PD 1

Size: px
Start display at page:

Download "PD 1"

Transcription

1 PD 1

2 2

3 1/2 3

4 {X n } P ({0}) =P ({1}) =1/2 P n k=1 X k lim n n =1/2 1 4

5 5

6 FAIR-COIN GAME Players: Skeptic, Reality Protocol: K 0 := 1. FOR n =1, 2,...: Skeptic announces M n 2 R. Reality announces x n 2 {0, 1}. K n := K n 1 + M n (x n 1 2 ). Collateral Duties: Skeptic must keep K n non-negative. Reality must keep K n from tending to infinity. 6

7 Skeptic P n k=1 x k lim n n =

8 8

9 9

10 10

11 11

12

13 Pascal Fermat (1654) 13

14 Pascal Pascal ( ) 14

15 Pascal (1/4) 100 Peter Paul

16 Pascal (2/4) Peter 0? Paul Peter 0 Paul

17 Pascal (3/4) Peter 0 a Paul 2a Peter b (b+c)/2 Paul c 17

18 Pascal (4/4) 25 Peter Paul 0 Peter 0 50 Paul

19 von Mises, 19

20 Fermat Fermat (1607or ) 20

21 Fermat 21

22 Arnauld ( ) The Port-Royal Logic Pascal 22

23 The Port-Royal Logic G. Shafer (1978) Non-additive Probabilities in the Work of Bernoulli and Lambert I. Hacking (1975) The Emergence of Probability 23

24 => => 24

25 25

26 sup. 26

27 K 0 := 1. n =1, 2,... : M n 2 R. x n 2 { 1, 1} K n := K n 1 + M n x n. K n sup n K n = 1 27

28 2 : Skeptic, Reality : K 0 := 1. n =1, 2,... : Skeptic M n 2 R. Reality x n 2 { 1, 1} K n := K n 1 + M n x n. Skeptic K n sup n K n = 1 Skeptic Skeptic 28

29 29

30 Skeptic K n Reality sup n K n < 1 S n /n! 0 Skeptic Skeptic. 30

31 Skeptic =) E sup n K n = 1 =) sup n K n < 1 E Reality =)sup n K n < 1 E {x n } =) E quasi-borel 31

32 Skeptic S E lim n K n = 1 S E Skeptic S n /n! 0 E S E 32

33 1/2 1/2+e 1/2+e 1/2-e e 33

34 > 0 Skeptic lim sup n!1 1 n nx i=1 x i apple.. 34

35 1 n ny (1 + x i ). i=1 D nx ln(1 + x i ) nx x i 2 n X x 2 i nx x i n 2, i=1 i=1 i=1 i=1 P n i=1 x i n apple D n +. 35

36 Skeptic E E Skeptic E 1,E 2, T 1 k=1 E k 36

37 37

38 => => => => 38

39 : Forecaster, Skeptic, Reality : K 0 := 1. n =1, 2,... : Forecaster m n 2 R v n Skeptic M n 2 R V n Reality x n 2 R 0 0. K n := K n 1 + M n (x n m n )+V n ((x n m n ) 2 v n ). Skeptic K n lim n K n = 1 Skeptic. 39

40 : (, F) : Forecaster, Skeptic, Reality : K 0 := 1. n =1, 2,... : Forecaster (, F) p n Skeptic p n f n R f ndp n f n Reality x n 2 R K n := K n 1 + f n (x n ) f ndp n. 40

41 P(E) := inf{ > 0 : (9S)supK S n(w 0 w n ) 1/ for all w 1 w 2 2 E}, P(E) :=1 P(E c ).. 41

42 Kolmogorov 0-1 law {X n } E tail event {X n } E tail event P (E) =1 P (E) =0 42

43 (Takemura-Vovk-Shafer 2008) E tail event 1. P(E) = 1 certain. 2. P(E) = 0 impossible. 3. P(E) =1,P(E) = 0, fully uncertain. 43

44 fully uncertain tail event : Skeptic, Reality : K 0 := 1. n =1, 2,... : Skeptic M n 2 R. Reality x n 2 R K n := K n 1 + M n x n. E: n x n = 0, tail event P(E) =1, P(E) =0. 44

45 45

46 : Player, Casino : K 0 := 1. n =1, 2,... : Player M n 2 R. Casino x n 2 { 1, 1} K n := K n 1 + M n x n. Player K n lim n K n = 1 Player. 46

