( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

Size: px
Start display at page:

Download "( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)"

Transcription

1 rational number p, p, (q ) q ratio 3.14 =

2 ( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

3 ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A = ( A A )A

4 ( ) V 4: 2 a > 0, b > 0 m, n ma > b, nb > a a, b a : b, m, n

5 5: 4 a, b, c, d, a : b=c : d m, n, ma > nb = mc > nd, ma = nb = mc = nd, ma < nb = mc < nd, 7: a : b > c : d ma > nb mc nd m, n

6 a > b > 0 nb > a n b = 1 a > 1 n > a, 1 n < 1 a ϵ = 1 a ϵ N n n > N 1 0 ϵ n lim n 1 n = 0

7 cass/euclid/byrne.html Oliver Byrne s edition of Euclid, djoyce/java/elements/elements.ht David B, Joyce ( ), ( ), ( ), ( ) : ; (2011/5/25) ISBN-10: ISBN-13:

8 ブルバキの評価 ニコラ ブルバキ 1886 年生まれ モルダビア出身の架空の人物 数学原論 の著者 1960 年代に構造主義という一大旋風を巻き起こした

9 (1872 ) A x, B y x < y A B (1) A B (2) A B B A. (3) A B

10 (1) (2) 2/3 A B (2) (3) A B (2)

11

12 S α s S < m R α (1) s α (2) α < α α < s S na α α a < α (2) α a < na, α < (n + 1)a. (1)

13

14 a 1 < a 2 < a 3 < < a n < < M a n α α M M

15 f : X f Y : 1 1 x 1 x 2 f(x 1 ) f(x 2 ) : y y = f(x) x X Y X Y Y X

16 1, 2, :1 : 1, 2,?

17 G. ( ) 19

18 ( ) ( )ϕ(x) x, x, x :

19 ( ) ( ) 18 ( )

20 ( ) : ( ) ( )

21 : : 53 :

22 :

23 S n = 1 + r + r r n 1 n 1 + r r + r r 2 = (1 r)(1 + r), 1 r 3 = (1 r)(1 + r + r 2 ),. 1 r n = (1 r)(1 + r + r r n 1 ) r + r r n 1 = 1 rn 1 r. a + ar + ar ar n 1 = a 1 rn 1 r.

24 r < 1 r n 0 (n ) S n 1 1 r. n S n S n r = 1 1+( 1)+( 1) 2 +( 1) 3 + = (1 1)+(1 1)+ = 0? ( F = ma ) ζ( 1) = n + = 1 12

25 0. 9 = 0.9 (1 + ( 1 10 )1 + ( 1 10 )2 + ( 1 10 )3 + ) = ( ) = , 0.99, 0.999, , = 1

26 lim x α f(x) = β ϵ δ x α < δ f(x) β < ϵ

27 : x x x

28 . :

29 : lim f(a + h) = f(a), h 0 f(x) x = a, ϵ > 0 δ( h < δ f(a + h) f(a) < ϵ) 2

30 { 0 x f(x) = 1 p x = q p, p, q, p > 0,, x ϵ δ (x δ, x + δ). ϵ ϵ p 0 p 1 < ϵ 0 p 0 < ϵ p 0 q 1 p < x < q p x

31 : f(x) [a, b], f(a) > 0, f(b) < 0 [a, b] f(c) = 0 f(x) > 0 A A A c f(c) > 0 f(c) < 0 f(x) = 0,,

32 x 3 5x + 1 = 0 x 1 x c x 2 y(x 1 ) y(x c ) y(x 2 )

33 , [a, b] [a, b], ( 1, 1) y = tan( π 2x),?

34 2 ( ) 2

35

36

37 O. O x x x < r x O r

38 f : X f Y Y O f 1 (O) y = x x < 0 y = 1, x 0 y = 1

39 X Q π < p < π A A ( π, π) Q A [ π, π] Q

40 ) ( )

41 A f B Domain A f B Range Codomain A (arrow)f B x y x (maps to ) y x y

42 A f B g C A f B A h C g C h = g f g f z = g(f(x)). x A, z C

43 f 1 f = id A, f f 1 = id B id A A x id x f 1 f : log x e x e log x = x, log e x = x.

