C言語による数値計算プログラミング演習

Size: px
Start display at page:

Download "C言語による数値計算プログラミング演習"

Transcription

1 8. 数値積分 任意の区間 [,b] における f() の定積分 b () I = f ( ) d の値は, つぎのように n 点の関数値の和により近似的に与えられる () In = Ak f ( k) n k = このとき, k を分点,A k を重みという 8. ニュートン コーツ ( 複合型 ) 積分公式 積分区間 [,b] を等分割して n 個の分点をとり, 被積分関数 f() を n- 次ラグランジュ補間多項式で近似して得られる積分公式を n 点ニュートン コーツ公式という ただし高次多項式による補間は凹凸の激しい不自然な形状に陥ることがあるので, 実際の適用には積分区間 [,b] をまず 個の小区間に等分し, 各小区間ごとに比較的低次の補間公式を用いることが多い これを複合型積分といい, 代表的なものを以下に記す 複合中点則 : 分点として各小区間の中点をとり, 各小区間ごとに 次式補間を行うもの i + i M = h f i= b h = i = + ih i =,, L, であり, 誤差は O(h ) となる N N N N! N = > 複合台形則 : 分点として小区間の端点をとり, 各小区間ごとに 次式補間 ( 面積の台形近似 ) を行うもの h = ( ( i ) + i ) = i i= + + i= T f f ( ) h f ( ) f ( ) f ( ) b h = i = + ih i =,, L, N N N であり, 誤差は O(h ) となる N! N = > 複合シンプソン則 : 分点として小区間の端点と中点をとり, 各小区間ごとに 次式補間を行うもの h h S = ( f ( i ) + f( i ) + f( i) ) = f( ) f( ) f( i) 4 f( ) i i = i= i= b h = i = + ih i =,, L, であり, 誤差は O(h 4 ) となる また複合シンプソン則は以下のように表現できる S = (/3) M + (/3) T N N N " N $ N = >

2 8. ガウス型積分 () 式の定積分の値を求めるための n 点ガウス ルジャンドル積分公式は n b Gn = wi f( i ) i= + b b i = + ui = = > > > = > = となる ここに u i は分点 ( -< u i < ; n 次ルジャンドル多項式の零点 ) w i は重み ( < w i <= ) であるが, それらの値は通常, 数表に掲載されている 分点 u,u,,u n は原点に対称に配置されており (n が奇数のときは u (n+)/ =), 対称な点に対する重みは等しい n 点ガウス型公式は, 被積分関数 f() が n- 次以下の多項式であれば厳密な積分値を与える B N N K アルゴリズム 8.. n 点ガウス公式の分点 u,u,,u n と重み w,w,,w n を数表からセットする s:= for i= to n i :=(+b)/+(b-)/u i s:=s+w i f( i ) end s:= (b-)/s 問題 つぎの定積分 (8.4 節参照 ) e cos d=.37846l の値を n 点ガウス公式 (n=3,4,5) により求める プログラム /* Gussin qudrture */ #include <stdio.h> #include <th.h> flot gu[]= ,., ,.33998,.86363,., ,.96798,.3869,.6694, ,.,.45845,.7453,.94979, ,.55534, ,.96899,.,.34534,.63374,.8363,.9686, , , , ,

3 ; flot gw[]=., , ,.6545, , , ,.36969, ,.36766,.7345,.47959,.3883,.79754,.9485, ,.33766,.38,.85,.33394,.3347,.667,.8648,.8744,.9554,.69667,.9864,.49453, ; int inde[]=,,,, 3, 5, 8,,5,9,4; flot f(flot ) return( ep()*cos() ); void in(void) int n,,i,k,n,n; flot,b,b,b,s,wi,i,f; flot u[], w[]; printf("order of Gussin qudrture: n? "); scnf("%d", &n); if((n<) (n>)) /* error */ printf("n should be =< n =< n"); eit(); else /* setup Gussin points nd weights */ n= n/; n=(n+)/; for(i=;i<n;i++) u[n+i]= gu[inde[n]+i]; w[n+i]= gw[inde[n]+i]; for(i=;i<n;i++) u[i]=-u[n--i]; w[i]= w[n--i]; printf("intervl of qudrture:, b? "); scnf("%g%g", &, &b); printf(" n t u t t weight t t t f() n"); b=(+b)/; b=(b-)/; s = ; for(i=;i<n;i++) i = b+b*u[i]; f = f(i); 3

4 s += w[i]*f; printf("%5.6e %5.6e %5.6e %5.6e n", u[i], w[i], i, f); s *=b; printf(" nintegrl=%3.7g n", s); 実行例 実行開始 order of Gussin qudrture: n? 3 intervl of qudrture:, b?. 3 点ガウス公式 u weight f() e e-.77e-.97e+.e e- 5.e e e e e e+ integrl= おしまい 実行開始 order of Gussin qudrture: n? 4 intervl of qudrture:, b?. 4 点ガウス公式 u weight f() e e e-.6936e e e e-.3593e e e e-.5377e e e e-.549e+ integrl= おしまい 実行開始 order of Gussin qudrture: n? 5 intervl of qudrture:, b?. 5 点ガウス公式 u weight f() e e- 4.69e e e e e-.675e+.e e- 5.e e e e e-.5548e e e e-.59e+ integrl= おしまい

5 8.3 ロンバーグ積分 区間 [,b] における f() の定積分 () の値を求めるためのロンバーグ積分のアルゴリズムは, 以下のとおり 小区間数を n =( 小区間幅 :(b-)) から始めて倍々にして n k = k- ( 小区間幅 :h k =(/) k- (b-)) としていくとき,k=,, に対し, 収束するまでつぎの Step, Step を繰り返す Step) k 段目 ( 小区間数 :n k, 小区間幅 :h k ) の初期近似として, 複合台形則 T(h k ) により T k, を求める k= のとき h T, = T( h ) = ( f( ) + f( b) ) k のとき n k Tk, = T( hk) = hk f( ) + f( + ihk) + f( b) i= これは,k- 段目の複合台形則 T(h k- ) を用いて効率的に計算することができる n k Tk, = T( hk) = T( hk ) + hk f ( + (i ) hk) Step) k では, 線形補外の反復により =h = における多項式補外値を求める T k, j+ 収束判定条件は下式とする i= j 4 Tk, j Tk, j =, j =,, L, k j 4 T T kk, k, k T kk, < ε アルゴリズム 8.3. n:= h:=b- t :=(h/)(f()+f(b)) k= for k=,3, k=,3, : 収束するまで繰り返す for j= to k- end t old j:=t j end n:=n Step h:=h/ 区間数を倍 ( 区間幅を/) にして複合台形則 T(h) により初期近似を行う t :=T(h) T(h) の計算は, 上記のような効率的な計算に置き換えてもよい r:= for j= to k- Step 線形補外の反復により,h=における多項式補外値を求める r:=4r r=4 j t j+ :=(r t j -t old j)/(r-) t j =T k,j, t old j=t k-,j end if (t k -t old k-)/t k <ε then brek 収束したらループから出る 5

