Curvature perturbation from Ekpyrotic collapse with multiple fields

Size: px
Start display at page:

Download "Curvature perturbation from Ekpyrotic collapse with multiple fields"

Transcription

1 研究会 東京大学 Curvature perturbations from Ekpyrotic collapse with multiple fields 水野俊太郎 (RESCEU, 東大 ) with 小山和哉 ( ポーツマス大 ) David Wands ( ポーツマス大 ) arxiv:

2 1.Introduction 標準ビッグバン宇宙論の問題点 地平線問題 平坦性問題 大規模構造の起源 通常はインフレーションで説明 インフレーションの抱える問題点 初期特異点問題 ポテンシャルの値の微調整 代替シナリオは可能か?

3 Ekpyrotic シナリオ Khoury, Ovrut, Steinhardt, Turok `01 ビッグバン宇宙がブレーンの衝突によって 生成された! バルクブレーン 我々のブレーン ヘテロ型 M 理論に基づく状況設定 Lucas, Ovrut, Waldram `98 揺らぎはビッグバン前の収縮宇宙で生成される 運動の方向 ブレーン間の距離 = スカラー場 Φ バルクブレーンが我々のブレーンに向かって運動 ブレーンの衝突で我々のブレーンが加熱される

4 生成される揺らぎに関する先行研究 収縮期のブレーン上での 4 次元有効宇宙論は 負の指数関数型ポテンシャルをもつスカラー場で記述 スペクトル V (û) =ÄV 0 exp Ä 2 p Lyth `02 n =1+ 2 1Äp! 3 (p! 0) Multi-field new ekpyrotic モデル û M p ; p ú 1 もともとのモデルではスケール不変の揺らぎを作るのは困難 複数のスカラー場を導入してスケール不変を実現 Lehners, McFadden, Turok, Steinhardt `07 Buchbinder, Khoury, Ovrut `07, Creminelli, Senatore `07

5 2.New Ekpyrotic シナリオ Lehners, McFadden, Turok, Steinhardt `07 Buchbinder, Khoury, Ovrut `07, Creminelli, Senatore `07 モデル (2スカラーの場合) V (û 1 ;û 2 )=ÄV 1 e Äc 1û 1 Ä V 2 e Äc 2û 2 ' = ÄU(ü)e Äc' ü U 0 c 1 ;c 2 ù 1 1+ c2 2 (üä ü 0) 2 + ÅÅÅ û 1 c = p c 1c 2 c 2 1 +c 2 2 <c 1 ;c 2 û 2

6 一様成分のダイナミクス 指数関数型ポテンシャルをもつスカラー場を含む系では スケーリング解が重要な役割を果たす û i single-fields (i =1; 2) で引き起こされるスケーリング解 a =(Ät) p i ; û i = 2 c i ln(ät) Ä 1 c i ln p i(1ä3p i ) V i with p i = 2 c 2 i cf. old ekpyrotic モデル Multi-field で引き起こされるスケーリング解 assisted contraction a =(Ät) p ; û i = 2 c i ln(ät) Ä 1 c i ln 2(1Ä3p) c 2 i V i with p = 2 c ; c = p c 1c 2 2 c 2 1 +c 2 c 2 > 6 2 cf. assisted inflation (N-flation) Finelli `02

7 断熱揺らぎとエントロピー揺らぎ 多成分スカラーの揺らぎは各瞬間ごとに 断熱ゆらぎとエントロピー揺らぎに分解することが可能 断熱揺らぎ Gordon, Wands, Bassett, Maartens `00 ér =siníéû 1 +cosíéû 2 és =cosíéû 1 Ä sin íéû 2 曲率揺らぎ R c = Hér _r with ér : és : エントロピー揺らぎ í= arctan _ û 1 等曲率揺らぎ S / és _û 2 一様成分の場が運動している方向一様成分の場の運動に垂直な方向

8 エントロピー揺らぎの生成 エントロピー揺らぎの発展方程式 és +3H és _ + k2 a és +(V 2 ;ss Ä í _ h 2 í )és = Ä2 r _r ér _ ê Ä ë i _r 3 2H + r ér 断熱揺らぎと結合した項一様成分の解として 以下のスケーリング解が実現したと仮定 multi-field スケーリング解 (B) í= arctan c 2 c 1 single field スケーリング解 (B1, B2) í= ô 2 ; 0 スペクトル指数 断熱揺らぎとエントロピー揺らぎの結合が切れる それぞれの場を独立に量子化することが可能 定数 B: n és =2p スケール不変 for p! 0 B1,B2: n és =2 blue

9 3. 曲率揺らぎの生成 motivations Koyama, Wands `07, Koyama, SM, Wands `07 スケール不変の揺らぎを作る multi-field スケーリング解が自然に実現するか? 生成されたスケール不変のエントロピー揺らぎをどうやって曲率揺らぎに移すか? 先行研究では 別の人為的な過程が必要 ex) バウンス, ポテンシャルを変形, etc. もし スケール不変な曲率揺らぎが生成されるとしたら その値に対する定量的な予言が可能か?