44 ( ) fs = id B B? A idb A B B A A B rf = id A A f B ida? f B y = f(x) A B

45 Fluent:, x Fluxion:, ẋ

46 ライプニッツの業績: ブルバキ 数学史 より

47 運動学から始まった数学は 厳密なものではなかったが その応用範 囲は広大無辺のものであった その切れ味は現在でもなまっていない しかし

48 y x y y dx dy x x x 1 2 x = x 2 x 1, y = y 2 y 1 y (x) = lim x 0 y x = lim x 0 y(x + x) y(x) (x + x) x dy = y dx

49 (f(x)g(x)) = = lim x 0 = lim x 0 = f g + fg lim x 0 f(x + x)g(x + x) f(x)g(x) (x + x) x (f(x) + f)(g(x) + g) f(x)g(x) f x g(x) + x lim f(x) g x 0 x + lim x 0 ( f)( g) x ( f)( g) 2 lim = 0 x 0 x x, f, g 1 ( f)( g) 2 2 1

50 y = f(g(x)) dy dx = df dg dg dx d(x 2 + 1) 3 dx = d(x2 + 1) 3 d(x 2 + 1) d(x2 + 1) dx = 3(x 2 + 1) 2 2x f x = f g g x x 0 g = 0 f(z) = f (z) z + ϵ z, z 0 ϵ 0

51 y = f(x) x x = f 1 (y) x y Inverse y = f(x) f(x) dy dx = 1 dx dy x 1 f (x) x

52 F (x, y) = 0 y = ϕ(x) 1 y = f(x) (a, f(a)) y f(a) = k(x a). k = lim h 0 f(a + h) f(a) (a + h) a = f (a) dy = f (x)dx 2 z = f(x, y) (a, b, f(a, b)) z f(a, b) = k(x a) + l(y b) k = lim h 0 f(a + h, b) f(a, b) (a + h) a l = lim h 0 f(a, b + h) f(a, b) (b + h) b = f x = f y dz = f f xdx + ydy

53 f f x x 1 f(x, y) = 0 df = f f xdx + ydy = 0. f y 0 (a, b, f(a, b)) y = ϕ(x) ϕ (x) = dy f dx = x. f y

54 4 1906,, 1959)

55 θ = l r ( ) θ r l π = =

56 sin θ θ cos θ 1 tan θ < tan θ (cos θ, sin θ) θ lim θ 0 sin θ θ 0 < θ < π 2, = 1 sin θ < θ < tan θ cos θ sin θ < 1 θ < 1 sin θ cos θ < sin θ < 1 θ θ 0 cos θ 1, sin θ θ 1

57 cos(α β) = cos α cos β + sin α sin β y y A α α β C Β β α β x 1 x 1 D A(cos α, sin α), B(cos β, sin β), C(cos(α β), sin(α β)), D(1, 0). AB = CD (cos α cos β) 2 + (sin α sin β) 2 = (cos(α β) 1) 2 + (sin(α β)) 2 cos 2 α 2 cos α cos β + cos 2 β + sin 2 α 2 sin α sin β + sin 2 β = cos 2 (α β) 2 cos(α β) sin 2 (α β) 2 2 cos α cos β 2 sin α sin β = 2 2 cos(α β)

58 (sin x) sin(x + h) sin x = lim h 0 h 2 cos( x+h+x = lim 2 ) sin(x + h x) h 0 h = lim h 0 cos(x + h 2 )sin h 2 h 2 = cos(x) (cos x) cos(x + h) cos x = lim h 0 h 2 sin( x+h+x = lim 2 ) sin(x + h x) h 0 h = lim h 0 sin(x + h 2 )sin h 2 h 2 = sin(x)