6 問題 8. 節の問題と同じく, つぎの定積分 (8.4 節参照 ) e cos d=.37846l の値をロンバーグ積分により求める プログラム /* Roberg's qudrture */ /* (trpezoid rule + Richrdson etrpoltion) */ #include <stdio.h> #include <th.h> #define KMAX flot,b,h; int n; flot f(flot ) return( ep()*cos() ); flot trpezoid(flot tk) flot su; int i; h /= ; su=; for(i=;i<n;i++) su += f(+h*(*i+)); n *=; return(tk/+h*su); void in(void) flot eps,r,t[kmax],t[kmax]; int k,j; printf("torelence of Roberg's qudrture: eps? "); scnf("%g", &eps); printf("intervl of qudrture:, b? "); scnf("%g%g", &, &b); printf(" n n n=; h=b-; trpezoid t t*** etrpoltion *** n"); 6

7 t[]=h*(f()+f(b))/; printf("%d %3.6e n", n, t[]); for(k=;k<kmax;k++) for(j=;j<k;j++) t[j]=t[j]; t[] = trpezoid(t[]); r =; for(j=;j<k;j++) r *= 4; t[j+] = (r*t[j]-t[j])/(r-); printf("%d", n); for(j=;j<=k;j++) printf(" %3.6e", t[j]); printf(" n"); if( fbs((t[k]-t[k-])/t[k])<eps ) brek; if(k>=kmax) printf("divergent? n"); printf(" nintegrl=%3.7g n", t[k]); 実行例 実行開始 torelence of Roberg's qudrture: eps?.e-6 intervl of qudrture:, b?. n trpezoid *** etrpoltion ***.34347e+.3468e+.3764e e e+.3788e e+.3787e+.3785e+.3785e e+.3784e+.3785e+.3785e+.3785e+ integrl= おしまい 精度の比較検証定積分 I = e cos d を数値積分公式により計算して, その誤差を調べてみよう 被積分関数 f ( ) = e cos の原始関数は F( ) = e (cos+ sin )/ であるから, 定積分の値 ( 最も近い浮動小数点数に丸められた 6 桁の値 ) は, 以下のようになる I = e cos d=

8 いくつかの数値積分公式により上記の定積分の値を算出し, 誤差を比較検討する なお, ここで示す計算結果はエクセル ( 精度 5 桁?) を用いたものである 複合中点則, 複合台形則, 複合シンプソン則により数値積分を行ったときの誤差 E と分点区間数 n との関係を左図に, 誤差 E と分点間隔 h との関係を右図に両対数グラフで示す 主要な誤差項が E=O(h p ) Ch p である場合,log をとると log E log C +p(log h) となり, 誤差 E は勾配 p の直線上にほぼ並ぶはずである 複合中点則と複合台形則の誤差は O(h ), シンプソン則の誤差は O(h 4 ) であり, 右図中で計算値の誤差はそれぞれ勾配 と勾配 4 の直線上にほぼ並んでいることが確認される また複合シンプソン則の誤差は他の 者に比べて小さいことがグラフに現れている 誤差 E.E+.E-.E- 複合中点則 複合台形則 複合シンプソン則 誤差 E.E+.E-.E- 複合中点則 複合台形則 複合シンプソン則.E-3.E-3.E-4.E-4.E-5.E-5.E-6.E-6.E-7.E-7.E-8 分点区間数 n.e-8.. 分点間隔 h n 点ガウス ルジャンドル積分公式の誤差を分点数 n を横軸にとって左図に示す また, ロンバーグ積分 T,T,T 33,T 44,T 55 の誤差 ( それぞれ O(h ),O(h 4 ),O(h 3 6 ),O(h 4 8 ),O(h 5 ), h k =(/) k- ) を分点区間数 n を横軸にとって上述の複合積分則とともに右図に示す T は 区間の台形則,T は 区間 ( 分点区間数 ) のシンプソン則と同じであるので, 誤差も同様であることが確認できる 以上の図より, ガウス積分の精度が一番良いことが確認される 誤差 E.E-.E-3.E-4.E-5.E-6.E-7 ガウス積分 誤差 E.E+.E-.E-.E-3.E-4 複合中点則複合台形則複合シンプソン則ロンバーグ積分.E-8.E-5.E-9.E-6.E-.E-7.E-.E-8.E-.E-3.E-4.E 分点数 n.e-9.e-.e-.e- 参考文献.E-3 分点区間数 n 葉子 : 数値計算の基礎 解法と誤差, コロナ社 (7) 森口繁一, 伊理正夫, 武市正人編 :C による算法痛論, 東京大学出版会 () 森口繁一 : 数値計算工学, 岩波書店 (989) Heth, Michel T.: Scientific Coputing, An Introductory Survey, McGrw-Hill() 8

スライド 1

スライド 1 数値解析 平成 24 年度前期第 7 週 [2012 年 5 月 30 日 ] 静岡大学創造科学技術大学院情報科学専攻工学部機械工学科計測情報講座 三浦憲二郎 講義アウトライン [5 月 30 日 ] 数値積分 ニュートン コーツ公式 台形公式 シンプソン公式 多積分 数値積分の必要性 p.135 初等関数 ( しょとうかんすう ) とは 複素数を変数とする多項式関数 指数関数 対数関数主値の四則演算

More information

C言語による数値計算プログラミング演習

C言語による数値計算プログラミング演習 5. 行列の固有値問題 n n 正方行列 A に対する n 個の固有値 λ i (i=1,,,n) と対応する固有ベクトル u i は次式を満たす Au = λ u i i i a11 a1 L a1 n u1i a1 a a n u i A =, ui = M O M M an 1 an L ann uni これらはまとめて, つぎのように書ける 5.1 ヤコビ法 = Λ, = [ u1 u u

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

C言語による数値計算プログラミング演習

C言語による数値計算プログラミング演習 6. 関数近似 : 補間と補外 6. ラグランジュ補間法 互いに異なる点 x,x,,x とそれらの点における関数値 f(x ),f(x ),,f(x ) が与えられているとする これらの 点を補間するたかだか - 次の補間多項式 F (x) は, ラグランジュ基底関数 L k (-) (x) を用いて ( ) () F( x) = f( xk) Lk ( x) k= L ( x ) = と書ける これは,

More information

C言語による数値計算プログラミング演習

C言語による数値計算プログラミング演習 4. 連立一次方程式の解法 4. LU 分解法 同じ係数行列 A( サイズ n n) をもつ m 組の連立 次方程式 AX = B ( ただし A=[ ij ] は n 行 n 列の正則行列,B=[b ij ] と X=[x ij ] は n 行 m 列の行列 ) を同時に解く 行列 A,B を並置して 個の配列 A (n 行 n+m 列 ) を作成し, i,n+j =b ij (i=,,n; j=,,m)

