1. マシンビジョンにおける GPU の活用

Size: px
Start display at page:

Download "1. マシンビジョンにおける GPU の活用"

Transcription

1 CUDA 画像処理入門 GTC 213 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也

2 1. マシンビジョンにおける GPU の活用

3 1. 医用画像処理における GPU の活用 CT や MRI から画像を受信して三次元画像の構築をするシステム 2 次元スキャンデータから 3 次元 4 次元イメージの高速生成 CUDA 化により画像処理速度を約 2 倍に高速化

4 1. CUDA で画像処理 GPU = Graphics Processing Unit 画像を 生成する ためのプロセッサです 与えられた画像 を 処理する ことも上手です 複雑な処理 も プログラミング できます CUDA による画像処理の入門編です

5 2. 画像処理 : アフィン変換 画像の線形変換 平行移動

6 2. アフィン変換 変換式 y x t d c t b a Y X y x 1 cos sin sin cos T rotate 1 y x magnify r r T y x translate t t T 変換行列の例

7 2. 画像のメモリ配置 RGBA(8 bit, uchar4) の配列 index = x + y * pitchinpixels pitchinpixels = pitchinbytes / sizeof(uchar4) width (x, y)

8 2. 2 次元メモリ確保 転送 cudaerror_t cudamallocpitch ( void** devptr, size_t* pitch, size_t width, size_t height ) width バイトのメモリを height 行分 取得する 行は pitch バイトで整列する cudaerror_t cudamemcpy2d ( void* dst, size_t dpitch, const void* src, size_t spitch, size_t width, size_t height, cudamemcpykind kind ) dst で示されるメモリ (dpitch バイトで整列 ) に src で示されるメモリ (spitch バイトで整列 ) を width ( バイト ) x height ( 行 ) コピーする

9 2. アフィン変換 : カーネル設計 スレッド に 変換後の画面の ピクセル を割り当てる ピクセル数分 スレッドが走る 例 : 262,144 (= 512 x 512) スレッド スレッドは 処理対象のピクセルを持つ 自分の位置 (X, Y) を知ることが必要

10 2. 2D での Block Thread の割り当て 1 Block 1 Pixel = 1 Thread (i, j) = (GlobalID(x),GlobalID(y)) Thread を 2 次元 で質点に対応 Block を 2 次元 で定義 一定のサイズ Grid : 必要数の Block を 2 次元 に並べる

11 2. 2D での Block Thread の割り当て blockdim.x * blockidx.x threadidx.x blockdim.y * blockidx.y threadidx.y GlobalID は (x, y, z) 方向に計算できる GlobalID(x) = blockdim.x * blockidx.x + threadidx.x GlobalID(y) = blockdim.y * blockidx.y + threadidx.y GlobalID(z) = blockdim.z * blockidx.z + threadidx.z

12 2. アフィン変換 : Grid サイズ指定 /* value radix で割って 切り上げる */ int divroundup(int value, int radix) { return (value + radix 1) / radix; } /* griddim, blockdim を 2 次元 (x, y 方向 ) に初期化 */ dim3 blockdim(128, 4); /* divroundup() は 切り上げの割り算 */ dim3 griddim(divroundup(width, blockdim.x), divroundup(height, blockdim.y)); affinetransformkernel<<<griddim, blockdim>>>(ddst, dsrc, );

13 2. アフィン変換 : カーネルの入出力 global void affinetransformkernel(uchar4 *ddst, const uchar4 *dsrc, ) ddst dsrc

14 2. アフィン変換 : カーネルのスケルトン global void affinetransformkernel(uchar4 *ddst, const uchar4 *dsrc, int width, int height, int pitch) { int gidx = blockdim.x * blockidx.x + threadidx.x; int gidy = blockdim.y * blockidx.y + threadidx.y; } if ((gidx < width) && (gidy < height)) { uchar4 pixel = ; /* 値を設定 */ int mypixelpos = gidx + gidy * pitch; zdst[mypixelpos] = pixel; }

15 2. アフィン変換 : 座標は 逆変換 変換後のピクセル座標 (X, Y) は 既知 (X, Y) から (x, y) に逆変換 ピクセルをコピー

16 2. アフィン変換 : 逆変換 行列は すべての変換で共通 ( 大域的 ) 事前に CPU 上で計算しておく カーネルでは 与えられた行列を使うのみ Y X at ct a c dt bt b d bc ad y x y x x y