59 y = a x, x = 0 1 y = e x. x = 0 lim h 0 e 0+h e 0 h e h 1 = lim 1 h 0 h h 0, e h = 1 + h, e = (1 + h) 1 h n e = (1 + 1 n )n (e x ) = lim h 0 e x+h e x h = e x lim h 0 e h 1 h = e x. e = =

60 e x f(x) = e x (1 + x) f (x) = e x 1. x 0 f (x) 0 + f(x) 0 f (x) > 0 x > 0 e x > 1 + x > x ex x > 1. x x 2n e x 2n x 2n e x > 1. e x 2n x > 1 x n > ( 1 2n )2n x n x 2n 2n. (e x )2n > ( 1 2n )2n. (x ).

61 y = e αx α x = 1/α y = x n lim x e x x n = ( )

62 y = e x x = log y y = log x x = e y d log x dx = dy dx = 1 dx dy = 1 de y dy = 1 e y = 1 x d log x = dx x log x = x 1 dt t

63 xy x xy dt log(xy) = 1 t = dt 1 t + dt x t t = xu t u x dt y = t + dt = log x + log y u 1 1 log(x 2 ) = log(xx) = log x + log x = 2 log x, log(x n ) = n log x. log(y) = log(x y x ) = log x + log y x, log( y x ) = log y log x, y = 1 log( x 1 ) = log 1 log x = log x.

64 d log(x) = dx x

65 e 10 x = 10 y y = log 10 x. log e x = log e 10 y = y log e 10 = log 10 x log e 10. log e x = 2.3 log 10 x log 10 2 = 0.3, log 10 3 = 0.5, log 10 5 = 0.7 ( ) ( )

66 y = log x x > 0 x < 0 d log x dx = d log( x) d( x) d( x) dx = 1 x ( 1) = 1 x. x d log f dx = d log f df df dx = 1 f df dx. f (x) = f(x) d log f dx.

67 y = sin x y x y = sin x x π 2 x π 2 y = arcsin x 1

68 π 2 x π 2, 0 x π, y = sin x x x = arcsin y y = cos x x x = arccos y π 2 < x < π 2, y = tan x x x = arctan y

69 f f 1 sin sin 1 sin 2 x = (sin x) 2, sin 2 x = 1 (sin x) 2, sin 1 x 1 sin x, arcsin, arccos, arctan US asin, acos, atan tan tg, arctan arctg, atg

70 y = arctan x 1.5 y x

71 y = arcsin x π 2 y π 2, x = sin y d arcsin x dx = dy dx = 1 dx dy = 1 d sin y dy = 1 cos y π 2 y π 2 cos y 0. d arcsin x dx = 1 1 sin 2 y = 1 1 x 2.

72 y = arccos x 0 y π, d arccos x = dy dx dx = 1 = dx dy 1 d cos y dy x = cos y = 1 sin y 0 y π sin y 0. d arccos x 1 1 = = dx 1 cos 2 y 1 x 2. y = arctan x π 2 < y < π 2, d arctan x dx = cos 2 y = = dy dx = 1 dx dy = 1 d tan y dy tan 2 y = x 2. x = tan y = 1 1 cos 2 y

73 e ix = cos x + i sin x sin x = eix e ix, cos x = eix + e ix 2i 2

74 sinh = ex e x 2 cosh = ex + e x 2 tanh = ex e x e x + e x

75 t (x, y), t (x, y) $> gnuplot gnuplot> set parametric gnuplot> plot cos(t)**3,sin(t)** cos(t)**3, sin(t)** x = f(t), y = g(t) dx = f (t)dt, dy = g (t)dt. t

76 y (n) (x) = (y (n 1) (x)). d n 1 y d n y dx n = d( dx n 1). dx n [f(x)g(x)] (n) = nc k f (n k) (x)g (k) (x). k=0

