Minoda190311

Size: px
Start display at page:

Download "Minoda190311"

Transcription

1 (arxiv: , submitted to MNRAS Letters)

2 本日の内容 イントロ 21-cm 線のグローバルシグナルについて 原始磁場について 計算手法 計算結果

3 1. Introduction 本日の内容 イントロ 21-cm 線のグローバルシグナルについて 原始磁場について 計算手法 計算結果

4 1. Introduction 21-cm 線について 線は 中性水素原子 の超微細構造に起因する電磁波 中性水素原子 1s 軌道 (n=1, l=0) 超微細構造 ΔE = *+ ev, ν 1.4 GHz, λ 21 cm proton electron 21-cm 線 スピン温度 T 2345 ( T 8 ) n : = 3 exp ΔE n ; k B T 2345 赤方偏移した 21-cm 線の観測 => HI の分布から宇宙論ができる (matter density field, IGM thermal history, epoch of reionization, )

5 1. Introduction 21cm 線グローバルシグナル T b (z) ' 27x HI (z) " 1 T (z) T spin (z) # bh ! 0.15 m h 2! 1/2! 1/2 1+z [mk] 10 観測量 大雑把に言うと T 8 T 2345 T D のとき輝線 T 8 T 2345 T D のとき吸収線 HI の物理的な情報 ΛCDM 宇宙論による予言の例 McQuinn & O Leary, 2012 (arxiv: )

6 1. Introduction 21cm 線グローバルシグナル T b (z) ' 27x HI (z) " 1 T (z) T spin (z) # bh ! 0.15 m h 2! 1/2! 1/2 1+z [mk] 10 観測量 大雑把に言うと T 8 T 2345 T D のとき輝線 T 8 T 2345 T D のとき吸収線 HI の物理的な情報 ΛCDM 宇宙論による予言の例 McQuinn & O Leary, 2012 (arxiv: ) 本研究では z~17 の暗黒時代の吸収線に着目!

7 1. Introduction 暗黒時代の thermal history ΛCDM 宇宙論ならば z~17 のとき T LMB > T 8 ( 吸収線 ) T LMB 1 + z T z I for z 200

8 1. Introduction 暗黒時代の thermal history ΛCDM 宇宙論ならば z~17 のとき T LMB > T 8 ( 吸収線 ) T LMB 1 + z 21-cm 線グローバルシグナルが z~17 で吸収線として観測される Þ IGMに対するexoticな熱源を制限ダークマター対消滅 ( ) 原始ブラックホール ( ) TÞ 8 宇宙初期に生成された 1 + z I ( かもしれない ) for 原始磁場を熱源として研究 z 200

9 1. Introduction 本日の内容 イントロ 21-cm 線のグローバルシグナルについて 原始磁場について 計算手法 計算結果

10 1. Introduction 原始磁場とは何か? 様々な天体に磁場が付随している (e.g., 銀河磁場 マイクロガウス ) これらの磁場はいつ どこで どうやってできたのか? 初期宇宙で作られた可能性 = 原始磁場 (inflation, phase transition, topological defects, Harrison mechanism, ) Q. その時間進化は? 観測的兆候は? Kandus et al. ( ); Subramanian ( )

11 1. Introduction 原始磁場の制限 ( これまで ) CMB の温度揺らぎによる制限 (Planck 2015 XIX, arxiv: ) ランダムに分布した磁場を考える 電磁場のエネルギーテンソルでスカラー型 ベクトル型 テンソル型の揺らぎをつくる 磁場の強度が大きいと 観測されている CMB の温度揺らぎを超えてしまう ( 偏光や distortion もつくる ) 1Mpc で平均化した原始磁場の強度 B : M3R < 4.5 ng

12 1. Introduction 前半のまとめ [ 目的 ] 21-cm 線の観測によって原始磁場のモデルを制限 cm 線のグローバルシグナルが周波数 f UV2 = 78MHz で吸収線として観測される ( 仮定 ) 2. バリオンガスの Brownian motion で決まる温度に対して制限 T 8 < T LMB (z UV2 = 17) 3. 原始磁場の散逸を考慮してガスの温度進化を計算 4. 原始磁場のモデルパラメータを制限することができる ( 右図 ) B : M3R 4.4 ng この図に新たな線を描く!