47 Casino Player 47

48 Reality Reality Skeptic 48

49 : Forecaster, Skeptic, REality : K 0 := 1. n =1, 2,... : Forecaster m n 2 R v n Skeptic M n 2 R V n Reality x n 2 R 0 0. K n := K n 1 + M n (x n m n )+V n ((x n m n ) 2 v n ). Skeptic K n lim n K n = 1 Skeptic. 49

50 Skeptic 1X n=1 v n n 2 < 1) lim n!1 1 n nx (x i m i )=0 i=1 Reality 1X n=1 v n n 2 = 1) 1 n nx (x i m i ) 0 i=1. 50

51 (Shafer-Vovk 2001) Randomized Strategy + Martin (Vovk 2013) Deterministic Strategy (M.-Takemura 2012, M. 20xx) Randomized Strategy Deterministic Strategy 51

52 coherent Skeptic Reality coherent Reality K n+1 apple K n 52

53 (M.-Takemura 2012) Skeptic E Reality E E P Skeptic S (S + P )/2 Reality P P E Reality E S 53

2

2 2012 2012 9 7 1 2 3 von Mises, (,) algorithmic probability, Solomonoff, Hutter, MDL Vitányi 4 1900 von Mises Kolmogorov algorithmic probability, 5 6 7 Aristotle B.C. 384-322 Tyche automaton ( ) 8 Augustine

More information

² ² ² ²

² ² ² ² ² ² ² ² n=44 n =44 n=44 n=44 20.5% 22.7% 13.6% 27.3% 54.5% 25.0% 59.1% 18.2% 70.5% 15.9% 47.7% 25.0% 60% 40% 20% 0% n=44 52.3% 27.3% 11.4% 6.8% 27.55.5 306 336.6 408 n=44 9.1% 6.8% n=44 6.8% 2.3% 31.8%

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

H27 28 4 1 11,353 45 14 10 120 27 90 26 78 323 401 27 11,120 D A BC 11,120 H27 33 H26 38 H27 35 40 126,154 129,125 130,000 150,000 5,961 11,996 6,000 15,000 688,684 708,924 700,000 750,000 1300 H28

More information

untitled

untitled 186 17 100160250 1 10.1 55 2 18.5 6.9 100 38 17 3.2 17 8.4 45 3.9 53 1.6 22 7.3 100 2.3 31 3.4 47 OR OR 3 1.20.76 63.4 2.16 4 38,937101,118 17 17 17 5 1,765 1,424 854 794 108 839 628 173 389 339 57 6 18613

More information

untitled

untitled 1. 3 14 2. 1 12 9 7.1 3. 5 10 17 8 5500 4. 6 11 5. 1 12 101977 1 21 45.31982.9.4 79.71996 / 1997 89.21983 41.01902 6. 7 5 10 2004 30 16.8 37.5 3.3 2004 10.0 7.5 37.0 2004 8. 2 7 9. 6 11 46 37 25 55 10.

More information

名称未設定

名称未設定 2007 12 19 i I 1 1 3 1.1.................... 3 1.2................................ 4 1.3.................................... 7 2 9 2.1...................................... 9 2.2....................................

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 確率的手法による構造安全性の解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/55271 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 25 7 ii Benjamin &Cornell Ang & Tang Schuëller 1973 1974 Ang Mathematica

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

280-NX702J-A0_TX-1138A-A_NX702J.indb

280-NX702J-A0_TX-1138A-A_NX702J.indb NX702 1. 2. 3. 9 10 11 12 13 1 2 3 4 5 6 4 7 8 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.

More information

1. 2. 3. 2 (90, 90) (86, 92) (92, 86) (88, 88) Figure 1 Exam or presentation? a (players) k N = (1, 2,..., k) 2 k = 2 b (strategies) i S i, i = 1, 2 1

1. 2. 3. 2 (90, 90) (86, 92) (92, 86) (88, 88) Figure 1 Exam or presentation? a (players) k N = (1, 2,..., k) 2 k = 2 b (strategies) i S i, i = 1, 2 1 2014 11 in progress 1 1 2 2 2.1................................... 2 2.2........................................ 4 3 Nash Equilibrium 6 3.1........................................ 6 3.2..........................................