17 2. アフィン変換 : カーネル呼び出し struct Matrix { float a, b, c, d; float tx, ty; } Matrix matrix; // 値設定済み ( 略 ) Matrix inverted; // 逆行列 float det = matrix.a * matrix.d - matrix.b * matrix.c; if (det!=.f) { inverted.a = matrix.d / det; inverted.b = - matrix.b / det; inverted.c = - matrix.c / det; inverted.d = matrix.a / det; inverted.tx = (matrix.b * matrix.ty - matrix.tx * matrix.d) / det; inverted.ty = (matrix.tx * matrix.c - matrix.a * matrix.ty) / det; dim3 blockdim(128, 4); dim3 griddim(divroundup(width, blockdim.x), divroundup(height, blockdim.y)); affinetransformkernel<<<griddim, blockdim>>>(inverted, ddst, texsrc, width, height, pitch / sizeof(uchar4)); ( 略 )

18 2. アフィン変換 : カーネルの実装 global void affinetransformkernel(matrix invmat, uchar4 *ddst, const uchar4 *dsrc, int width, int height, int pitch) { int gidx = blockdim.x * blockidx.x + threadidx.x; int gidy = blockdim.y * blockidx.y + threadidx.y; } if ((gidx < width) && (gidy < height)) { float X = gidx +.5f; float Y = gidy +.5f; float x = invmat.a * X + invmat.b * Y + invmat.tx; /* 逆変換 */ float y = invmat.d * X + invmat.e * Y + invmat.ty; uchar4 srcpixel ; if ((.f < x) && (x < width) && (.f < y) && (y < wdith)) { int srcpixelpos = int(x) + int(y) * pitchinpixels; srcpixel = dsrc[srcpixelpos]; } else { srcpixel = make_uchar4(,,, ) } ddst[gidx + gidy * pitch] = srcpixel;

19 2. OpenGL Interoperability CUDA から OpenGL オブジェクトをアクセス OpenGL オブジェクト登録 OpenGL オブジェクト登録解除 リソースマップ リソースアンマップ CUDA オブジェクト取得 Texture cudagraphicsglregisterimage() cudagraphicsglunregisterimage() cudagrahipcssubresourcegetmapp edarray() PBO/VBO などバッファ cudagraphicsmapresources() cudagraphicsunmapresources() cudagraphicsglregisterbuffer() cudagraphicsglunregisterbuffer() cudagraphicsresourcegetmappedpoi nter()

20 3. たたみ込み 画像フィルタ Gaussian Filter, Sobel Filter, Laplacian Filter パターンマッチング SAD SSD 相関マッチング etc

21 3. Gaussian Filter 元画像のピクセル x 係数すべて足し合わせる 係数を ガウス分布とする 1 スレッドで 1 ピクセルを出力 + 係数 元画像 値の形式は float 足し合わせる

22 3. カーネルの実装イメージ device float f(int x, int y); // ピクセルの値を取得する関数 global void gaussiankernel_3x3(float *ddst, const float *dsrc, int width, int height, int pitch) { int gidx = blockdim.x * blockidx.x + threadidx.x; int gidy = blockdim.y * blockidx.y + threadidx.y; } if ((gidx < width) && (gidy < height)) { float pixel = coef[][] * f(gidx - 1, gidy - 1) + coef[][1] * f(gidx, gidy - 1) + coef[][2] * f(gidx + 1, gidy - 1); + coef[1][] * f(gidx - 1, gidy ) + coef[1][1] * f(gidx, gidy ) + coef[1][2] * f(gidx + 1, gidy ); + coef[2][] * f(gidx - 1, gidy + 1) + coef[2][1] * f(gidx, gidy + 1) + coef[2][2] * f(gidx + 1, gidy + 1); int mypixelpos = gidx + gidy + pitchinpixels; ddst[mypixelpos] = pixel; }

23 3. Texture GPU 上のハードウエア Read-only L1キャッシュが使用可能 端の要素の処理 Clamp Wrap Mirror Border 線形補間も使用可能 Texture Object Fermi 以降 CUDA 5. 以降で使用可能 カーネルに引数として渡せる

24 3. Texture オブジェクトの作成 TextureDesc texdesc; ResourceDesc resdesc; // 値のクリア memset(&texdesc,, sizeof(texdesc)); memset(&resdec,, sizeof(resdesc)); texdesc.addressmode[] = texdesc.addressmode[1] = cudaaddressmodeclamp; texdesc.filtermode = cudafiltermodepoint; texdesc.readmode = cudareadmodeelementtype; texdesc.normalizedcoords = ; resdesc.restype = cudaresourcetypepitch2d; resdesc.res.pitch2d.devptr = dsrc; resdesc.res.pitch2d.desc = cudacreatechanneldesc<float>(); resdesc.res.pitch2d.pitchinbytes = pitchinbytes; resdesc.res.pitch2d.width = width; resdesc.res.pitch2d.height = height; cudatextureobject_t tex; cudacreatetextureobject(&tex, &resdesc, &texdesc, NULL);