13 2. 計算手法 本日の内容 イントロ 21-cm 線のグローバルシグナルについて 原始磁場について 計算手法 計算結果

14 2. 計算手法 原始磁場の空間分布 B \ = 0 B \ = B : M3R \ : M3R スケール依存性 * b c de /I for λ < λ R`a for λ λ R`a 短波長側にカットオフ 1Mpc で smoothing した磁場の強度 B : M3R, n h の組み合わせで原始磁場の統計的性質が決定 ( カットオフ長も決まる ) I λ R`a = I B R`a 4πρ LMB σ l m ; s tuv c dt a I n r 初期宇宙では 光子の平均自由行程ほどのスケールで流体の粘性が磁場を減衰 *x B : M3R 1 ng Jedamzik+ 1998; Subramanian & Barrow 1998 I : b c d{ [Mpc]

15 2. 計算手法 原始磁場のモデル B \ = B : M3R λ 1 Mpc * b cde I, λ R`a *x B : M3R 1 ng I : b c d{ [Mpc] n h が大きい Þ スケール依存性大 カットオフ長も大 (n B = 3 is scale-free) B : M3R が大きい Þ 全体の振幅が大 カットオフ長も大 B : M3R = 0.1 ng B \ λ *;.: λ *;.{ λ *:.;

16 2. 計算手法 IGM の熱源としての原始磁場 Ø 双極性散逸磁場を担う荷電粒子と中性粒子の摩擦によって生じる散逸機構 加熱率はローレンツ力の大きさに比例 Q B B I Ø オーム散逸 Kolmogorov 的な乱流の小サイズの渦がオーム散逸によって熱化加熱率は磁場のエネルギー密度に比例 Q l B I

17 2. 計算手法 温度 電離度 磁場の強度 Øガスの温度進化 dt 8 dt = ( 宇宙膨張 ) + ( コンプトン ) + ( 磁場の散逸 ) Øガスの電離度の進化 dx r dt = ( 衝突電離 ) + ( 再結合 ) + (CMBによる光電離) Ø 原始磁場のエネルギー d dt B I 8π = ( 宇宙膨張 ) ( 磁場の散逸 ) RECFAST code (astro-ph/ , astro-ph/ , )

18 3. 計算結果 本日の内容 イントロ 21-cm 線のグローバルシグナルについて 原始磁場について 計算手法 計算結果

19 3. 計算結果 IGM の温度進化 dtˆ Š dt = x r 8ρ Œh σ 1 + x r 3m r c Compton 散乱による効果 + Q + Q l 1.5k h n 原始磁場による加熱 ( 双極性散逸 + オーム散逸 ) T Œh Tˆ Š 2HTˆ Š 宇宙膨張 (+ 電離度と磁場の時間進化 )

20 3. 計算結果 原始磁場の新たな制限 様々な磁場のモデル B b, n h に対して T 8 の時間進化を計算した 21-cm 線の吸収線条件 T K < T CMB z~17 を満たすように原始磁場の上限を与えた => B : M3R 0.1 ng これまでで最も強い制限

21 まとめ ü21cm 線の観測による原始磁場の制限を行った ü 暗黒時代の IGM の温度進化に磁場が与える影響を見積もった ü 温度 電離度 磁場のエネルギーを同時に矛盾なく解いた ü 赤方偏移 z~17 の吸収線 => B : M3R < 0.1 ng という制限を得た ( 特に n h < 2 に対してはこれまでで最も強い制限を得た )

22 おわり? ここからはおまけだよ

23 21cm 線の観測でわかること 今年 3 月 1 日に EDGES が z~17 の 21cm 吸収線を観測したと発表 * 吸収線 ( 輝線 ) が観測されるということは? δt 1 š œ T 2345 = d( v d ) ªš :d v d, ž T LMB < T 2345 emission T LMB > T 2345 absorption (y R, y は正の係数 ) T LMB = T U2 なら 吸収線も輝線も出ない 吸収線 ( 輝線 ) の観測 => T LMB > T U2 T LMB < T U2 である *(Bowman et al. 2018, Nature 555, 67)