More information

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n 1 1.1 Excel Excel Excel log 1, log, log,, log e.7188188 ln log 1. 5cm 1mm 1 0.1mm 0.1 4 4 1 4.1 fx) fx) n0 f n) 0) x n n! n + 1 R n+1 x) fx) f0) + f 0) 1! x + f 0)! x + + f n) 0) x n + R n+1 x) n! 1 .

More information

Taro13-学習ノート表紙.PDF

Taro13-学習ノート表紙.PDF 10 11 12 13 13 14 15 18 22 27 30 32 A B C -1- -2- 1 2 A BC -3- -4- A B C -5- A B C -6- A B C -7- -8- 1-1 1-6 1-2 6-1 1-5 1-3 2-1 6-6 6-2 1-4 2-6 2-2 6-5 6-3 2-5 2-3 6-4 2-4 5-1 3-1 5-6 5-2 3-6 3-2 5-5

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

橡HP用.PDF

橡HP用.PDF 1 2 3 ... 1... 2... 2... 3... 4... 12...12...12... 14...14...15...16... 17...17... 17...18...18...20...22... 26... 26 ... 27...27...28 32 1 2 3 8 9 O 1 2 7 C ln 6 O 4 3 C ln m + n = 8 8 9 1 2 7 3 C ln

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

ちょっと覗こう.PDF

ちょっと覗こう.PDF --- --- 40 1992.3 10 69 9 11 or 11 Dry farming 571 567 11 10 500 10 174 1972 50 1 100 2 10 1970 1994 1997 211 9 8 B.C.361 338 5 7 1000 500 500 3 1963 1250 2500 100 1986 1200 1998 1978 2001

More information

JFA PHYSICAL FITNESS PROJECT 45

JFA PHYSICAL FITNESS PROJECT 45 44 JFA PHYSICAL FITNESS PROJECT JFA PHYSICAL FITNESS PROJECT 45 46 47 C O O R D I N A T I O N B E T W E E N T H E F I E L D S O F R E F E R E E I N G A N D T E C H N I C A L 48 FAX:03-3830-2005 49 50 51

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

「諸雑公文書」整理の中間報告

「諸雑公文書」整理の中間報告 30 10 3 from to 10 from to ( ) ( ) 20 20 20 20 20 35 8 39 11 41 10 41 9 41 7 43 13 41 11 42 7 42 11 41 7 42 10 4 4 8 4 30 10 ( ) ( ) 17 23 5 11 5 8 8 11 11 13 14 15 16 17 121 767 1,225 2.9 18.7 29.8 3.9

More information

1 UTF Youtube ( ) / 30

1 UTF Youtube ( ) / 30 2011 11 16 ( ) 2011 11 16 1 / 30 1 UTF 10 2 2 16 2 2 0 3 Youtube ( ) 2011 11 16 2 / 30 4 5 ad bc = 0 6 7 (a, b, a x + b y) (c, d, c x + d y) (1, x), (2, y) ( ) 2011 11 16 3 / 30 8 2 01001110 10100011 (

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

橡scb79h16y08.PDF

橡scb79h16y08.PDF S C B 05 06 04 10 29 05 1990 05 0.1 90 05 0.2 06 90 05 06 06 04 04 10 1.9 90 12 2.0 13 10 10 18.0 16.0 6.1 1 10 1.7 10 18.5 0.8 03 04 1 04 42.9 10 20.5 10 4.2 0.7 0.2 0.6 01 00 100 97 11 102.5 04 91.5

More information

1 1 1.1...................................... 1 1.2................................... 5 1.3................................... 7 1.4............................. 9 1.5....................................

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

報告書

報告書 1 2 3 4 5 6 7 or 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2.65 2.45 2.31 2.30 2.29 1.95 1.79 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 60 55 60 75 25 23 6064 65 60 1015

More information

取扱説明書[NE-202]

取扱説明書[NE-202] NE-202 13.3 m m 1 2 3 m 4 5 6 7 a a a 8 9 10 11 12 a a a a 13 14 15 16 17 2.4 FH 1/XX 4 18 19 20 21 22 23 24 25 26 27 1 2 3 4 5 6 m 7 h 8 r 9 a P b c d e f g h i j ud k l m n o 28 29 30 31 32 33 34 35

More information

(JAIST) (JSPS) PD URL:

(JAIST) (JSPS) PD URL: (JAIST) (JSPS) PD URL: http://researchmap.jp/kihara Email: kihara.takayuki.logic@gmail.com 2012 9 5 ii 2012 9 4 7 2012 JAIST iii #X X X Y X

More information

5 30 4 5 3 1

5 30 4 5 3 1 Dr.. No..10??!!!!!! ((^^ Dr.. 5 30 4 5 3 1 cool 1 1 2 200 1700 5 TQM TQM TQM TQM TQM QC 3 or TQM QC QC TQM H24 TQM OK 598 TQM ょ っ ~ っ ~ 12 2012 Y 4 NY ,, http://www.yonemorihp.jp 2 2950 2 2710

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

総会日程 第1日 5月25日(水曜日)

総会日程 第1日 5月25日(水曜日) 2016 44 25 Supplement 1 1 5 25 9301030 10401140 12401510 43 2016 44 25 Supplement 1 2 1 5 25 16201705 17151815 Peter F. Lawrence 18251915 44 2016 44 25 Supplement 2 1 5 25 9301130 11451230 12401510 45

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

( ) ( ) ( ) ( ) ( ) [1]

( ) ( ) ( ) ( ) ( ) [1] ( ) ( ) ( ) ( ) ( ) [1] [1] [2] 1 1 3 2.1 3 2.2 6 2.2.1 6 2.2.2 10 2.3 10 2.4 15 20 21 4.1 21 4.1.1 1936 21 4.1.2 1939 24 4.1.3 1950 25 4.1.4 1971 26 4.2 28 4.2.1 1980 28 4.2.2 1991 30 4.2.3 1982 33 4.2.4

More information

F SL F PL F GL F ML F EL-1 2

F SL F PL F GL F ML F EL-1 2 1 5 24 11 00 11 30 2 2F SL-1 2 5 24 11 30 12 00 2 2F SL-2 3 5 24 11 00 12 00 4 4F SL-3 4 5 24 13 30 14 30 4 4F SL-4 5 5 24 14 30 15 30 4 4F SL-5 6 5 25 17 10 18 10 3 3F SL-6 7 5 25 16 10 17 10 6 6F II

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

All about ORIX Continuous Profitability * 2,000 1,500 1,000 1974 9 1988 9 1993 3 1998 3 2009 3 2011 3 673 2012 3 775 1979 9 1989 3 2002 3 IT 500 0 196

All about ORIX Continuous Profitability * 2,000 1,500 1,000 1974 9 1988 9 1993 3 1998 3 2009 3 2011 3 673 2012 3 775 1979 9 1989 3 2002 3 IT 500 0 196 All about ORIX Answers, Custom Fit. 1 All about ORIX Continuous Profitability * 2,000 1,500 1,000 1974 9 1988 9 1993 3 1998 3 2009 3 2011 3 673 2012 3 775 1979 9 1989 3 2002 3 IT 500 0 1964 1975 1980 1985

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

取扱説明書 [F-08D]

取扱説明書 [F-08D] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 a bc d a b c d 17 a b cd e a b c d e 18 19 20 21 22 a c b d 23 24 a b c a b c d e f g a b j k l m n o p q r s t u v h i c d e w 25 d e f g h i j k l m n o p q r s

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

記号と準備

記号と準備 tbasic.org * 1 [2017 6 ] 1 2 1.1................................................ 2 1.2................................................ 2 1.3.............................................. 3 2 5 2.1............................................

More information

TQFT_yokota

TQFT_yokota , TY, Naito, Phys. Rev. B 99, 115106 (2019),, 2019 9 2 1 (DFT) (DFT)? HΨ(x 1,, x N ) = EΨ(x 1,, x N ) N DFT! Hohenberg, Kohn, PR (1964) Kohn, Sham, PRA (1965) (EDF) E[ρ] = F[ρ] + dxv(x)ρ(x) δe[ρ] δρ(x)

More information

( ) ( ) ( ) i (i = 1, 2,, n) x( ) log(a i x + 1) a i > 0 t i (> 0) T i x i z n z = log(a i x i + 1) i=1 i t i ( ) x i t i (i = 1, 2, n) T n x i T i=1 z = n log(a i x i + 1) i=1 x i t i (i = 1, 2,, n) n

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information