More information

Microsoft Word - 資料 (テイラー級数と数値積分).docx

Microsoft Word - 資料 (テイラー級数と数値積分).docx δx δx n x=0 sin x = x x3 3 + x5 5 x7 7 +... x ak = (-mod(k,2))**(k/2) / fact_k ( ) = a n δ x n f x 0 + δ x a n = f ( n) ( x 0 ) n f ( x) = sin x n=0 58 I = b a ( ) f x dx ΔS = f ( x)h I = f a h h I = h

More information

Microsoft Word - 03-数値計算の基礎.docx

Microsoft Word - 03-数値計算の基礎.docx δx f x 0 + δ x n=0 a n = f ( n) ( x 0 ) n δx n f x x=0 sin x = x x3 3 + x5 5 x7 7 +... x ( ) = a n δ x n ( ) = sin x ak = (-mod(k,2))**(k/2) / fact_k 10 11 I = f x dx a ΔS = f ( x)h I = f a h I = h b (

More information

Microsoft PowerPoint - NA03-09black.ppt

Microsoft PowerPoint - NA03-09black.ppt きょうの講義 数値 記号処理 2003.2.6 櫻井彰人 NumSymbol@soft.ae.keo.ac.jp http://www.sakura.comp.ae.keo.ac.jp/ 数値計算手法の定石 多項式近似 ( 復習 )» 誤差と手間の解析も 漸化式» 非線型方程式の求解 数値演算上の誤差 数値計算上の誤差 打ち切り誤差 (truncaton error)» 使う公式を有限項で打ち切る

More information

スライド 1

スライド 1 数値解析 2019 年度前期第 13 週 [7 月 11 日 ] 静岡大学創造科学技術大学院情報科学専攻工学部機械工学科計測情報講座 三浦憲二郎 講義アウトライン [7 月 11 日 ] 関数近似と補間 最小 2 乗近似による関数近似 ラグランジュ補間 T.Kanai, U.Tokyo 関数近似 p.116 複雑な関数を簡単な関数で近似する 関数近似 閉区間 [a,b] で定義された関数 f(x)

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 多倍長計算手法 平成 年度第 四半期 今回はパラメータ の設定と精度に関してまとめて記述しました ループ積分と呼ばれる数値積分計算では 質量 の光子や質量が非常に小さい事はわかっているが その値は不明なニュートリノに対して赤外発散を防ぐため微小量を与えて計算しています この設定する微少量の値により 結果の精度及び反復に要する時間が大きく作用したり 誤った値を得る事があります ここでは典型的な つのケースで説明します

More information

Taro-再帰関数Ⅲ(公開版).jtd

Taro-再帰関数Ⅲ(公開版).jtd 0. 目次 1 1. ソート 1 1. 1 挿入ソート 1 1. 2 クイックソート 1 1. 3 マージソート - 1 - 1 1. ソート 1 1. 1 挿入ソート 挿入ソートを再帰関数 isort を用いて書く 整列しているデータ (a[1] から a[n-1] まで ) に a[n] を挿入する操作を繰り返す 再帰的定義 isort(a[1],,a[n]) = insert(isort(a[1],,a[n-1]),a[n])

More information

110-H724型,110-H725型,110-H726型,110-H727型,110-H728型,110-H729型,110-H730型,110-H731型,110-H732型,110-H733型

110-H724型,110-H725型,110-H726型,110-H727型,110-H728型,110-H729型,110-H730型,110-H731型,110-H732型,110-H733型 e e q w e q w e q h w w q q w 12 q w w q 12 q w e r q w e r D D D D D ;;; 1 2 12 ; q w eee ee : : : : : b eeeee ee q w e r t y b ee 1 2 q w e D D q w e D ; D D D D D D D q w D er t q q t w e r e D

More information

Taro-再帰関数Ⅱ(公開版).jtd

Taro-再帰関数Ⅱ(公開版).jtd 0. 目次 6. 2 項係数 7. 二分探索 8. 最大値探索 9. 集合 {1,2,,n} 上の部分集合生成 - 1 - 6. 2 項係数 再帰的定義 2 項係数 c(n,r) は つぎのように 定義される c(n,r) = c(n-1,r) + c(n-1,r-1) (n 2,1 r n-1) = 1 (n 0, r=0 ) = 1 (n 1, r=n ) c(n,r) 0 1 2 3 4 5

More information

C 2 2.1? 3x 2 + 2x + 5 = 0 (1) 1

C 2 2.1? 3x 2 + 2x + 5 = 0 (1) 1 2006 7 18 1 2 C 2 2.1? 3x 2 + 2x + 5 = 0 (1) 1 2 7x + 4 = 0 (2) 1 1 x + x + 5 = 0 2 sin x x = 0 e x + x = 0 x = cos x (3) x + 5 + log x? 0.1% () 2.2 p12 3 x 3 3x 2 + 9x 8 = 0 (4) 1 [ ] 1/3 [ 2 1 ( x 1

More information

1 4 2 EP) (EP) (EP)

1 4 2 EP) (EP) (EP) 2003 2004 2 27 1 1 4 2 EP) 5 3 6 3.1.............................. 6 3.2.............................. 6 3.3 (EP)............... 7 4 8 4.1 (EP).................... 8 4.1.1.................... 18 5 (EP)

More information

Microsoft PowerPoint - 4.pptx

Microsoft PowerPoint - 4.pptx while 文 (1) 繰り返しの必要性 while の形式と動作 繰り返しにより平 根を求める ( 演習 ) 繰り返しにより 程式の解を求める ( 課題 ) Hello. をたくさん表示しよう Hello. を画面に 3 回表示するには, 以下で OK. #include int main() { printf("hello. n"); printf("hello. n");

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション コンピュータ物理学 2 第 2 回 (2016.10.11) 第 1 回 10/ 4( 火 ) ガイダンス 第 2 回 10/11( 火 ) 数値表現と誤差 第 3 回 10/18( 火 ) 第 4 回 10/25( 火 ) 数値微分 積分 第 5 回 11/ 1( 火 ) 第 6 回 11/ 8( 火 ) 第 7 回 11/15( 火 ) 常微分方程式 第 8 回 11/22( 火 ) 第 9 回

More information

Taro-数値計算の基礎Ⅱ(公開版)

Taro-数値計算の基礎Ⅱ(公開版) 0. 目次 1. 2 分法 2. はさみうち法 3. 割線法 4. 割線法 ( 2 次曲線近似 ) 5. ニュートン法 ( 接線近似 ) - 1 - 1. 2 分法 区間 [x0,x1] にある関数 f(x) の根を求める 区間 [x0,x1] を xm=(x0+x1)/2 で 2 等分し 区間 [x0,xm],[xm,x1] に分割する f(xm) の絶対値が十分小さい値 eps より小さいとき

More information

Taro-数値計算の誤差(公開版)

Taro-数値計算の誤差(公開版) 0. 目次 1. 情報落ち 計算のルールを 10 進 4 桁 切り捨て と仮定する 2 つの数の加算では まず小数点が合わされ 大きい数が優先される したがって 12.34 + 0.005678 は 12.34 と計算される このように 絶対値の小さい数を絶対値の大きい数に加えてもほとんど影響を与えない現象を情報落ちという 2. オーバーフロー アンダーフロー 計算結果の絶対値がコンピュータの処理できる最大の数を越えてしまう現象をオーバーフローという