24 21cm 吸収線と宇宙論 吸収線が観測された => T LMB > T U2 であるはず 断熱進化なら T LMB 1 + z, T U2 1 + z I for z < 200 IGMのexoticな熱源が制限できる (PBHs, exotic DM, ) ここからは宇宙初期の磁場 ( 原始磁場 ) の制限をする u 原始磁場とは何か?Motivationは? uどこまでわかっている ( いた ) のか? u 熱源としてのふるまい?

25 Magnetic reheating PMFs dissipate due to the radiative viscosity in the early universe => increasing the energy density of CMB photons üobservational constraint on baryon-to-photon ratio ( ) η LMB = 1 3 Δ ρ D, with Δ ρ D < *I η BB± 4 ρ D ρ D Finally they put an upper limit on PMFs as log B : M3R 1 ng 11 6n h Saga et al. ( )

26 2. Calculation Methods Ambipolar Diffusion For weakly ionized plasma, charged particles feel F ¹5aº = B B x¼, and F ½ U = ξ ρ 5 ρ 4 v 5 v 4 By assuming total force to be zero, F ¹5aº + F ½ U = 0, v 4 v 5 = F ¹5aº ξρ 5 ρ 4 = F ¹5aº ξρ V I Heating rate for ambipolar diffusion is Q = F ½ U À v 4 v 5 = ξ =  v *v œ Ã Ä dã Å 1 x r 1 x r B B I 16π I ξρ V I : drag coefficient [cm 3 /g/s] 1 x r x r x r : ionization fraction (Shu 1992, Gas Dynamics )

27 Stochastic PMF Formulation Assumptions ustatistically homogeneous and isotropic field uno helicity, no electric field from induction equation B Æ k B È k = 2π e 2 δ k k δ ÆÈ kê Æ kê È P h k We define PMF strength smoothed on λ with P h k = A h k b c as PMF power spectrum B \ I = 0 Ñ B I \ m e *ÏÐ \ Ð P h k de k 2π e ; Gaussian window function I = B : M3R normalizing amplitude λ 1 Mpc * b c de for λ < λ R`a for λ λ R`a scale dependence B : M3R, n h determine the statistical property of PMFs. cut-off length

28 温度 電離度 磁場の強度 ØKinetic temperature of IGM gas dt 8 dt = 2HT 8 + x r 8ρ LMB σ l 1 + x r 3m r c ØIonization fraction of IGM gas dx r dt = γ rn V x r + α r n V x r I + β r 1 x r exp 3E 4 5 4k B T LMB ØEnergy density of the PMFs d dt B I 8π = 4H B I 8π T LMB T 8 + Q + Q l 1.5k B n V 1 + K Λn V (1 x r ) 1 + K (Λ + β r ) n V (1 x r ) (Q + Q l) RECFAST code (astro-ph/ , astro-ph/ , )

観測的宇宙論WS2013.pptx

観測的宇宙論WS2013.pptx ì コンテンツ イントロダクション 球対称崩壊モデル ビリアル平衡 結果 まとめ イントロダクション 宇宙磁場 銀河や銀河団など様々なスケールで磁場が存在 起源や進化について未だに謎が多い 宇宙の構造形成に影響 P(k)[h -3 Mpc 3 ] 10 6 10 5 10 4 10 3 10 10 1 10 0 10-1 10-10 -3 10-4 10-4 10-3 10-10 -1 10 0 10

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

PowerPoint Presentation

PowerPoint Presentation 2010 KEK (Japan) (Japan) (Japan) Cheoun, Myun -ki Soongsil (Korea) Ryu,, Chung-Yoe Soongsil (Korea) 1. S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) Magnetar : ~ 10 15 G ~ 10 17 19 G (?)