10 一様成分の解の安定性 Koyama, Wands `07 相空間の変数 x i ë 不動点 P _ û i p6h ; y i ë p V i e Ä c i û i p 3H 拘束条件 ( フリードマン方程式 P j x2 j Ä P ) j y2 j =1 A: j x2 j =1; y j =0 ( 運動項優勢の解 ) q Bi: x i = p c c i 6 ;y i = Ä 2 i 6 Ä 1;x j = y j =0; (forj 6= i) r ( single field スケーリング解 ) B: x j = p ê ë p c j ;y j = Ä c 2 j p 3p Ä 1 ( multi-field スケーリング解 ) 線形解析 i =1; 2 A: 不安定 Bi: 安定 B: 鞍点 B に近づく解は存在

11 揺らぎ生成のシナリオ B Bi non-singular ( 鞍点 ) 遷移 ( 安定点 ) bounce 時間 膨張宇宙 曲率揺らぎ エントロピー揺らぎ blue スケール不変 _í6= 0 mixing 一様成分の数値解 blue blue 時間発展

12 断熱揺らぎの生成 ( 大スケール ) Koyama, SM, Wands `07 揺らぎの発展方程式 ér és! 00 + K rr K rs K sr K ss! ér és! 0 + M rr M sr M rs M ss! ér és! =0 K rs = K sr = M rs = M sr =0 at B, Bi 初期条件 相空間内で B から少しずれた点から解き始める 断熱揺らぎ ér =0 エントロピー揺らぎ és = 1 p 数値計算 å åh 2ô å blue spectrum at B Bunch-Davies vacuum

13 数値計算結果 mixing による断熱揺らぎの生成 時間発展 時間発展 遷移後の断熱揺らぎとエントロピー揺らぎの比 ér és = c 1 ér c 2 at B 1 és = Ä c 2 c 1 at B 2 é'; éü are decoupled é' is massless _' H = c

14 生成された曲率揺らぎの定量的評価 遷移後の曲率揺らぎの振幅 B B B1 B2 R c ë H _ û1 ér = 1 c 1 ér = R c ë H _ û2 ér = 1 c 2 ér = p éü c 2 1 +c 2 2 p éü c 2 1 +c 2 2 どちらの背景解でも同じ multi-field スケーリング解背景での jéüj = 1 p å åh 2ô å éü の成長 sudden transition を仮定 曲率揺らぎ R c = c 2 2 p c 2 1 +c2 2 å åh å 2ô T (p = 2 c 2 ) 遷移時のハッブルで表せる

15 数値計算結果 (2) sudden transition 近似の妥当性の確認 時間発展 時間発展 jhj = 4ô c 2 éü _H = Ä 1 2 ( _ û _û 2 2 ) 最終的な éü の振幅から構成したが遷移時のハッブルを上手く再現! H T

16 4. Primordial non-gaussianities 非線形パラメータ 6 5 f NL ë Q P i k3 i i k3 i B ê 2ô 4 P 2 ê 曲率揺らぎの 3 点相関関数 Koyama, SM, Vernizzi, Wands, in preparation í d ñ ì 3 N hê k1 ê k2 ê k3 i = héü déü É Ék 1 éü Ék 2 éü Ék 3 i + 1 í d ñ ì 2 N d 2 N ñ 2 déü É déü 2 héü Ék 1 éü Ék 2 (éü É?éü É ) k3 i +perms: É... スカラー場固有の non-gaussianity... 非線形のダイナミクスで生じる non-gaussianity

17 結果 (preliminary) sudden transition 近似に基づいた解析 B! B 2 の背景を仮定 非線形ダイナミクスによって生じる non-gaussianity f (4) NL = 5 6 ñn 00 ñn 02 = 5 12 c2 1 スカラー場固有の non-gaussianity f (3) NL = 5 6 (c2 1 Ä c 2 2) f NL = 5 12 (3c2 1 Ä 2c 2 2) én -formalism パラメータ次第で 大きくなり得る! H int (t) = d3 V (t) éü 3 dü 3 3!