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

Microsoft PowerPoint コンピュータ物理2_第2回.pptx

Microsoft PowerPoint コンピュータ物理2_第2回.pptx コンピュータ物理学 2 第 2 回 (2015.10.9) 第 1 回 10/ 2( 金 ) ガイダンス 第 2 回 10/ 9( 金 ) 数値表現と誤差 第 3 回 10/16( 金 ) 第 4 回 10/23( 金 ) 数値微分 積分 第 5 回 10/30( 木 ) 第 6 回 11/13( 金 ) 第 7 回 11/20( 金 ) 常微分方程式 第 8 回 11/27( 金 ) 第 9 回

More information

広島工業大学紀要研究編第 44 巻 (2010)pp 論文 複素関数の積分に対する数値積分の試み 殿塚勲 * Application of Numerical method to Complex integration ( 平成 21 年 10 月 27 日受理 ) Isao TON

広島工業大学紀要研究編第 44 巻 (2010)pp 論文 複素関数の積分に対する数値積分の試み 殿塚勲 * Application of Numerical method to Complex integration ( 平成 21 年 10 月 27 日受理 ) Isao TON 広島工業大学紀要研究編第 44 巻 (00)pp.69-75 論文 複素関数の積分に対する数値積分の試み 殿塚勲 * Application of Numerical method to Complex integration ( 平成 年 0 月 7 日受理 ) Isao TONOZUKA (Received Oct. 7, 009) Abstract A method of numerical

More information

差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要

差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要 差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要になる その一つの方法が微分方程式を差分方程式におき直すことである 微分方程式の差分化 次の 1 次元境界値問題を考える

More information

Taro-プログラミングの基礎Ⅱ(公

Taro-プログラミングの基礎Ⅱ(公 0. 目次 2. プログラムの作成 2. 1 コラッツ問題 自然数 n から出発して n が偶数ならば 2 で割り n が奇数ならば 3 倍して 1 を足す操作を行う この操作を繰り返すと最後に 1 になると予想されている 問題 1 自然数 aの操作回数を求めよ 問題 2 自然数 aから bまでのなかで 最大操作回数となる自然数を求めよ 2. 2 耐久数 正整数の各桁の数字を掛け 得られた結果についても同様の操作を繰り返す

More information

C言語による数値計算プログラミング演習

C言語による数値計算プログラミング演習 11. 離散フーリエ変換 時間領域における連続関数 x(t) は, 周波数領域の連続関数 (f) を介して, フーリエ変換 (Fourier transform) : i2π ft ( f) = xte ( ) dt 逆フーリエ変換 (inverse Fourier transform): 2 x() t = ( f) e i π ft df と展開される x(t) は区間 [,T] 以外では とすると,

More information

Taro-リストⅠ(公開版).jtd

Taro-リストⅠ(公開版).jtd 0. 目次 1. 再帰的なデータ構造によるリストの表現 1. 1 リストの作成と表示 1. 1. 1 リストの先頭に追加する方法 1. 1. 2 リストの末尾に追加する方法 1. 1. 3 昇順を保存してリストに追加する方法 1. 2 問題 問題 1 問題 2-1 - 1. 再帰的なデータ構造によるリストの表現 リストは データの一部に次のデータの記憶場所を示す情報 ( ポインタという ) を持つ構造をいう

More information

スライド 1

スライド 1 数値解析 平成 30 年度前期第 10 週 [6 月 12 日 ] 静岡大学工学研究科機械工学専攻ロボット 計測情報分野創造科学技術大学院情報科学専攻 三浦憲二郎 講義アウトライン [6 月 12 日 ] 連立 1 次方程式の直接解法 ガウス消去法 ( 復習 ) 部分ピボット選択付きガウス消去法 連立 1 次方程式 連立 1 次方程式の重要性 非線形の問題は基本的には解けない. 非線形問題を線形化して解く.

More information

Microsoft PowerPoint - 13approx.pptx

Microsoft PowerPoint - 13approx.pptx I482F 実践的アルゴリズム特論 13,14 回目 : 近似アルゴリズム 上原隆平 (uehara@jaist.ac.jp) ソートの下界の話 比較に基づく任意のソートアルゴリズムはΩ(n log n) 時間の計算時間が必要である 証明 ( 概略 ) k 回の比較で区別できる場合の数は高々 2 k 種類しかない n 個の要素の異なる並べ方は n! 通りある したがって少なくとも k n 2 n!

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft PowerPoint - kougi7.ppt

Microsoft PowerPoint - kougi7.ppt C プログラミング演習 第 7 回メモリ内でのデータの配置 例題 1. 棒グラフを描く 整数の配列から, その棒グラフを表示する ループの入れ子で, 棒グラフの表示を行う ( 参考 : 第 6 回授業の例題 3) 棒グラフの1 本の棒を画面に表示する機能を持った関数を補助関数として作る #include "stdafx.h" #include void draw_bar( int

More information

kiso2-06.key

kiso2-06.key 座席指定があります Linux を起動して下さい 第6回 計算機基礎実習II 計算機基礎実習II 2018 のウェブページか ら 以下の課題に自力で取り組んで下さい 第5回の復習課題(rev05) 第6回の基本課題(base06) 第5回課題の回答例 ex05-2.c 1. キーボードから整数値 a を入力すると a*a*a の値を出力することを繰り返すプログラムを作成しなさい 2. ただし 入力された

More information

09.pptx

09.pptx 講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.

More information

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三 角の二等分線で開くいろいろな平均 札幌旭丘高校中村文則 0. 数直線上に現れるいろいろな平均下図は 数 (, ) の調和平均 相乗平均 相加平均 二乗平均を数直線上に置いたものである, とし 直径 中心 である円を用いていろいろな平均の大小関係を表現するもっとも美しい配置方法であり その証明も容易である Q D E F < 相加平均 > (0), ( ), ( とすると 線分 ) の中点 の座標はである

More information

Microsoft PowerPoint - kougi2.ppt

Microsoft PowerPoint - kougi2.ppt C プログラミング演習 第 2 回 Microsoft Visual Studio.NET を使ってみよう 説明 例題 1. プログラム実行の体験 コンピュータを役に立つ道具として実感する 次ページのプログラムを使って, Microsoft Visual Studio.NETでの C++ ソースファイル編集, ビルド, テスト実行の一連の過程を体験する 例題 1 のプログラムの機能 計算の繰り返し

More information

スライド 1

スライド 1 数値解析 平成 29 年度前期第 14 週 [7 月 10 日 ] 静岡大学工学研究科機械工学専攻ロボット 計測情報分野創造科学技術大学院情報科学専攻 三浦憲二郎 期末試験 7 月 31 日 ( 月 ) 9 10 時限 A : 佐鳴会議室 B : 佐鳴ホール 講義アウトライン [7 月 10 日 ] 関数近似と補間 最小 2 乗近似による関数近似 ( 復習 ) ラグランジュ補間 形状処理工学の基礎