77 n = 1 [f(x)g(x)] = f (x)g(x) + f(x)g (x). n = m [f(x)g(x)] (m) = m mc k f (m k) (x)g (k) (x). k=0 m [f(x)g(x)] (m+1) = mc k [f (m k) (x)g (k) (x)] k=0 m = mc k f (m k+1) (x)g (k) (x) + = k=0 m mc k f (m k+1) (x)g (k) (x) + m mc k f (m k) (x)g (k+1) (x) k=0 m+1 k=0 k=1 mc k + m C k 1 = m+1 C k mc k 1 f (m k+1) (x)g (k) (x). [f(x)g(x)] (m+1) = m+1 k=0 mc k f (m+1 k) (x)g (k) (x). n = m + 1

78 Rolle : f(x) [a, b], (a, b) f(a) = f(b), a < ξ < b, f (ξ) = 0. : [a, b] f(x) f(x) > 0 (a, b) ξ h > 0 f(ξ+h) f(ξ) h 0, ξ h ξ ξ+ h f(ξ) f(ξ h) h 0 h 0,, 0 f (ξ) = 0.

79 ( ): f(x) [a, b], (a, b), a < ξ < b, f f(b) f(a) (ξ) =. b a f(b) f(a) a ξ b F (x) = f(x) { (f(b) f(a)) (b a) } (x a) + f(a) F (a) = F (b) = 0. F ( ξ) = 0

80 : f(x), g(x) [a, b], (a, b) g (x) 0 a < ξ < b, f(b) f(a) g(b) g(a) = f (ξ) g (ξ) f(b) f(a) F (x) = f(x) f(a) ( )(g(x) g(a)) g(b) g(a) F (x) F (a) = 0, F (b) = 0 F (ξ) = 0 ξ

81 f(0) = 0, g(0) = 0 0 < ξ < x, f(x) f(0) g(x) g(0) = f (ξ) g (ξ) lim x 0 f(x) g(x) = lim x 0 f (x) g (x). l Hopital ( ), Cauchy ( ).

82 f(b) = f(a) + f (a) (b a) + f (2) (a) (b a) 2 + 1! 2! + f (n 1) (a) (n 1)! (b a)n 1 + f (n) ( ξ) (b a) n. n!, f (x) f(x) f (2) (x) f (x) f (n) (x) f (n 1) (x),, n, f (n) ( ξ) (b a) n 0 n! f(x) = f(a) + f (a) 1! (x a) + f (2) (a) (x a) 2 + 2! + f (n) (a) (x a) n +. (n)!

83 F (x) = f(x) {f(a) + f (a) 1! (x a) + f (2) (a) 2! (x a) f (n 1) (a) (x a) (n 1)! n 1 }, G(x) = (x a) n F (x) F (x) F (a) = G(x) G(x) G(a) F (a) = F (a) = = F (n 1) (a) = 0 G(a) = G (a) = = G (n 1) (a) = 0, F (x), G (x),, F (n 1), G (n 1) F (x) G(x) = F (x) F (a) G(x) G(a) = F (ξ 1 ) G (ξ 1 ), ξ 1(x a ) F (ξ 1 ) G(ξ 1 ) = F (ξ 1) F (a) G(ξ 1 ) G(a) = F (ξ 2 ) G (ξ 2 ), ξ 2(x a )...

84 (1821 )

85 f(x) = e x x = 0 ( ) R n = eθx n! xn. 0 < θ < 1 x n R n 0. e x x n = n!. n=0 n x = k=0 x k + xn 1 x x < 1 R n = xn 0 x < 1 1 x

86 dx 1 x = log(1 x) = x 1 2 x2 1 n xn + log(1) = 0

87 James Gregory, 1671 arctan x x = 0 ( ) Brook Taylor 1715 (arcsin x) Colin MacLaurin 1742 Lagrange S.A.J. Lhuilier,

88 1 1 x = 1 + x + x2 + + x n + (1 + x) α α(α 1) = 1 + αx + x 2 + 2! α = 2 (1 + x) 2 = 1 + 2x + x 2. e x = ! x + 1 2! x n! xn + log(1 x) = x 1 2 x2 1 n xn + ( ) sin x = x 1 3! x ! x5 1 7! x7 + cos x = 1 1 2! x ! x4 1 6! x6 +