18 5. 結論 複数のスカラー場による Ekpyrotic collapse 負の値をもつ急な指数関数型ポテンシャル multi-field スケーリング解背景でスケール不変のエントロピー揺らぎが生成 multi-field スケーリング解は不安定モードの効果で single field スケーリング解に遷移する その遷移時に始めに作られたエントロピー揺らぎから自然に曲率揺らぎが生成される 最終的な曲率揺らぎは H T ;c 1 ;c 2 で決まる 曲率揺らぎのnon-Gaussianity f NL = 5 12 (3c2 1 Ä 2c 2 2)

19 議論 重力的な反作用による non-gaussianity 指数関数型ポテンシャルモデル slightly-blue spectrum n =2p; p ú 1 - ポテンシャルを指数関数からずらしたモデル Lehners, McFadden, Turok, Steinhardt `07 non-singular bounce をどうやって起こすか? -ghost condensation? Buchbinder, Khoury, Ovrut `07 Creminelli, Senatore `07 B に近いところを通る解をどうやって実現するか? - cyclic scenario?

ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï

ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï B A C Z E ^ N U M G F Q T H L Y D V R I J [ R _ T Z S Y ^ X ] [ V \ W U D E F G H I J K O _ K W ] \ L M N X P S O P Q @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ r r @ @

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

ロシア語便覧 1

ロシア語便覧 1 - -È - - -ÚÂÎ Û Ë±ÚÂÎ, ÔËÒ ±ÚÂÎ - apple ÒÂÍappleÂÚ ±apple, Ë ÎËÓÚÂ±Í apple flì ±apple, Ù apple ±Î ÒÚÓ±Î, ÒÚÓÎ ± αÒ, ÎÂ±Ò ; ÎÂÒ ±, ÎÂÒÓ± ÁÛ±, ÁÛ± ; ÁÛ±, ÁÛ Ó± -, -Ë ÒÚÓÎ ±, ÊÛappleÌ ±Î, ÏÛÁ±Ë, ÒÎÓ appleë±

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

.w..01 (1-14)

.w..01 (1-14) ISSN 0386-7617 Annual Research Reports No.33, 2009 THE FOUNDATION FOR GROWTH SCIENCE ön é

More information

素粒子論的宇宙論基礎 新井真人 ( チェコ工科大学 )

素粒子論的宇宙論基礎 新井真人 ( チェコ工科大学 ) 素粒子論的宇宙論基礎 新井真人 ( チェコ工科大学 ) チェコってどこ? Where is Czech? 首都 : プラハ公用語 : 人口 : Where is Czech? 首都 : プラハ公用語 : チェコ語人口 :1 千 43 万人 Where is Czech? 首都 : プラハ公用語 : チェコ語人口 :1 千 43 万人ビール消費量 159 リットル / 人 / 年 ( 日本の約 3 倍

More information

観測的宇宙論WS2013.pptx

観測的宇宙論WS2013.pptx ì コンテンツ イントロダクション 球対称崩壊モデル ビリアル平衡 結果 まとめ イントロダクション 宇宙磁場 銀河や銀河団など様々なスケールで磁場が存在 起源や進化について未だに謎が多い 宇宙の構造形成に影響 P(k)[h -3 Mpc 3 ] 10 6 10 5 10 4 10 3 10 10 1 10 0 10-1 10-10 -3 10-4 10-4 10-3 10-10 -1 10 0 10

More information

Microsoft PowerPoint - 小路田俊子 [互換モード]

Microsoft PowerPoint - 小路田俊子 [互換モード] Wining number in String fiel theory @ 名古屋大学 京大理小路田俊子 畑氏との共同研究 bae on arxiv:.89 内容 開弦の場の理論 Cubic SFT と Chern-Simon 理論の類似性に着目し 位相的不変量である Wining 数を CSFT において実現できるのか調べる S CS k M Wining 数 S N [ g] gg 4 M M

More information

…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ

…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ 80 80 80 3 3 5 8 10 12 14 14 17 22 24 27 33 35 35 37 38 41 43 46 47 50 50 52 54 56 56 59 62 65 67 71 74 74 76 80 83 83 84 87 91 91 92 95 96 98 98 101 104 107 107 109 110 111 111 113 115

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

Ë,, ÌÓ ÏÓÈ ÂÈ? ÚÓÚ, ÚÓÚ

Ë,, ÌÓ ÏÓÈ ÂÈ? ÚÓÚ, ÚÓÚ 001 1 002 3 003 3 004 4 005 5 006 7 007 7 008 7 009 8 010 Ë,, ÌÓ 8 011 10 9 012 10 013 10 014 11 015 12 016 ÏÓÈ 13 017 ÂÈ? 13 018 ÚÓÚ, ÚÓÚ 14 019 14 020 16 021 Í ÍÓÈ? 16 022 18 023 18 024 19 025 19 1992