More information

Microsoft PowerPoint - ca ppt [互換モード]

Microsoft PowerPoint - ca ppt [互換モード] 大阪電気通信大学情報通信工学部光システム工学科 2 年次配当科目 コンピュータアルゴリズム 良いアルゴリズムとは 第 2 講 : 平成 20 年 10 月 10 日 ( 金 ) 4 限 E252 教室 中村嘉隆 ( なかむらよしたか ) 奈良先端科学技術大学院大学助教 y-nakamr@is.naist.jp http://narayama.naist.jp/~y-nakamr/ 第 1 講の復習

More information

2015年度 金沢大・理系数学

2015年度 金沢大・理系数学 05 金沢大学 ( 理系 ) 前期日程問題 解答解説のページへ四面体 OABC において, 3 つのベクトル OA, OB, OC はどの つも互いに垂直で あり, h > 0 に対して, OA, OB, OC h とする 3 点 O, A, B を通る平面上の点 P は, CP が CA と CB のどちらとも垂直となる点であるとする 次の問いに答えよ () OP OA + OB とするとき, と

More information

スライド 1

スライド 1 数値解析 平成 24 年度前期第 13 週 [7 月 11 日 ] 静岡大学創造科学技術大学院情報科学専攻工学部機械工学科計測情報講座 三浦憲二郎 講義アウトライン [7 月 11 日 ] 関数近似と補間 最小 2 乗近似による関数近似 ラグランジュ補間 形状処理工学の基礎 点列からの曲線の生成 T.Kanai, U.Tokyo 関数近似 p.116 複雑な関数を簡単な関数で近似する関数近似 閉区間

More information

Microsoft PowerPoint - 10.ppt [互換モード]

Microsoft PowerPoint - 10.ppt [互換モード] 第 10 回関数と再帰 1 今回の目標 再帰的な考え方に慣れる C 言語における再帰関数を理解する 階乗を求める再帰的な関数を作成し その関数を利用するプログラムを作成する 2 階乗 n! の 2 つの数学的表現 (1) 繰り返しによる表現 n! = 1 2 i n n = ii i= 1 ( n 1 のとき ) ( なお 0!=1) (2) 漸化式による表現 n! = 1 n = 0のとき n (

More information

スライド 1

スライド 1 プログラミング 第 3 週 静岡大学工学部機械工学科知能 材料コースロボット 計測情報分野臼杵深光電 精密コース光ナノバイオ分野居波渉 講義の前に 講義資料や演習課題 LiveCampusよりダウンロード可能 成績評価期末試験および課題により行う. 評価の配分は, おおむね試験 90%, 課題 10% である. 再試験期末試験で40 点以上 60 点未満の場合, 再試験となる. 2 月 26 日 (

More information

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in C 1 / 21 C 2005 A * 1 2 1.1......................................... 2 1.2 *.......................................... 3 2 4 2.1.............................................. 4 2.2..............................................

More information

7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の

7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の 7 章問題解答 7- 予習. 長方形断面であるため, 断面積 と潤辺 S は, 水深, 水路幅 B を用い以下で表される B, S B + 径深 R の算定式に代入すると以下のようになる B R S B + ( B) 分母の /B は河幅が水深に対して十分に広ければ, 非常に小さな値となるため, 上式は R ( B) となり, 径深 R は水深 で近似できる. マニングの式の水深 を等流水深 0 と置き換えると,

More information

ボルツマンマシンの高速化

ボルツマンマシンの高速化 1. はじめに ボルツマン学習と平均場近似 山梨大学工学部宗久研究室 G04MK016 鳥居圭太 ボルツマンマシンは学習可能な相互結合型ネットワー クの代表的なものである. ボルツマンマシンには, 学習のための統計平均を取る必要があり, 結果を求めるまでに長い時間がかかってしまうという欠点がある. そこで, 学習の高速化のために, 統計を取る2つのステップについて, 以下のことを行う. まず1つ目のステップでは,

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

Microsoft PowerPoint - prog11.ppt

Microsoft PowerPoint - prog11.ppt プログラミング言語 第 回 (7 年 7 月 6 日 今日の配布物 片面の用紙 枚 今日の課題が書かれています 本日の出欠を兼ねています /33 今日やること http://www.tnlab.ice.uec.ac.jp/~s-okubo/class/language/ にアクセスすると 教材があります 7 年 7 月 6 日分と書いてある部分が 本日の教材です 本日の内容 前回の課題の解答 Romberg

More information

<4D F736F F D2095BD90AC E937890B68A888F4B8AB E397C394EF82CC93AE8CFC82C98AD682B782E992B28DB895AA90CD2E646F6378>

<4D F736F F D2095BD90AC E937890B68A888F4B8AB E397C394EF82CC93AE8CFC82C98AD682B782E992B28DB895AA90CD2E646F6378> 29 5 IT 1,234 1,447 2,130 1,200 3,043 2 9,275 2,818 ICD-10 p.2 27 3 7,848 1,234 10 4,291 11.3% 10 33.3% 32.4%12.9% 32.2%26.9%18.5% 1,095 874 339 490 189 178 6,358 5,279 3,380 2,345 1,994 1,693 37.6 34.9

More information

NumericalProg09

NumericalProg09 数値解析および プログラミング演習 [08 第 9 回目 ] の解法 - 4. Ruge-Kua( ルンゲ クッタ 法 Ruge-Kua-Gill( ルンゲ クッタ ジル / ギル 法 5. 多段解法 解法の対象 常微分方程式 d( d 初期値条件 (, の変化に応じて変化する の値を求める. ( 0 ( 0 と 0 は,give 0 常微分方程式の初期値問題 と言う. 3 Ruge-Kua 法の導出

More information

Chap3.key

Chap3.key 区分求積法. 面積 ( )/ f () > n + n, S 長方形の和集合で近似 n f (n ) リーマン和 f (n ) 区分求積法 リーマン和 S S n n / n n f ()d リーマン積分 ( + ) + S (, f ( )) 微分の心 Zoom In して局所的な性質を調べる 積分の心 Zoom Ou して大域的な性質を調べる 曲線の長さ 領域の面積や体積 ある領域に含まれる物質の質量

More information

Taro-2分探索木Ⅰ(公開版).jtd

Taro-2分探索木Ⅰ(公開版).jtd 2 分探索木 Ⅰ 0. 目次 1. 2 分探索木とは 2. 2 分探索木の作成 3. 2 分探索木の走査 3. 1 前走査 3. 2 中走査 3. 3 問題 問題 1 問題 2 後走査 4. 2 分探索木の表示 - 1 - 1. 2 分探索木とは 木はいくつかの節点と節点同士を結ぶ辺から構成される 2 つの節点 u,v が直接辺で結ばれているとき 一方を親節点 他方を子節点という ある節点の親節点は高々