89 b a f (a) 1! (b a), b a 0 1 f (2) (a) 2! (b a) 2 2 f (3) (a) 3! (b a) 3 3

90 y(x) = arcsin x y = (1 x 2 )(y ) 2 = x 2. 2x(y ) 2 + 2(1 x 2 )y y = 0, (1 x 2 )y xy = 0. n (1 x 2 )y (n+2) (2n + 1)xy (n+1) n 2 y (n) = 0 x = 0 y(0) = 0, y (0) = 1. y (2n) (0) = 0, y (2n+1) (0) = (2n 1) 2. y = x x x x x9 +.

91 x tan(x) sin(x) x 4 f(x) = tan x = sin x f(0) = 0. cos x f (cos x)(cos x) (sin x)( cos x) 1 (x) = (cos x) 2 = (cos x) 2, f (0) = 1 f d(cos x) 2 d(cos x) 2 d(cos x) (x) = = dx d(cos x) dx = 2(cos x) 3 ( sin x) = 2(sin x)(cos x) 3, f (0) = 0. f (x) = 2(cos x)(cos x) 3 + 2(sin x)( 3 cos x) 4 ( sin x) = 2(cos x) 2 + 6(sin x) 2 (cos x) 4, f (0) = 2. f (4) (x) = 4(cos x) 3 (sin x)+12(sin x)(cos x) 4 +6(sin x) 2 ( 4) f (4) = 0.

92 tan x = x + 2 3! x3 + O(x 5 ). O(x 5 ) x 5 sin x = x 1 3! x3 + O(x 5 ). tan x sin x = 1 2 x3 + O(x 5 ) lim x 0 tan x sin x x 3 = 1 2.

93 y = 1 y = x y = x 2 y = x 3 x = 0 1 : 2 : 3 :

94 f (x) > 0 f(x) : x < x, f(x ) f(x) = (x x)f (ξ), x < ξ < x. f(x ) > f(x).

95 (x0,y0) (x2,y2) (x1,y1) (x0,y0) (x1,y1) (x2,y2) : y = f(x) x 0 < x 1 < x 2 y 1 < (x 2 x 1 ) (x 2 x 0 ) y 0 + (x 1 x 0 ) (x 2 x 0 ) y 2 y 1 y 0 x 1 x 0 < y 2 y 1 x 2 x 1

96 f (x) > 0 f(x) : x 0 < x 1 < x 2 f (x) > 0 y 1 y 0 x 1 x 0 < y 2 y 1 x 2 x 1 x 0 x 1, x 1 x 2

97 I 2 I

98 A A

99 f (x 0 ) x = x 0 dx, dy dy = f (x 0 ) dx (y y 0 ) = f (x 0 ) (x x 0 ) (dx, dy) III df dx = df(y(x)) dy dy dx

100 ( ) ( 4 ) ( )

101

102 ( ) : III 4

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp

i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp 8 5 6 i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp ii I +α 3.....................................................

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos 6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

a a apier sin 0; 000; 000 = 0 7 sin 0 0; 000; 000 a = 0 7 ;r = 0: = 0 7 a n =0 7 ( 0 7 ) n n =0; ; 2; 3; n =0; ; 2; 3; ; 00 a n+ =0 7 ( 0 7 ) n

a a apier sin 0; 000; 000 = 0 7 sin 0 0; 000; 000 a = 0 7 ;r = 0: = 0 7 a n =0 7 ( 0 7 ) n n =0; ; 2; 3; n =0; ; 2; 3; ; 00 a n+ =0 7 ( 0 7 ) n apier John apier(550-67) 0 2 3 4 5 6 7 8 9 0 2 4 8 6 32 64 28 256 52 024 4 32 = 28 2+5=7 2 n n 2 n 2 m n + m a 0 ;a ;a 2 ;a 3 ; a = a 0 ; r = a =a 0 = a 2 =a = a 3 =a 2 = n a n a n = ar n a r 2 a m = ar