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

観測的宇宙論workshop.pptx

観測的宇宙論workshop.pptx 名古屋 大学宇宙論論研究室 嵯峨承平 ( 共同研究者 : 市來來淨與, 杉 山直 ) 2013/12/4 観測的宇宙論論 workshop 1/20 目次 1. イントロ 2. 2 次摂動論論 3. 重 力力波 ( 線形摂動 ) 4. 重 力力波 (2 次摂動 ) 5. まとめ 2/20 1. イントロ 非ガウス性 重 力力レンズ効果 2 次ドップラー効果 2 次重 力力波 磁場 Mode coupling

More information

inflation.key

inflation.key 2 2 G M 0 0-5 ϕ / M G 0 L SUGRA = 1 2 er + eg ij Dµ φ i Dµ φ j 1 2 eg2 D (a) D +ieg ij χ j σ µ Dµ χ i + eϵ µνρσ ψ µ σ ν Dρ ψ σ 1 4 ef (ab) R F (a) [ ] + i 2 e λ (a) σ µ Dµ λ (a) + λ (a) σ µ Dµ λ (a) 1

More information

2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を

2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を 2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を含まない原始ガスから形成される 宇宙で最初に誕生する星である 初代星はその後の星形成や再電離など宇宙初期の天文現象に強く関係し

More information

大宇宙

大宇宙 大宇宙 銀河団 大規模構造 膨張宇宙 銀河群 数個 ~ 数十個の銀河の群れ 天の川銀河 250 万光年 アンドロメダ銀河 局所銀河群 http://www.astronomy.com/en/web%20extras/2005/02/ Dominating%20the%20Local%20Group.aspx 銀河団 100 個程度以上の集まり 銀河群との明確な区別はない 天の川銀河 6200 万光年

More information

輻射シーソー模型での ヒッグスインフレーションとその ILC での検証 松井俊憲 ( 富山大学 ) 共同研究者 : 兼村晋哉 鍋島偉宏 S.Kanemura, T.Matsui, T.Nabeshima, Phys. Le9. B 723, 126(2013) 2013 年 7 月 20 日 ILC

輻射シーソー模型での ヒッグスインフレーションとその ILC での検証 松井俊憲 ( 富山大学 ) 共同研究者 : 兼村晋哉 鍋島偉宏 S.Kanemura, T.Matsui, T.Nabeshima, Phys. Le9. B 723, 126(2013) 2013 年 7 月 20 日 ILC 輻射シーソー模型での ヒッグスインフレーションとその ILC での検証 松井俊憲 ( 富山大学 ) 共同研究者 : 兼村晋哉 鍋島偉宏 S.Kanemura, T.Matsui, T.Nabeshima, Phys. Le9. B 723, 126(2013) 1 1. ~ ~ 10 万年 (10-9 GeV) 宇宙背景放射 観測 137 億年 (10-13 GeV) 現在 Big Bang 10-44

More information

WINET情報NO.4

WINET情報NO.4 WINET CONTENTS 1 1 2 3 4 5 6 2 3 4 5 6 7 8 9 10 11 0 10 20 30 35 32 26 19 19 11 9 9 6 6 3 3 3 2 12 13 14 ó 15 ó óó ú ó í ú 16 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.

More information

ポリトロープ、対流と輻射、時間尺度

ポリトロープ、対流と輻射、時間尺度 宇宙物理学 ( 概論 ) 6/6/ 大阪大学大学院理学研究科林田清 ポリトロープ関係式 1+(1/) 圧力と密度の間にP=Kρ という関係が成り立っていると仮定する K とは定数でをポリトロープ指数と呼ぶ 5 = : 非相対論的ガス dlnp 3 断熱変化の場合 断熱指数 γ, と dlnρ 4 = : 相対論的ガス 3 1 = の関係にある γ 1 等温変化の場合は= に相当 一様密度の球は=に相当

More information

Microsoft PowerPoint - 公開講座 pptx

Microsoft PowerPoint - 公開講座 pptx 宇宙のダークエネルギー とは何か? 郡 和範 ( こおりかずのり ) Kazunori Kohri 高エネルギー加速器研究機構 (KEK) 理論センター宇宙物理グループ 総合研究大学院大学素粒子原子核専攻 本日 説明すること 宇宙の大きさは? 宇宙の外は? 宇宙の始まりのインフレーション加速膨張 現在の宇宙の加速膨張とダークエネルギー 現在 わかっていないこと 宇宙の大きさは??? 地球の大きさ 10000000m=10