More information

観測的宇宙論workshop.pptx

観測的宇宙論workshop.pptx 名古屋 大学宇宙論論研究室 嵯峨承平 ( 共同研究者 : 市來來淨與, 杉 山直 ) 2013/12/4 観測的宇宙論論 workshop 1/20 目次 1. イントロ 2. 2 次摂動論論 3. 重 力力波 ( 線形摂動 ) 4. 重 力力波 (2 次摂動 ) 5. まとめ 2/20 1. イントロ 非ガウス性 重 力力レンズ効果 2 次ドップラー効果 2 次重 力力波 磁場 Mode coupling

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9 No.7, No.8, No.9 email: takahash@sci.u-hyogo.ac.jp Spring semester, 2012 Introduction (Critical Behavior) SCR ( b > 0) Arrott 2 Total Amplitude Conservation (TAC) Global Consistency (GC) TAC 2 / 25 Experimental

More information

untitled

untitled 24 591324 25 0101 0002 0101 0005 0101 0009 0101 0012 0101 0013 0101 0015 0101 0029 0101 0031 0101 0036 0101 0040 0101 0041 0101 0053 0101 0055 0101 0061 0101 0062 0101 0004 0101 0006 0101 0008 0101 0012

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回 素粒子物理学 素粒子物理学序論B 010年度講義第4回 レプトン数の保存 崩壊モード 寿命(sec) n e ν 890 崩壊比 100% Λ π.6 x 10-10 64% π + µ+ νµ.6 x 10-8 100% π + e+ νe 同上 1. x 10-4 Le +1 for νe, elμ +1 for νμ, μlτ +1 for ντ, τレプトン数はそれぞれの香りで独立に保存

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

Microsoft PowerPoint - Ppt ppt[読み取り専用]

Microsoft PowerPoint - Ppt ppt[読み取り専用] Astroparticle physics 富山大学 松本重貴 1. 暗黒物質問題 2. 暗黒物質の正体? 3. 暗黒物質の探査 Astroparticle physics って何? 素粒子 物理学 ニュートリノ暗黒物質暗黒エネルギー宇宙のバリオン数インフレーション 宇宙 物理学 宇宙の暗黒物質問題暗黒物質の存在は確立したが その正体 ( 質量 スピン 量子数や相互作用 ) については不明であるという問題!

More information

銀河団衝突にともなう 高温ガスの運動がひきおこす特徴的な磁場構造 (Takizawa 2008 ApJ, 687, 951)

銀河団衝突にともなう 高温ガスの運動がひきおこす特徴的な磁場構造 (Takizawa 2008 ApJ, 687, 951) JVLA S-band and X-band Polarimetry of Abell 2256 Ozawa,,,,,Takizawa, Takahashi,,,,et al. to be submitted to PASJ 滝沢元和 2015.5.8 研究室談話会 Introduction: 銀河団 可視光 ( 数 100 個の銀河の集まり ) X 線数 kev の高温ガス ( シンクロトロン )

More information

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000 ( ) 73 10,905,238 3,853,235 295,309 1,415,972 5,340,722 2,390,603 890,603 1,500,000 1,000,000 300,000 1,500,000 49 19. 3. 1 17,172,842 3,917,488 13,255,354 10,760,078 (550) 555,000 600,000 600,000 12,100,000

More information

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š n š p š š Ž p í š p š š» n É» š å p š n n š û o å Ì å š ˆ š š ú š p š m å ìå ½ m î

More information

2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を

2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を 2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を含まない原始ガスから形成される 宇宙で最初に誕生する星である 初代星はその後の星形成や再電離など宇宙初期の天文現象に強く関係し

More information

1. : 1.5 2. ( ): 2.5 3. : 1 ( ) / minimum solar nebula model ( ) http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif ( ) SDSS : d 2 r i dt 2 ÿ j i

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

輻射の量子論、選択則、禁制線、許容線

輻射の量子論、選択則、禁制線、許容線 Radiative Processes in Astrophysics 005/8/1 http://wwwxray.ess.sci.osaka- u.ac.jp/~hayasida Semi-Classical Theory of Radiative Transitions r r 1/ 4 H = ( cp ea) m c + + eφ nonrelativistic limit, Coulomb