More information

untitled

untitled 1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

ィェィ ィョ02ィヲィー ィェ ィャ0200ィ ィェ 08ィ ィィ ィョ07ィー D ィョ0007 T, ィヲィ 06ィョ0002: D 6メ6 (x; y) 6モ1 f (x; y

ィェィ ィョ02ィヲィー ィェ ィャ0200ィ ィェ 08ィ ィィ ィョ07ィー D ィョ0007 T, ィヲィ 06ィョ0002: D 6メ6 (x; y) 6モ1 f (x; y 130005ィィ04ィャィ 14 0709010905080507030707 040309090201 00030809000905080201 14.1 03ィヲィョィ 00ィエ00ィヲィコ06ィー 06ィェィェ07ィヲ02ィー 070007 ィャ05ィィ04ィャィ ィ 0100ィケ ィィィ 0008ィェ02ィヲ ィャィヲィ 0002ィェ08ィコ0201ィョ04 0004ィー 070104 00ィェィエィョ0007ィー

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80

3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80 3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80 7 8 3 elemet, set A, A A, A A, A A, b, c, {, b, c, }, x P x, P x x {x P x}, A x, P x {x A P x} 3 { {,,

More information

「数列の和としての積分 入門」

「数列の和としての積分 入門」 7 I = 5. introduction.......................................... 5........................................... 7............................................. 9................................................................................................

More information

A大扉・騒音振動.qxd

A大扉・騒音振動.qxd H21-30 H21-31 H21-32 H21-33 H21-34 H21-35 H21-36 H21-37 H21-38 H21-39 H21-40 H21-41 H21-42 n n S L N S L N L N S S S L L log I II I L I L log I I H21-43 L log L log I I I log log I I I log log I I I I

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

., a = < < < n < n = b, j = f j j =,,, n, C P,, P,,, P n n, n., P P P n = = n j= n j= j j + j j + { j j / j j } j j, j j / j j f j 3., n., Oa, b r > P

., a = < < < n < n = b, j = f j j =,,, n, C P,, P,,, P n n, n., P P P n = = n j= n j= j j + j j + { j j / j j } j j, j j / j j f j 3., n., Oa, b r > P . ϵριµϵτρoζ perimetros 76 Jones, Euler. =.,.,,,, C, C n+ P, P,, P n P, P n P n, P P P P n P n n P n,, C P, P j P j j =,,, n P n P., C.,, C. f [a, b], f. C = f a b, C l l = b a + f d P j P j a b j j j j

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

untitled

untitled Y = Y () x i c C = i + c = ( x ) x π (x) π ( x ) = Y ( ){1 + ( x )}( 1 x ) Y ( )(1 + C ) ( 1 x) x π ( x) = 0 = ( x ) R R R R Y = (Y ) CS () CS ( ) = Y ( ) 0 ( Y ) dy Y ( ) A() * S( π ), S( CS) S( π ) =

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

Ł½’¬24flNfix+3mm-‡½‡¹724

Ł½’¬24flNfix+3mm-‡½‡¹724 571 0.0 31,583 2.0 139,335 8.9 310,727 19.7 1,576,352 100.0 820 0.1 160,247 10.2 38,5012.4 5,7830.4 9,5020.6 41,7592.7 77,8174.9 46,425 2.9 381,410 24.2 1,576,352 100.0 219,332 13.9 132,444 8.4 173,450

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

xyr x y r x y r u u

xyr x y r x y r u u xyr x y r x y r u u y a b u a b a b c d e f g u a b c d e g u u e e f yx a b a b a b c a b c a b a b c a b a b c a b c a b c a u xy a b u a b c d a b c d u ar ar a xy u a b c a b c a b p a b a b c a