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

Microsoft Word - 素粒子物理学I.doc

Microsoft Word - 素粒子物理学I.doc 6. 自発的対称性の破れとヒッグス機構 : 素粒子の標準模型 Dc 方程式.5 を導くラグランジアンは ϕ ϕ mϕϕ 6. である [H] Eu-nn 方程式 を使って 6. のラグランジア ンから Dc 方程式が導かれることを示せ 6. ゲージ対称性 6.. U 対称性 :QED ディラック粒子の複素場 ψに対する位相変換 ϕ ϕ 6. に対して ラグランジアンが不変であることを要請する これは簡単に示せる

More information

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使 / 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数

More information

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重 半経験量子計算法 : Tight-binding( 強結合近似 ) 計算の基礎 1. 基礎 Tight-binding 近似 ( 強結合近似, TB 近似あるいは TB 法などとも呼ばれる ) とは, 電子が強く拘束されており隣り合う軌道へ自由に移動できない, とする近似であり, 自由電子近似とは対極にある. 但し, 軌道間はわずかに重なり合っているので, 全く飛び移れないわけではない. Tight-binding

More information

高次元一般相対論とブラックホール

高次元一般相対論とブラックホール 第 8 回湯川記念財団 木村利栄理論物理学賞受賞記念講演 2015 年 1 月 21 日於京都大学基礎物理学研究所 高次元の一般相対論とブラックホール 石橋明浩 近畿大学理工学部 お話しすること 何に興味をもってきたか 何をやっているのか これから ( 高次元 ) 一般相対論研究の進展 1916: Schwarzschild 解 1963: Kerr 解 1965~1970: 特異点定理 1992:

More information

大気環境シミュレーション

大気環境シミュレーション 第 3 回 (Q) 各自 eelを用いて 次の漸化式 + = の解の初期値依存性を調べよ.は50まで () 0 =.0 () 0 =.5 (3) 0 =.0 締切 04 年 月 6 日 ( 月 ) 夕方まで 提出先 347 室 オーバーフロー失敗ゴメンなさい (Q) 各自 eelを用いて 次の漸化式 + = の解の初期値依存性を調べよ.は50まで () 0 =.330 () 0 =.33 (3) 0

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

Microsoft PowerPoint - qchem3-11

Microsoft PowerPoint - qchem3-11 8 年度冬学期 量子化学 Ⅲ 章量子化学の応用.6. 溶液反応 9 年 1 月 6 日 担当 : 常田貴夫准教授 溶液中の反応 溶液反応の特徴は 反応する分子の周囲に常に溶媒分子が存在していること 反応過程が遅い 反応自体の化学的効果が重要 遷移状態理論の熱力学表示が適用できる反応過程が速い 反応物が相互に接近したり 生成物が離れていく拡散過程が律速 溶媒効果は拡散現象 溶液中の反応では 分子は周囲の溶媒分子のケージ内で衝突を繰り返す可能性が高い

More information

橡scb79h16y08.PDF

橡scb79h16y08.PDF S C B 05 06 04 10 29 05 1990 05 0.1 90 05 0.2 06 90 05 06 06 04 04 10 1.9 90 12 2.0 13 10 10 18.0 16.0 6.1 1 10 1.7 10 18.5 0.8 03 04 1 04 42.9 10 20.5 10 4.2 0.7 0.2 0.6 01 00 100 97 11 102.5 04 91.5

More information

š ( š ) ,148,770 3,147,082 1, ,260 1,688 1,688 10,850 10, , ,

š ( š ) ,148,770 3,147,082 1, ,260 1,688 1,688 10,850 10, , , š ( š ) 60,000 240,000 120,000 60,000 120,000 360,000 72,000 1,128,000 56,380,000 14. 2.20 35,492,337 17,401,486 18,090,851 32,141,906 11,070,000 3,570,000 7,500,000 7,020,000 7,020,000 851 851 9,778,644

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二 OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 勉強会 @ 富山富山県立大学中川慎二 * OpenFOAM のソースコードでは, 基礎式を偏微分方程式の形で記述する.OpenFOAM 内部では, 有限体積法を使ってこの微分方程式を解いている. どのようにして, 有限体積法に基づく離散化が実現されているのか,

More information

観測的宇宙論の現状(ii)

観測的宇宙論の現状(ii) ~ 宇宙論的ゆらぎの初期条件 初期宇宙を探る ~ At 研 横山修一郎 Cosmology c(k)osmos ; 秩序 調和 美 2009 年 11 月 20 日名古屋大学宇宙グループ研究発表会 構成メンバー 研究背景 宇宙論的観測の現状 イントロダクション ( インフレーションについて ) 現状 そして将来観測に向けて ( 非ガウス性 重力波 ) まとめ 杉山直教授 松原隆彦准教授 市來淨與助教

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 準備 : 非線形光学効果 (). 絵解き : 第二高調波発生. 基本波の波動方程式 3. 第二高調波の波動方程式 4. 二倍分極振動 : ブランコ 5. 結合波動方程式へ 6. 補足 : 非線形電気感受率 ( 複素数 ) 付録 43 のアプローチ. 分極振動とは振動電場に誘われて伸縮する電気双極子の集団運動. 電気感受率と波動方程式の関係を明らかにする 3.