More information

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite 1 8 8.1 8.1.1 8.1: ( Ω = ρ/ρ c ) (Fukugita, M. et al., APJ 503 (1998) 518) ( 15%) (z 0 ) 1.................. 0.0026 h 1 0.0043 h 1 0.0014 h 1 A 2..................... 0.00086 h 1 0.00129 h 1 0.00051 h

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

FPWS2018講義千代

FPWS2018講義千代 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 3つの究極の 宗教や神話 哲学や科学が行き着く人間にとって究極の問い 宇宙 世界 はどのように始まり どのように終わるのか 全てをつかさどる究極原理は何か 今日はこれを考えます 人類はどういう存在なのか Wikipediaより 4 /72 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 電子レンジ 可視光では中が透け

More information

森羅万象2018のコピー

森羅万象2018のコピー PD Stellar Irradiation Mineral Atmosphere Na, K, SiO, O 2, O gas (MgO, Al, AlO, FeO etc ) https://www.nasa.gov/topics/universe/features/rocky_planet.html / (2018.5.9) Magma Ocean Ito et al. (2015) (HRE)

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

( ) 1,771,139 54, , ,185, , , , ,000, , , , , ,000 1,000, , , ,000

( ) 1,771,139 54, , ,185, , , , ,000, , , , , ,000 1,000, , , ,000 ( ) 6,364 6,364 8,884,908 6,602,454 218,680 461,163 1,602,611 2,726,746 685,048 2,022,867 642,140 1,380,727 18,831 290,000 240,000 50 20. 3.31 11,975,755 1,215,755 10,760,000 11,258,918 (68) 160,000 500,000

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

極めて軽いダークマターの 新しい検出方法 In preparation

極めて軽いダークマターの 新しい検出方法 In preparation 極めて軽いダークマターの新しい検出方法 In preparation Hajime Fukuda, T.T. Yanagida, S. Matsumoto Kavli IPMU, U. Tokyo August 1, 2017 Introduction DM は最も確立した BSM の一つ 質量は? Particle DM Mass Range dsph m > M Pl Vast Region!

More information

34号 目 次

34号 目 次 1932 35 1939 π 36 37 1937 12 28 1998 2002 1937 20 ª 1937 2004 1937 12 º 1937 38 11 Ω 1937 1943 1941 39 æ 1936 1936 1936 10 1938 25 35 40 2004 4800 40 ø 41 1936 17 1935 1936 1938 1937 15 2003 28 42 1857

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

Ÿ ( ) ,166,466 18,586,390 85,580,076 88,457,360 (31) 1,750,000 83,830,000 5,000,000 78,830, ,388,808 24,568, ,480 6,507,1

Ÿ ( ) ,166,466 18,586,390 85,580,076 88,457,360 (31) 1,750,000 83,830,000 5,000,000 78,830, ,388,808 24,568, ,480 6,507,1 ( ) 60,000 120,000 1,800,000 120,000 100,000 60,000 60,000 120,000 10,000,000 120,000 120,000 120,000 120,000 1,500,000 171,209,703 5,000,000 1,000,000 200,000 10,000,000 5,000,000 4,000,000 5,000,000

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

untitled

untitled š ( ) 300,000 180,000 100,000 120,000 60,000 120,000 240,000 120,000 170,000 240,000 100,000 99,000 120,000 72,000 100,000 450,000 72,000 60,000 100,000 100,000 60,000 60,000 100,000 200,000 60,000 124,000

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

偏極ターゲット開発の現状 @ 山形大学 Current status of development of polarized targets @Yamagata Univ. 山形大学松田洋樹 Yamagata Univ. H. MATSUDA Index 1. 偏極標的と偏極度 (Pol. Target and DoP) 2. 能動核偏極 (Dynamic Nuclear Polarization)

More information

š ( š ) (6) 11,310, (3) 34,146, (2) 3,284, (1) 1,583, (1) 6,924, (1) 1,549, (3) 15,2

š ( š ) (6) 11,310, (3) 34,146, (2) 3,284, (1) 1,583, (1) 6,924, (1) 1,549, (3) 15,2 š ( š ) ( ) J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 13 14. 3.29 23,586,164,307 6,369,173,468 17,216,990,839 17,557,554,780 (352,062) 1,095,615,450 11,297,761,775 8,547,169,269