More information

Microsoft PowerPoint - lec4.ppt

Microsoft PowerPoint - lec4.ppt 本日の内容 繰り返し計算 while 文, for 文 例題 1. 最大公約数の計算例題 2. 自然数の和 while 文例題 3. フィボナッチ数列例題 4. 自然数の和 for 文例題 5. 九九の表繰り返しの入れ子 今日の到達目標 繰り返し (while 文, for 文 ) を使って, 繰り返し計算を行えるようになること ループカウンタとして, 整数の変数を使うこと 今回も, 見やすいプログラムを書くために,

More information

C プログラミング演習 1( 再 ) 2 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ

C プログラミング演習 1( 再 ) 2 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ C プログラミング演習 1( 再 ) 2 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ 今回のプログラミングの課題 次のステップによって 徐々に難易度の高いプログラムを作成する ( 参照用の番号は よくわかる C 言語 のページ番号 ) 1. キーボード入力された整数 10 個の中から最大のものを答える 2. 整数を要素とする配列 (p.57-59) に初期値を与えておき

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

情報実習Ⅱ

情報実習Ⅱ 情報実習 Ⅱ 第 7 回 ( これまでの復習 ) 課題資料 Java のクラスの概形 クラス フィールドコンストラクタメソッド main メソッドローカル変数宣言オブジェクト生成オブジェクトへのメッセージ ( メソッド呼び出し ) 変数 : 基本型, 参照型 これまでの 習得事項 まだ初歩的な内容だけだが これらを利用するだけでも多くの実用的なプログラムが記述できる キーボード入力 : Scanner

More information

Taro-再帰関数Ⅰ(公開版).jtd

Taro-再帰関数Ⅰ(公開版).jtd 再帰関数 Ⅰ 0. 目次 1. 階乗関数 2. 基本演算 2. 1 乗算 2. 2 除算 2. 3 剰余 3. 最大公約数. フィボナッチ関数 5. べき乗関数 5. 1 解法 1 5. 2 解法 2-1 - 1. 階乗関数 再帰関数は 関数の中で自分自身を呼び出す関数をいう 関数を簡潔に定義することができる 階乗関数 f(n) (n 0) を明示的に書くとつぎのようになる 再帰的定義 f(n) =

More information

今後の予定 6/29 パターン形成第 11 回 7/6 データ解析第 12 回 7/13 群れ行動 ( 久保先生 ) 第 13 回 7/17 ( 金 ) 休講 7/20 まとめ第 14 回 7/27 休講?

今後の予定 6/29 パターン形成第 11 回 7/6 データ解析第 12 回 7/13 群れ行動 ( 久保先生 ) 第 13 回 7/17 ( 金 ) 休講 7/20 まとめ第 14 回 7/27 休講? 今後の予定 6/29 パターン形成第 11 回 7/6 データ解析第 12 回 7/13 群れ行動 ( 久保先生 ) 第 13 回 7/17 ( 金 ) 休講 7/20 まとめ第 14 回 7/27 休講? 数理生物学演習 第 11 回パターン形成 本日の目標 2 次元配列 分子の拡散 反応拡散モデル チューリングパタン 拡散方程式 拡散方程式 u t = D 2 u 拡散が生じる分子などの挙動を記述する.

More information

:30 12:00 I. I VI II. III. IV. a d V. VI

:30 12:00 I. I VI II. III. IV. a d V. VI 2017 2017 08 03 10:30 12:00 I. I VI II. III. IV. a d V. VI. 80 100 60 1 I. Backus-Naur BNF X [ S ] a S S ; X X X, S [, a, ], ; BNF X (parse tree) (1) [a;a] (2) [[a]] (3) [a;[a]] (4) [[a];a] : [a] X 2 222222

More information

Microsoft PowerPoint - C言語の復習(配布用).ppt [互換モード]

Microsoft PowerPoint - C言語の復習(配布用).ppt [互換モード] if 文 (a と b の大きい方を表示 ) C 言語 Ⅰ の復習 条件判定 (if, 条件式 ) ループ (for[ 二重まで ], while, do) 配列 ( 次元 次元 ) トレース int a, b; printf( 整数 a: ); scanf( %d, &a); printf( 整数 b: ); scanf( %d, &b); //つのif 文で表現する場合間違えやすい どっちに =

More information

XMPによる並列化実装2

XMPによる並列化実装2 2 3 C Fortran Exercise 1 Exercise 2 Serial init.c init.f90 XMP xmp_init.c xmp_init.f90 Serial laplace.c laplace.f90 XMP xmp_laplace.c xmp_laplace.f90 #include int a[10]; program init integer

More information

2011年度 東京工大・数学

2011年度 東京工大・数学 東京工業大学前期日程問題 解答解説のページへ n n を自然数とする 平面上で行列 n( n+ ) n+ の表す 次変換 ( 移動とも いう ) を n とする 次の問いに答えよ () 原点 O(, ) を通る直線で, その直線上のすべての点が n により同じ直線上に移 されるものが 本あることを示し, この 直線の方程式を求めよ () () で得られた 直線と曲線 (3) を求めよ n Sn 6

More information

講習No.12

講習No.12 前回までの関数のまとめ 関数は main() 関数または他の関数から呼び出されて実行される. 関数を呼び出す側の実引数の値が関数内の仮引数 ( 変数 ) にコピーされる. 関数内で定義した変数は, 関数の外からは用いることができない ( ローカル変数 ). 一般に関数内で仮引数を変化しても, 呼び出し側の変数は変化しない ( 値渡し ). 関数内で求めた値は return 文によって関数値として呼び出し側に戻される.

More information

§6

§6 6. 代数方程式 [ 第 回 ] 6. ベアストウ法 3 の代数方程式の数値解を求める方法の一つにベアストウ法がある. fz () z + az +! + a z+ a 0 この式を 次式 : z + pz +q で割ると一般に, 3 fz () ( z + pz+ q)( "###############$# z + bz +! ############## + b 3z+ b ) + #%# Rz

More information

Taro-最大値探索法の開発(公開版

Taro-最大値探索法の開発(公開版 最大値探索法の開発 0. 目次 1. 開発過程 1 目標 1 : 4 個のデータの最大値を求める 目標 2 : 4 個のデータの最大値を求める 改良 : 多数のデータに対応するため 配列を使う 目標 3 : n 個のデータの最大値を求める 改良 : コードを簡潔に記述するため for 文を使う 目標 4 : n 個のデータの最大値を求める 改良 : プログラムをわかりやすくするため 関数を使う 目標

More information

Microsoft Word - no206.docx

Microsoft Word - no206.docx 3.2 双方向リスト 今までのリストは 前から順にたどることしかできませんでした 今度は逆にもたどることができる 双方向リストを扱います この場合は 構造体には次を表すポインタの他に前を表すポインタを持つ ことになります 今回は最初と最後をポインタを使うと取り扱いが面倒になるので 最初 (start) と最後 (end) を どちらとも構造体 ( 値は意味を持たない ) を使うことにします こうすることによって

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション プログラミング初級 第 13 回 2017 年 7 月 10 日 標準ライブラリ関数 1 標準ライブラリ関数とは 関数には (1) 自分で作る関数 (2) はじめから用意されている関数特に C 言語用用意されているもの : 標準ライブラリ関数 文字列の代入文字列の長さを求める文字列の比較文字列の連結 strcpy strlen strcmp strcat 2 文字列の操作 - 具体例を通して (141