More information

航空機の運動方程式

航空機の運動方程式 過渡応答 定常応答 線形時不変のシステムの入出力関係は伝達関数で表された. システムに対する基本的な 入力に対する過渡応答と定常応答の特性を理解する必要がある.. 伝達関数の応答. 一般的なシステムの応答システムの入力の変化に対する出力の変化の様相を応答 ( 時間応答, 動的応答 ) という. 過渡応答 システムで, 入力がある定常状態から別の定常状態に変化したとき, 出力が変化後の定常状態に達するまでの応答.

More information

Microsoft Word - CosmicCondensationDEDM7904b.doc

Microsoft Word - CosmicCondensationDEDM7904b.doc 基研研究会 熱場の量子論とその応用 2007 年 9 月 5 日 ( 水 )~9 月 7 日 ( 金 ) 京都大学吉田南校舎 1 宇宙の量子凝縮と 暗黒エネルギー 暗黒物質 森川雅博 Collaboration 福山武志 ( 立命館 ) 立川崇之 ( 工学院 ) 森田正亮 ( 沖縄高専 ) 西山雅子 Masako Nishiyama, Masa-aki Morita, Masahiro Morikawa,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 回転型クレーン / 倒立振子の制御 回転型クレーンの制御 状態方程式 コントローラ設計 ( 極配置法 ) コントローラ設計 ( 最適レギュレータ ) 回転型倒立振子の制御 状態方程式 コントローラ設計 コントローラの形式 : 状態フィードバック P-D コントローラ アームの P-D 振子の P-D 目標値 状態フィードバック制御 回転型クレーン コントローラ で 状態フィードバック制御 回転型クレーン

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

( ) Note WMAP > 100Mpc [ ] dr ds 2 = c 2 dt 2 a(t) kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) (1) a(t)

( ) Note WMAP > 100Mpc [ ] dr ds 2 = c 2 dt 2 a(t) kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) (1) a(t) ( ) Note 7 19 12 6 7 7.1 1922 1929 1947 WMAP 2003 1. > 100Mpc 2. 10 5 3. 1. [ ] dr ds 2 c 2 dt 2 a(t) 2 2 1 kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) (1) a(t) (r, θ, φ) * 1) a(t) 2. v H 0 dz v dz H 0 H(0){ H(t)

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 37 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 37 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は /7 平成 9 年 月 5 日 ( 土 ) 午前 時 7 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は 素粒子を質量 とすると ì x : ( ct, x, y, z) :,,, ì c ct ç + y (, t) ç å

More information

2014年度 名古屋大・理系数学

2014年度 名古屋大・理系数学 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(

More information

Microsoft PowerPoint - 卒業論文 pptx

Microsoft PowerPoint - 卒業論文 pptx 時間に依存するポテンシャルによる 量子状態の変化 龍谷大学理工学部数理情報学科 T966 二正寺章指導教員飯田晋司 目次 はじめに 次元のシュレーディンガー方程式 3 井戸型ポテンシャルの固有エネルギーと固有関数 4 4 中央に障壁のある井戸型ポテンシャルの固有エネルギーと固有関数 3 5 障壁が時間によって変化する場合 7 6 まとめ 5 一次元のシュレディンガー方程式量子力学の基本方程式 ψ (

More information

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動 / 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 有効理論を用いた vector like クォーク模型に対する B 中間子稀崩壊からの制限 (Work in progre) 広大院理 高橋隼也 共同研究者 : 広大院理, 広大 CORE-U 広大院理 島根大総合理工 両角卓也 清水勇介 梅枝宏之 導入 標準模型 (SM) のクォーク 標準模型は 6 種類のクォークの存在を仮定 アップタイプ ダウンタイプ u c t d 更にクォークが存在する可能性は?