More information

表1-表4_No78_念校.indd

表1-表4_No78_念校.indd mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm Fs = tan + tan. sin(1.5) tan sin. cos Fs ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

More information

P14・15地域文化祭

P14・15地域文化祭 2008 1BETSUKAI 2008.10 BETSUKAI 2008.102 3BETSUKAI 2008.10 BETSUKAI 2008.104 5BETSUKAI 2008.10 BETSUKAI 2008.106 7BETSUKAI 2008.10 BETSUKAI 2008.108 9BETSUKAI 2008.10 BETSUKAI 2008.1010 11BETSUKAI 2008.10

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

1. 2. ( ) 3. ( ) 2

1. 2. ( ) 3. ( ) 2 IV 3 : 1 2013 10 14 1 1. 2. ( ) 3. ( ) 2 1. 3 (procurement auctions) etc. ( ) : : 4 5 : (sealed-bid auctions) : (1st-price auctions) (2nd-price auctions) 6 : ( ) (open auctions) (English auctions) (Dutch

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

X-FUNX ワークシート関数リファレンス

X-FUNX ワークシート関数リファレンス X-FUNX Level.4a xn n pt 1+ 1 sd npt Bxn3 cin + si + sa ( sd xn) 3 n t1 + n pt xn sd ( t1+ n pt) Bt t t cin + xn si sa ( sd xn) n 1 + +

More information

5 5.1 35

5 5.1 35 C: PC H19 A5 3.BUN 19 8 6 5 35 5.1............................ 35 5.2 1...................... 38 5.3 2...................... 39 5.4............................. 41 5.5 Thevenin................. 46 5.6.....................

More information

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha http://astr-www.kj.yamagata-u.ac.jp/~shibata P a θ T P M Chapter 4 (f4a). 2.. 2. (f4cone) ( θ) () g M θ (f4b) T M L 2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( )

More information

semi4.dvi

semi4.dvi 1 2 1.1................................................. 2 1.2................................................ 3 1.3...................................................... 3 1.3.1.............................................

More information

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology) 3 1 3.1. (set) x X x X x X 2. (space) Hilbert Teichmüller 2 R 2 1 2 1 / 2 ( ) ( ) ( ) 1 0 1 + = R 2 0 1 1 ( ) ( ) 1 1 1/ 3 = 3 2 2/ R 2 3 3.1:. (topology) 3.2 30 3 3 2 / 3 3.2.1 S O S (O1)-(O3) (O1) S

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin 121 6,.,,,,,,. 2, 1. 6.1,.., M, A(2 R).,. 49.. Oxy ( ' ' ), f Oxy, O 1 x 1 y 1 ( ' ' ). A (p q), A 0 (p q). y q A q q 0 y 1 q A O 1 p x 1 O p p 0 p x 6.1: ( ), 6.1, 122 6 A 0 (p 0 q 0 ). ( p 0 = p cos

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7 30キ36ヲ0 7 7 ュ6 70キ3 ョ6ァ8056 50キ300 縺6 5 ッ05 7 07 ッ 7 ュ ッ04 ュ03 ー 0キ36ヲ06 7 繖 70キ306 6 5 0 タ0503070060 08 ョ0303 縺0 ァ090609 0403 閨0303 003 ァ 0060503 陦ァ 06 タ09 ァ タ04 縺06 閨06-0006003 ァ ァ 04 罍ァ006 縺03 0403

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

取扱説明書 [F-12C]

取扱説明書 [F-12C] F-12C 11.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 a bc b c d d a 15 a b cd e a b c d e 16 17 18 de a b 19 c d 20 a b a b c a d e k l m e b c d f g h i j p q r c d e f g h i j n o s 21 k l m n o p q r s a X

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

07.11’ì’¼-Ł\”ƒ.Ł\4

07.11’ì’¼-Ł\”ƒ.Ł\4 TOWN NEWS 2007 Nov11 15 CONTENTS 11 1218 1922 2 18 18 17 10920800 712895 29858745 141207609 089817 33427556 433257 358 12 6480 333 11 75285 82 9060 39 37412 33 1802 31 8908 27 95762 22 78607 75 64388 3