More information

Prog1_6th

Prog1_6th 2012 年 5 月 24 日 ( 木 ) 実施 多分岐のプログラム 前回は多段階の 2 分岐を組み合わせて 3 種類以上の場合分けを実現したが, 式の値の評価によって, 一度に多種類の場合分けを行う多分岐の利用によって見通しのよいプログラムを作成できる場合がある ( 流れ図は右図 ) 式の評価 : 値 1 : 値 2 : 値 n : 該当値無し 処理 1 処理 2 処理 n 既定の処理 switch

More information

C 言語第 3 回 2 a と b? 関係演算子 a と b の関係 関係演算子 等しい a==b 等しくない a!=b より大きい a>b 以上 a>=b より小さい a<b 以下 a<=b 状態 真偽 値 条件が満たされた場合 TRUE( 真 ) 1(0 以外 ) 条件が満たされなかった場合 F

C 言語第 3 回 2 a と b? 関係演算子 a と b の関係 関係演算子 等しい a==b 等しくない a!=b より大きい a>b 以上 a>=b より小さい a<b 以下 a<=b 状態 真偽 値 条件が満たされた場合 TRUE( 真 ) 1(0 以外 ) 条件が満たされなかった場合 F C 言語第 3 回 三つの基本構造 ( シラバス 5 6 回目 ) 1 1 順次処理上から順番に実行していく #include int main(void) { long x, y; 最初 長い整数がつかえる 負の数もか だいたい ±21 億まで OK なんだ 掛け算するぞ x = 1000*2000; scanf("%ld", &y); printf("%ld", x*y);

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

モデリングとは

モデリングとは コンピュータグラフィックス基礎 第 5 回曲線 曲面の表現 ベジェ曲線 金森由博 学習の目標 滑らかな曲線を扱う方法を学習する パラメトリック曲線について理解する 広く一般的に使われているベジェ曲線を理解する 制御点を入力することで ベジェ曲線を描画するアプリケーションの開発を行えるようになる C++ 言語の便利な機能を使えるようになる 要素数が可変な配列としての std::vector の活用 計算機による曲線の表現

More information

cp-7. 配列

cp-7. 配列 cp-7. 配列 (C プログラムの書き方を, パソコン演習で学ぶシリーズ ) https://www.kkaneko.jp/cc/adp/index.html 金子邦彦 1 本日の内容 例題 1. 月の日数配列とは. 配列の宣言. 配列の添え字. 例題 2. ベクトルの内積例題 3. 合計点と平均点例題 4. 棒グラフを描く配列と繰り返し計算の関係例題 5. 行列の和 2 次元配列 2 今日の到達目標

More information

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1 4. ソート ( 教科書 p.205-p.273) 整列すなわちソートは アプリケーションを作成する際には良く使われる基本的な操作であり 今までに数多くのソートのアルゴリズムが考えられてきた 今回はこれらソートのアルゴリズムについて学習していく ソートとはソートとは与えられたデータの集合をキーとなる項目の値の大小関係に基づき 一定の順序で並べ替える操作である ソートには図 1 に示すように キーの値の小さいデータを先頭に並べる

More information

I. Backus-Naur BNF : N N 0 N N N N N N 0, 1 BNF N N 0 11 (parse tree) 11 (1) (2) (3) (4) II. 0(0 101)* (

I. Backus-Naur BNF : N N 0 N N N N N N 0, 1 BNF N N 0 11 (parse tree) 11 (1) (2) (3) (4) II. 0(0 101)* ( 2016 2016 07 28 10:30 12:00 I. I VI II. III. IV. a d V. VI. 80 100 60 1 I. Backus-Naur BNF : 11011 N N 0 N N 11 1001 N N N N 0, 1 BNF N N 0 11 (parse tree) 11 (1) 1100100 (2) 1111011 (3) 1110010 (4) 1001011

More information

ゲームエンジンの構成要素

ゲームエンジンの構成要素 cp-3. 計算 (C プログラムの書き方を, パソコン演習で学ぶシリーズ ) https://www.kkaneko.jp/cc/adp/index.html 金子邦彦 1 本日の内容 例題 1. 自由落下距離四則演算例題 2. 三角形の面積浮動小数の変数, 入力文, 出力文, 代入文例題 3. sin 関数による三角形の面積ライブラリ関数 2 今日の到達目標 プログラムを使って, 自分の思い通りの計算ができるようになる

More information

/* do-while */ #include <stdio.h> #include <math.h> int main(void) double val1, val2, arith_mean, geo_mean; printf( \n ); do printf( ); scanf( %lf, &v

/* do-while */ #include <stdio.h> #include <math.h> int main(void) double val1, val2, arith_mean, geo_mean; printf( \n ); do printf( ); scanf( %lf, &v 1 http://www7.bpe.es.osaka-u.ac.jp/~kota/classes/jse.html kota@fbs.osaka-u.ac.jp /* do-while */ #include #include int main(void) double val1, val2, arith_mean, geo_mean; printf( \n );

More information

PG13-6S

PG13-6S プログラム演習 I レポート 学籍番号 担当教員 : 小林郁夫 氏名 実習日平成 26 年 7 月 4 日 提出期限 7 月 11 日提出日 7 月 17 日 1 週遅れ 第 13 回 テーマ : 並べ替えのアルゴリズム 教員使用欄 15 S A B C 再提出 課題 1 バブルソートの実行画面 プログラムのソースコード // day13_akb1.cpp : コンソールアプリケーションのエントリポイントを定義します

More information

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅 周期時系列の統計解析 3 移動平均とフーリエ変換 io 07 年 月 8 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ノイズ の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分のがどのように変化するのか等について検討する. また, 気温の実測値に移動平均を適用した結果についてフーリエ変換も併用して考察する. 単純移動平均の計算式移動平均には,

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

プログラミング基礎

プログラミング基礎 C プログラミング Ⅰ 条件分岐 : if 文, if~else 文 条件分岐 条件分岐とは ある条件が成立したときとしないときで処理の内容を変更する場合に応じた, 複雑な処理を行うことができる 条件分岐 yes 成績が良かったか? no ご褒美に何か買ってもらう お小遣いが減らされる C 言語では,if 文,if~else 文,if~else if~else 文,switch 文で条件分岐の処理を実現できる

More information

C言語によるアルゴリズムとデータ構造

C言語によるアルゴリズムとデータ構造 Algorithms and Data Structures in C 4 algorithm List - /* */ #include List - int main(void) { int a, b, c; int max; /* */ Ÿ 3Ÿ 2Ÿ 3 printf(""); printf(""); printf(""); scanf("%d", &a); scanf("%d",