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

Microsoft Word - CosmicCondensationDEDM7904b.doc

Microsoft Word - CosmicCondensationDEDM7904b.doc 基研研究会 熱場の量子論とその応用 2007 年 9 月 5 日 ( 水 )~9 月 7 日 ( 金 ) 京都大学吉田南校舎 1 宇宙の量子凝縮と 暗黒エネルギー 暗黒物質 森川雅博 Collaboration 福山武志 ( 立命館 ) 立川崇之 ( 工学院 ) 森田正亮 ( 沖縄高専 ) 西山雅子 Masako Nishiyama, Masa-aki Morita, Masahiro Morikawa,

More information

Microsoft PowerPoint - hiei_MasterThesis

Microsoft PowerPoint - hiei_MasterThesis LHC 加速器での鉛鉛衝突における中性 πおよびω 中間子測定の最適化 日栄綾子 M081043 クォーク物理学研究室 目的 概要 目的 LHC 加速器における TeV 領域の鉛鉛衝突実験における中性 π および ω 中間子の測定の実現可能性の検証 および実際の測定へ向けた最適化 何故鉛鉛衝突を利用して 何を知りたいのか中性 πおよびω 中間子測定の魅力 ALICE 実験検出器群 概要予想される統計量およびバックグランドに対するシグナルの有意性を見積もった

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

untitled

untitled ( œ ) œ 138,800 17 171,000 60,000 16,000 252,500 405,400 24,000 22 95,800 24 46,000 16,000 16,000 273,000 19,000 10,300 57,800 1,118,408,500 1,118,299,000 109,500 102,821,836 75,895,167 244,622 3,725,214

More information

Ÿ Ÿ ( ) Ÿ , , , , , , ,000 39,120 31,050 30,000 1,050 52,649, ,932,131 16,182,115 94,75

Ÿ Ÿ ( ) Ÿ , , , , , , ,000 39,120 31,050 30,000 1,050 52,649, ,932,131 16,182,115 94,75 Ÿ ( ) Ÿ 100,000 200,000 60,000 60,000 600,000 100,000 120,000 60,000 120,000 60,000 120,000 120,000 120,000 120,000 120,000 1,200,000 240,000 60,000 60,000 240,000 60,000 120,000 60,000 300,000 120,000

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

( ) Note Ω m = 1 Ω m : ( ) r-process α 1: 2 32T h(t 1/2 = y) 2 38U(t 1/2 = y) 2 35U(t 1/2 = 7.038

( ) Note Ω m = 1 Ω m : ( ) r-process α 1: 2 32T h(t 1/2 = y) 2 38U(t 1/2 = y) 2 35U(t 1/2 = 7.038 ( ) Note 4 19 11 22 6 6.1 1 Ω m = 1 Ω m.3 6.1.1 : ( ) r-process α 1: 2 32T h(t 1/2 = 1.45 1 1 y) 2 38U(t 1/2 = 4.468 1 9 y) 2 35U(t 1/2 = 7.38 1 8 y) 2 44Pu(t 1/2 = 8.26 1 7 y) β / (J.A.Johnson and M.Bolte:

More information

inflation.key

inflation.key 2 2 G M 0 0-5 ϕ / M G 0 L SUGRA = 1 2 er + eg ij Dµ φ i Dµ φ j 1 2 eg2 D (a) D +ieg ij χ j σ µ Dµ χ i + eϵ µνρσ ψ µ σ ν Dρ ψ σ 1 4 ef (ab) R F (a) [ ] + i 2 e λ (a) σ µ Dµ λ (a) + λ (a) σ µ Dµ λ (a) 1

More information

WFMOS で期待されるサイエンス ( ダークエネルギー編 ) 2008 年度光学赤外線天文連絡会シンポジウム 地上大型望遠鏡計画 :2020 年のための決心 2008 年 8 月 22 国立天文台 東京大学大学院理学系研究科物理学専攻須藤靖 1

