( ) flux (

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information