More information

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv - - m k F = kx ) kxt) =m d xt) dt ) ω = k/m ) ) d dt + ω xt) = 0 3) ) ) d d dt iω dt + iω xt) = 0 4) ω d/dt iω) d/dt + iω) 4) ) d dt iω xt) = 0 5) ) d dt + iω xt) = 0 6) 5) 6) a expiωt) b exp iωt) ) )

More information

Fortran90/95 [9]! (1 ) " " 5 "Hello!"! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) 1

Fortran90/95 [9]! (1 )   5 Hello!! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) 1 Fortran90/95 2.1 Fortran 2-1 Hello! 1 program example2_01! end program 2! first test program ( ) 3 implicit none! 4 5 write(*,*) "Hello!"! write Hello! 6 7 stop! 8 end program example2_01 1 program 1!

More information

2

2 1 3 2 ( ) 2 3 1 5 1.1.......................... 5 1.2.................... 8 2 4 13 2.1.......................... 14 2.2.......................... 17 2.3 I......................... 20 3 5 23 3.1 I............................

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675 139ィ 48 1995 3. 753 165, 2 6 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 971927, 95652539358195 45 チ5197 9 4527259495 2 7545953471 129175253471 9557991 3.9. タ52917652 縺1874ィ 989 95652539358195 45

More information

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2 1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)

More information

Untitled

Untitled 23 1 11 A 2 A.1..................................... 2 A.2.................................. 4 A.3............................... 5 A.4.................................... 6 A.5.......................

More information

2

2 16 1050026 1050042 1 2 1 1.1 3 1.2 3 1.3 3 2 2.1 4 2.2 4 2.2.1 5 2.2.2 5 2.3 7 2.3.1 1Basic 7 2.3.2 2 8 2.3.3 3 9 2.3.4 4window size 10 2.3.5 5 11 3 3.1 12 3.2 CCF 1 13 3.3 14 3.4 2 15 3.5 3 17 20 20 20

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

Chapter 3 Mathematica Mathematica e a n = ( ) n b n = n 1! + 1 2! n! b n a n e 3/n b n e 2/n! b n a n b n M athematica Ma

Chapter 3 Mathematica Mathematica e a n = ( ) n b n = n 1! + 1 2! n! b n a n e 3/n b n e 2/n! b n a n b n M athematica Ma Mathematica Workbook Workbook Mathematica Mathematica A4 12 A5 9 14 4 2 Chapter 3 Mathematica Mathematica e a n = ( 1 + 1 ) n b n = 1 + 1 n 1! + 1 2! + + 1 n! b n a n e 3/n b n e 2/n! b n a n b n M athematica

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

第89回日本感染症学会学術講演会後抄録(I)

第89回日本感染症学会学術講演会後抄録(I) ! ! ! β !!!!!!!!!!! !!! !!! μ! μ! !!! β! β !! β! β β μ! μ! μ! μ! β β β β β β μ! μ! μ!! β ! β ! ! β β ! !! ! !!! ! ! ! β! !!!!! !! !!!!!!!!! μ! β !!!! β β! !!!!!!!!! !! β β β β β β β β !!

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

6.1号4c-03

6.1号4c-03 6.1 0 1 1 1 1 BF 1 C DB C 1* F E C 1 F 1 E C 1 E D 1 D 1 BF C G 1 DF 1 E 1 BF 1 BF 1 BF 1 BG 1 BG 1 BG 1 BF 1 BG 1 E 1 D F BF 1 BF 1 F 1 BF 1 F C 1 d 0 1 A 0 1 14 A G 0 1 A 1 G 0 1 1 1 E A 01 B 1 1 1 1

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2... 23

i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2... 23 2 III Copyright c 2 Kazunobu Yoshida. All rights reserved. i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2...

More information