More information

銀河風の定常解

銀河風の定常解 2011年 国立天文台プラズマセミナー 2011/12/02 球対称定常銀河風の遷音速解 銀河の質量密度分布との関係 筑波大学 教育研究科 教科教育専攻 つちや まさみ 理科教育コース 2年 土屋 聖海 共同研究者 森正夫 筑波大学 新田伸也 筑波技術大学 発表の流れ はじめに 銀河風とは 流出過程 エネルギー源 周囲に及ぼす影響 研究内容 問題の所在 研究の目的 方法 理論 銀河の質量密度分布 研究成果

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方 大阪大学物理 8 を解いてみた Ⅰ. 問 g 最高点の座標を y max とすると, 力学的エネルギー保存則より \ y m mgy 補足 max g max 小物体の運動方向に対する仕事は重力 ( 保存力 ) の斜面に沿った成分のみであり, 垂直抗力 ( 非保存力 ) の仕事は である よって, 力学的エネルギー保存則が成り立つ これを確かめてみよう 小物体は重力の斜面に沿った外力を受けながらその運動エネルギーを失っていく

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

Minoda190311

Minoda190311 (arxiv:1812.00730, submitted to MNRAS Letters) 本日の内容 イントロ 21-cm 線のグローバルシグナルについて 原始磁場について 計算手法 計算結果 1. Introduction 本日の内容 イントロ 21-cm 線のグローバルシグナルについて 原始磁場について 計算手法 計算結果 1. Introduction 21-cm 線について 線は 中性水素原子

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 4.2 小信号パラメータ 1 電圧利得をどのように求めるか 電圧ー電流変換 入力信号の変化 dv BE I I e 1 v be の振幅から i b を求めるのは難しい? 電流増幅 電流ー電圧変換 di B di C h FE 電流と電圧の関係が指数関数になっているのが問題 (-RC), ただし RL がない場合 dv CE 出力信号の変化 2 pn 接合の非線形性への対処 I B 直流バイアスに対する抵抗

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

eq2:=m[g]*diff(x[g](t),t$2)=-s*sin(th eq3:=m[g]*diff(z[g](t),t$2)=m[g]*g-s* 負荷の座標は 以下の通りです eq4:=x[g](t)=x[k](t)+r*sin(theta(t)) eq5:=z[g](t)=r*cos(the

eq2:=m[g]*diff(x[g](t),t$2)=-s*sin(th eq3:=m[g]*diff(z[g](t),t$2)=m[g]*g-s* 負荷の座標は 以下の通りです eq4:=x[g](t)=x[k](t)+r*sin(theta(t)) eq5:=z[g](t)=r*cos(the 7. 制御設計の例 7.1 ローディングブリッジの制御装置 はじめに restart: ローディング ブリッジは 負荷をある地点から別の地点に運びます 台車の加速と減速は好ましくない振動を発生してしまいます そのため負荷はさらに安定し難くなり 時間もかかってしまいます 負荷がある地点から他の地点へ素早く移動し すみやかに安定するような制御装置を設計します 問題の定義 ローディング ブリッジのパラメータは以下の通りです

More information

有限密度での非一様なカイラル凝縮と クォーク質量による影響

有限密度での非一様なカイラル凝縮と  クォーク質量による影響 空間的に非一様なカイラル凝縮に対する current quark mass の影響 東京高専 前段眞治 東京理科大学セミナー 2010.9.6 1 1.Introduction 低温 高密度における QCD の振る舞い 中性子星 compact star クォーク物質の理解に重要 T 0 での QCD の基底状態 カイラル対称性の破れた相 カラー超伝導相 μ 2 有限密度において fermionic

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

2014年度 筑波大・理系数学

2014年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G

More information

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e Wavefront Sensor 法による三角共振器のミスアラインメント検出 齊藤高大 新潟大学大学院自然科学研究科電気情報工学専攻博士後期課程 2 年 214 年 8 月 6 日 1 はじめに Input Mode Cleaner(IMC) は Fig.1 に示すような三角共振器である 懸架鏡の共振などにより IMC を構成する各ミラーが角度変化を起こすと 入射光軸と共振器軸との間にずれが生じる

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

Laplace2.rtf

Laplace2.rtf =0 ラプラスの方程式は 階の微分方程式で, 一般的に3つの座標変数をもつ. ここでは, 直角座標系, 円筒座標系, 球座標系におけるラプラスの方程式の解き方を説明しよう. 座標変数ごとに方程式を分離し, それを解いていく方法は変数分離法と呼ばれる. 変数分離解と固有関数展開法. 直角座標系における 3 次元の偏微分方程式 = x + y + z =0 (.) を解くために,x, y, z について互いに独立な関数の積で成り立っていると考え,