WFMOS で期待されるサイエンス ( ダークエネルギー編 ) 2008 年度光学赤外線天文連絡会シンポジウム 地上大型望遠鏡計画 :2020 年のための決心 2008 年 8 月 22 国立天文台 東京大学大学院理学系研究科物理学専攻須藤靖 1 WFMOS で期待されるサイエンス ( ダークエネルギー編 ) 2008 年度光学赤外線天文連絡会シンポジウム 地上大型望遠鏡計画 :2020 年のための決心 2008 年 8 月 22 日 @ 国立天文台 東京大学大学院理学系研究科物理学専攻須藤靖 1 ダークエネルギーと 21 世紀の物理 宇宙のサイズ 宇宙の加速膨張 137 億年 減速膨張 時間 万有斥力? 宇宙定数? ダークエネルギー? 一般相対論の破綻?

More information

首都圏チェーンストアチラシ出稿状況調査 リニューアル 2014 年 6 Sample 月版版

首都圏チェーンストアチラシ出稿状況調査 リニューアル 2014 年 6 Sample 月版版 首都圏チェーンストアチラシ出稿状況調査 リニューアル 2014 年 6 Sample 月版版 w ÛÝÝÜÛÚ ÜÛw àýüýà ÝÝ ÝÝÝÝÝÝÜÜÛÛÙÛÚÚÚ ÉÉÖ±Ö Öw ÖÛÝ݃ Ö ÝÝÝ ÖÜwÝÝÝ ÉÉÉÉ ÝÝ ÜÝ ÜÝÝ ÖÝÝÝÝÝÝÝÜÜ Ö Ö ÌÌ ààà Ê syµeêéêéê ÊÉÊÊÊ Ê e ÉÊÉÊÊÉÊ ÊÉÊÊÊ Ê ÝÜÝÝ ÊÉÊÊ ÊÊÉÊÊÊ

More information

XXXXXX XXXXXXXXXXXXXXXX

XXXXXX XXXXXXXXXXXXXXXX Å E D Ë@ÌÊè½ÌÄ\ { î{ t½ î. î G } b } b ÏäÝßØo 9 "Ä ¾ iž ¾ ¼ÀÀ Ð ÏäÝßØo 9 "Ä ¾ iž ¾ ¼ÀÀ Ð z z Þ Þ ÏäÝßØo : " ¾ ~C iž ò 0@ÀÀ Ð ÏäÝßØo : " ¾ ~C iž ò 0@ÀÀ Ð ÏäÝßØo ; " v ¼ÀÀ Ð ÏäÝßØo ; " v ¼ÀÀ Ð z z z z Þ

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 東北大学サイクロトロン ラジオアイソトープセンター測定器研究部内山愛子 2 電子の永久電気双極子能率 EDM : Permanent Electric Dipole Moment 電子のスピン方向に沿って生じる電気双極子能率 標準模型 (SM): クォークを介した高次の効果で電子 EDM ( d e ) が発現 d e SM < 10 38 ecm M. Pospelov and A. Ritz,

More information

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 * 448 8542 1 e-mail: ymasada@auecc.aichi-edu.ac.jp 1. 400 400 1.1 10 1 1 5 1 11 2 3 4 656 2015 10 1 a b cc b 22 5 1.2 * 1 Helioseismology * 2 6 8 * 3 1 0.7 r/r 1.0 2 r/r 0.7 3 4 2a 1.3 FTD 9 11 Ω B ϕ α B

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

Curvature perturbation from Ekpyrotic collapse with multiple fields

Curvature perturbation  from Ekpyrotic collapse    with multiple fields 研究会 宇宙初期における時空と物質の進化 @ 東京大学 2007. 5. 29 Curvature perturbations from Ekpyrotic collapse with multiple fields 水野俊太郎 (RESCEU, 東大 ) with 小山和哉 ( ポーツマス大 ) David Wands ( ポーツマス大 ) arxiv:0704.1152 1.Introduction