More information

<4D F736F F D20438CBE8CEA8D758DC F0939A82C282AB2E646F63>

<4D F736F F D20438CBE8CEA8D758DC F0939A82C282AB2E646F63> C 言語講座第 2 回 作成 : ハルト 前回の復習基本的に main () の中カッコの中にプログラムを書く また 変数 ( int, float ) はC 言語では main() の中カッコの先頭で宣言する 1 画面へ出力 printf() 2 キーボードから入力 scanf() printf / scanf で整数を表示 / 入力 %d 小数を表示 / 入力 %f 3 整数を扱う int 型を使う

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include <stdio.h> #define InFile "data.txt" #define OutFile "sorted.txt" #def

関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include <stdio.h> #define InFile data.txt #define OutFile sorted.txt #def C プログラミング演習 1( 再 ) 6 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ 関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include #define InFile "data.txt" #define OutFile "sorted.txt"

More information

4 月 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プロ

4 月 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プロ 4 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プログラミング技術 工業 333 実教出版 ) 共通 : 科目 プログラミング技術 のオリエンテーション プログラミング技術は

More information

関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include <stdiu.h> #define InFile "data.txt" #define OutFile "surted.txt" #def

関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include <stdiu.h> #define InFile data.txt #define OutFile surted.txt #def C プログラミング演習 1( 再 ) 6 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ 関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include #define InFile "data.txt" #define OutFile "surted.txt"

More information

取扱説明書 [F-06C]

取扱説明書 [F-06C] 23 24 25 26 2 1 27 3 e e 5 4 e e 6 28 7 1 2 3 e 4 5 29 6 8 7 30 1 2 3 e 4 5 31 1 1 ee e ee e aee b e 2 e eee ee 32 2 3 4 1 ee ee 33 1 2 3 4 34 5 7 8 e 6 35 9 11 10 1 2 3 e 4 36 1 b a c 37 3 e 1 e ee 2

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

Microsoft PowerPoint - kougi10.ppt

Microsoft PowerPoint - kougi10.ppt C プログラミング演習 第 10 回二分探索木 1 例題 1. リストの併合 2 つのリストを併合するプログラムを動かしてみる head1 tail1 head2 tail2 NULL NULL head1 tail1 tail1 があると, リストの併合に便利 NULL 2 #include "stdafx.h" #include struct data_list { int data;

More information

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.  このサンプルページの内容は, 新装版 1 刷発行時のものです. C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009383 このサンプルページの内容は, 新装版 1 刷発行時のものです. i 2 22 2 13 ( ) 2 (1) ANSI (2) 2 (3) Web http://www.morikita.co.jp/books/mid/009383

More information

Microsoft Word - mathtext8.doc

Microsoft Word - mathtext8.doc 8 章偏微分と重積分 8. 偏微分とは これまで微分を考える際 関数は f という形で 関数値がつの変数 に依存している場合のみを扱ってきました しかし一般に変数はつとは決まっておらず f のように 複数の変数を持つ関数も考えなければなりません そ こでこの節では今まで学んできた微分を一般化させ 複数の変数に対応した偏微分と呼ばれるものについて説明します これまでの微分を偏微分と区別したいとき 常微分という呼び方を用います

More information

12.pptx

12.pptx 数値解析 第 1 回 15 年 7 月 8 日 水 ) 理学部物理学科情報理学コース 1 講義内容 1. 非線形方程式の数値解法 1.1 はじめに 1. 分法 1.3 補間法 1.4 ニュートン法 1.4.1 多変数問題への応用 1.4. ニュートン法の収束性. 連立 1 次方程式の解法.1 序論と行列計算の基礎. ガウスの消去法.3 3 重対角行列の場合の解法.4 LU 分解法.5 特異値分解法.6

More information

I ASCII ( ) NUL 16 DLE SP P p 1 SOH 17 DC1! 1 A Q a q STX 2 18 DC2 " 2 B R b

I ASCII ( ) NUL 16 DLE SP P p 1 SOH 17 DC1! 1 A Q a q STX 2 18 DC2  2 B R b I 4 003 4 30 1 ASCII ( ) 0 17 0 NUL 16 DLE SP 0 @ P 3 48 64 80 96 11 p 1 SOH 17 DC1! 1 A Q a 33 49 65 81 97 113 q STX 18 DC " B R b 34 50 66 8 98 114 r 3 ETX 19 DC3 # 3 C S c 35 51 67 83 99 115 s 4 EOT

More information

I. Backus-Naur BNF S + S S * S S x S +, *, x BNF S (parse tree) : * x + x x S * S x + S S S x x (1) * x x * x (2) * + x x x (3) + x * x + x x (4) * *

I. Backus-Naur BNF S + S S * S S x S +, *, x BNF S (parse tree) : * x + x x S * S x + S S S x x (1) * x x * x (2) * + x x x (3) + x * x + x x (4) * * 2015 2015 07 30 10:30 12:00 I. I VI II. III. IV. a d V. VI. 80 100 60 1 I. Backus-Naur BNF S + S S * S S x S +, *, x BNF S (parse tree) : * x + x x S * S x + S S S x x (1) * x x * x (2) * + x x x (3) +

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

:30 12:00 I. I VI II. III. IV. a d V. VI

:30 12:00 I. I VI II. III. IV. a d V. VI 2018 2018 08 02 10:30 12:00 I. I VI II. III. IV. a d V. VI. 80 100 60 1 I. Backus-Naur BNF N N y N x N xy yx : yxxyxy N N x, y N (parse tree) (1) yxyyx (2) xyxyxy (3) yxxyxyy (4) yxxxyxxy N y N x N yx

More information

Microsoft PowerPoint - å®�æ−•è©¦é¨fi3ㆮ対ç�Œ.pptx

Microsoft PowerPoint - å®�æ−•è©¦é¨fi3ㆮ対ç�Œ.pptx C言語の繰り返し処理 for文と while文と do文 臼杵 潤 0) 準備 変数の加減算 int a, b=10; // a= a = 0; a = a+1; // a= a += 1; // a= // a= a ++; a = a + b; // a= a += b; // a= // a= a --; 下を1行ずつ実行すると それぞれ aの値はどう変わるか 0 1 2 3 13 23 22

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

1999年度 センター試験・数学ⅡB

1999年度 センター試験・数学ⅡB 99 センター試験数学 Ⅱ 数学 B 問題 第 問 ( 必答問題 ) [] 関数 y cos3x の周期のうち正で最小のものはアイウ 解答解説のページへ 0 x 360 のとき, 関数 y cos3x において, y となる x はエ個, y となる x はオ 個ある また, y sin x と y cos3x のグラフより, 方程式 sin x cos3x は 0 x 360のときカ個の解をもつことがわかる

More information

偏微分方程式、連立1次方程式、乱数

偏微分方程式、連立1次方程式、乱数 数値計算法 011/6/8 林田清 大阪大学大学院理学研究科 常微分方程式の応用例 1 Rutherford 散乱 ( 原子核同士の散乱 ; 金の薄膜に α 粒子をあてる ) 1 クーロン力 f= 4 0 r r r Ze y からf cos, si f f f y f f 粒子の 方向 y方向の速度と座標について dv Ze dvy Ze y, 3 3 dt 40m r dt 40m r d dy

More information