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

気体の性質-理想気体と状態方程式 

気体の性質-理想気体と状態方程式  自由エネルギー 熱力学関数 202 5/3 第 3セメスター化学 B 第 7 回講義担当奥西みさき前回の復習 : エントロピー今回の主題 : 自由エネルギー 講義資料は研究室のWebに掲載 htt://www.tagen.tohoku.ac.j/labo/ueda/index-j.html クラウジウスの式 サイクルに流れ込む熱量を正とする 不可逆サイクル 2 可逆サイクル η 熱機関 C η 熱機関

More information

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

木村の物理小ネタ   単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合 単振動と単振動の力学的エネルギー. 弾性力と単振動 弾性力も単振動も力は F = -x の形で表されるが, x = の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合いの位置 である たとえば, おもりをつるしたばねについて, ばねの弾性力を考えるときは, ばねの自然長を x = とし, おもりの単振動で考える場合は, おもりに働く力がつり合った位置を

More information

微分方程式 モデリングとシミュレーション

微分方程式 モデリングとシミュレーション 1 微分方程式モデリングとシミュレーション 2018 年度 2 質点の運動のモデル化 粒子と粒子に働く力 粒子の運動 粒子の位置の時間変化 粒子の位置の変化の割合 速度 速度の変化の割合 加速度 力と加速度の結び付け Newtonの運動方程式 : 微分方程式 解は 時間の関数としての位置 3 Newton の運動方程式 質点の運動は Newton の運動方程式で記述される 加速度は力に比例する 2

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

概論 : 人工の爆発と自然地震の違い ~ 波形の違いを調べる前に ~ 人為起源の爆発が起こり得ない場所がある 震源決定の結果から 人為起源の爆発ではない事象が ある程度ふるい分けられる 1 深い場所 ( 深さ約 2km 以上での爆発は困難 ) 2 海底下 ( 海底下での爆発は技術的に困難 ) 海中や

概論 : 人工の爆発と自然地震の違い ~ 波形の違いを調べる前に ~ 人為起源の爆発が起こり得ない場所がある 震源決定の結果から 人為起源の爆発ではない事象が ある程度ふるい分けられる 1 深い場所 ( 深さ約 2km 以上での爆発は困難 ) 2 海底下 ( 海底下での爆発は技術的に困難 ) 海中や 地震波からみた自然地震と爆発の 識別について 平成 22 年 9 月 9 日 ( 財 ) 日本気象協会 NDC-1 概論 : 人工の爆発と自然地震の違い ~ 波形の違いを調べる前に ~ 人為起源の爆発が起こり得ない場所がある 震源決定の結果から 人為起源の爆発ではない事象が ある程度ふるい分けられる 1 深い場所 ( 深さ約 2km 以上での爆発は困難 ) 2 海底下 ( 海底下での爆発は技術的に困難

More information

Microsoft PowerPoint - qcomp.ppt [互換モード]

Microsoft PowerPoint - qcomp.ppt [互換モード] 量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??

More information

三重大学工学部

三重大学工学部 反応理論化学 ( その5 6 ポテンシャルエネルギー面と反応経路最も簡単な反応 X + Y X + Y 反応物 ( 生成物 (P X 結合が切断反応系全体のエネルギーは X と Y の Y 結合が形成原子間距離によって変化 r(x と r( Y に対してエネルギーを等高線で表す赤矢印 P:X 結合の切断と Y 結合の形成が同時進行青矢印 P: まず X 結合が切断し次いで Y 結合が形成 谷 X +

More information

Microsoft PowerPoint - qchem3-9

Microsoft PowerPoint - qchem3-9 008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理

More information

2013年度 信州大・医系数学

2013年度 信州大・医系数学 03 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ () 式 + + a a a3 を満たす自然数の組 ( a, a, a3) で, a a a3とな るものをすべて求めよ () r を正の有理数とする 式 r + + a a a を満たす自然数の組 ( a, a, a3) で, 3 a a a3となるものは有限個しかないことを証明せよ ただし, そのよう な組が存在しない場合は 0 個とし,

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

14 35H-3 35H-3 15 b f f b b b f f f f f f f f f f b b f f f f f b b b b b b b b b f f f f f f f f f f f f f

14 35H-3 35H-3 15 b f f b b b f f f f f f f f f f b b f f f f f b b b b b b b b b f f f f f f f f f f f f f bff b b b ff ff ff f f ff b b ff ff f b b b b b b b b b f f f f f f f f f f f f f b b ï ñ ó ff ff ò ô ö ù û û Æ õ ú ü! bõ ú b μ b b b f f f f f f f f f f f f b b bõ fl fi f f f f f f f f b b b b@ b b ff

More information