More information

ポリトロープ、対流と輻射、時間尺度

ポリトロープ、対流と輻射、時間尺度 宇宙物理学 ( 概論 ) 6/6/ 大阪大学大学院理学研究科林田清 ポリトロープ関係式 1+(1/) 圧力と密度の間にP=Kρ という関係が成り立っていると仮定する K とは定数でをポリトロープ指数と呼ぶ 5 = : 非相対論的ガス dlnp 3 断熱変化の場合 断熱指数 γ, と dlnρ 4 = : 相対論的ガス 3 1 = の関係にある γ 1 等温変化の場合は= に相当 一様密度の球は=に相当

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

Ÿ ( ) Ÿ 7,488,161,218 7,396,414,506 91,708,605 38,107 4,376,047 2,037,557,517 1,000,000 i 200,000,000 1,697,600, ,316.63fl 306,200,000 14

Ÿ ( ) Ÿ 7,488,161,218 7,396,414,506 91,708,605 38,107 4,376,047 2,037,557,517 1,000,000 i 200,000,000 1,697,600, ,316.63fl 306,200,000 14 Ÿ ( ) (Ÿ ) Ÿ J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 17 18. 3.30 24,222,550,856 8,088,715,093 16,133,835,763 14,673,176,237 (400,000) 1,265,253,000 201,000,000 1,000,000 200,000,000

More information

( š ) œ 525, , , , ,000 85, , ,810 70,294 4,542,050 18,804,052 () 178,710 1,385, , ,792 72,547 80,366

( š ) œ 525, , , , ,000 85, , ,810 70,294 4,542,050 18,804,052 () 178,710 1,385, , ,792 72,547 80,366 ( š ) 557,319,095 2,606,960 31,296,746,858 7,615,089,278 2,093,641,212 6,544,698,759 936,080 3,164,967,811 20. 3.28 178,639,037 48,288,439 170,045,571 123,059,601 46,985,970 55,580,709 56,883,178 19. 4.20

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

宇宙の背景輻射 現在 150億年 50億年 星や銀河の 形成 自然界には4つの力 3つの分岐点が今回のシリーズの目標 3K LHC温度 1016K (10-12 ~ 10-14s) 10億年 (2) GUTへの挑戦 超対称性による大統一 3000K 30万年 原子 分子の形成 3分 原子核の形成 10-10 秒 弱い相互作用が分離 3つの力が分離する 量子重力の世界 10-34 秒 10-43 秒

More information

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Abstract strongly interacting massive particles (SIMPs, X) Big Bang (BBN) X heavy colored

More information

EOS and Collision Dynamics Energy of nuclear matter E(ρ, δ)/a = E(ρ, )/A + E sym (ρ)δ 2 δ = (ρ n ρ p )/ρ 1 6 E(ρ, ) (Symmetric matter ρ n = ρ p ) E sy

EOS and Collision Dynamics Energy of nuclear matter E(ρ, δ)/a = E(ρ, )/A + E sym (ρ)δ 2 δ = (ρ n ρ p )/ρ 1 6 E(ρ, ) (Symmetric matter ρ n = ρ p ) E sy Nuclear collision dynamics and the equation of state We want to measure EOS. Measure T, P and ρ of matter... Prepare matter in the state we want to measure HI collisions What are taking place in collisions?

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

(WP)

(WP) 1998 0 a b v g d je jo z i j k l m n o à á â ƒ ã ä å Ý Þ æ ç ˆ è é Š ê ë Œ ì í Ž î 1 ï p ð r ñ s ò t ó u ô f õ x ö ts t' ø ù ' ' š ú û y œ ü ' ý e ž þ ju Ÿ ß ja à, ê, ì, î, ò á, ã, ä, æ, é, ë, ï, ô, ö,,

More information

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi 4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6...........................

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション モニタリング観測からわかった電波銀河 3C111 の γ 線活動期と電波ノットの噴出時期との関係 VLBI 懇談会シンポジウム 12 月 27 日 ( 火 ) 山口大学 B4 塩谷康允共同研究者 : 藤澤健太 新沼浩太郎 導入 AGN 統一モデル AGN 電波で明るい (10 %) 超大質量 BH+ 降着円盤 電波で暗い (90 %) 莫大なエネルギー放射 (10 6-14 L ) 0 いくつかの種類に大別される

More information