25 カーネル実装 :Texture 導入 device float f(cudatextureobject_t texsrc, int x, int y) { // ピクセルの値を取得する関数 return tex2d<float>(texsrc, x, y); } global void gaussiankernel_3x3(float *ddst, cudatextureobject_t texsrc, int width, int height, int pitch) { int gidx = blockdim.x * blockidx.x + threadidx.x; int gidy = blockdim.y * blockidx.y + threadidx.y; } if ((gidx < width) && (gidy < height)) { float pixel = coef[][] * f(gidx - 1, gidy - 1) + coef[][1] * f(gidx, gidy - 1) + coef[][2] * f(gidx + 1, gidy - 1) + coef[1][] * f(gidx - 1, gidy ) + coef[1][1] * f(gidx, gidy ) + coef[1][2] * f(gidx + 1, gidy ) + coef[2][] * f(gidx - 1, gidy + 1) + coef[2][1] * f(gidx, gidy + 1) + coef[2][2] * f(gidx + 1, gidy + 1); ddst[gidx + gidy * pitchinpixels] = pixel; }

26 3. Constant Memory 定数専用のメモリ 複数のスレッドから 同じ値をアクセスするのが 前提 サイズは64 KB キャッシュされる 値の設定 直接初期化 Hostから値を設定することも可能 cudamemcpytosymbol()

27 3. カーネル実装 :Texture 導入 constant float coef[3][3] = { { 1.f / 16.f, 2.f / 16.f, 1.f / 16.f, }, { 2.f / 16.f, 4.f / 16.f, 2.f / 16.f, }, { 1.f / 16.f, 2.f / 16.f, 1.f / 16.f, }, }; device float f(cudatextureobject_t texsrc, int x, int y) { // ピクセルの値を取得する関数 return tex2d<float>(texsrc, x, y); } global void gaussiankernel_3x3(float *ddst, cudatextureobject_t texsrc, int width, int height, int pitch) { int gidx = blockdim.x * blockidx.x + threadidx.x; int gidy = blockdim.y * blockidx.y + threadidx.y; ( 略 ) }

28 3. 演算量 メモリアクセス量の算出 画像サイズ : x (pixels) * y(pixels) メモリ読みこみ 書き出し量 = 2 * x * y * sizeof(float) [byte] 演算量 = 17 * x * y [FP] B/F = 8 / [byte/fp] 実際の GPU =.4~.8 [byte/fp] メモリ読み込み量が多い バンド幅律速

29 3. TIPS: ベクタライズによる高速化 1 つのスレッドで 複数のピクセルを処理する ( 例では 2x2) 係数 元画像 : レジスタに保存 元画像からの読み込み値は 変数 ( レジスタ ) に保存する 出力 Communication-Minimizing 2D Convolution in GPU Registers Forrest N. Iandola, David Sheffield, Michael Anderson, Phitchaya Mangpo Phothilimthana, Kurt Keutzer,

30 Sobel Filter 輪郭の検出 係数 ( 横方向 ) 係数 ( 縦方向 ) 横 縦成分の合成 v 2 v x v y 2

31 3. ベンチマーク例 ベクタ化 性能 (GFLOPS) バンド幅 (GB/s) バンド幅効率 性能向上 Gaussian Filter (3x3) Sobel Filter % - 2x % 35 % % - 2x % 54 % Tesla K2 ECC off, 248 x 248 pixels.

32 画像処理のための CUDA 入門 画像処理のための CUDA 入門 日時 : 8/28 9/26 15:~18: 場所 : NVIDIA Japan 赤坂オフィス 定員 : 2 名 申し込み : 入門編 無償です

CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン

CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン CUDA 画像処理入門 エヌビディアジャパン CUDA エンジニア森野慎也 GTC Japan 2014 CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン RGB Y( 輝度 ) 変換 カラー画像から グレイスケールへの変換 Y = 0.299 R + 0.587

More information

1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin

1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin Windows で始める CUDA 入門 GTC 2013 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也 1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境

More information

Slide 1

Slide 1 CUDA プログラミングの基本 パート II - カーネル CUDA の基本の概要 パート I CUDAのソフトウェアスタックとコンパイル GPUのメモリ管理 パート II カーネルの起動 GPUコードの具体像 注 : 取り上げているのは基本事項のみです そのほか多数の API 関数についてはプログラミングガイドを ご覧ください GPU 上でのコードの実行 カーネルは C 関数 + 多少の制約 ホストメモリはアクセスできない戻り値型は

More information

ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014

ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014 ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014 コンカレントな処理の実行 システム内部の複数の処理を 平行に実行する CPU GPU メモリ転送 カーネル実行 複数のカーネル間 ストリーム GPU 上の処理キュー カーネル実行 メモリ転送の並列性 実行順序 DEFAULT STREAM Stream : GPU

More information

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation 熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date 2011-03-17 Type URL Presentation http://hdl.handle.net/2298/23539 Right GPGPU による高速演算について 榎本昌一 東京大学大学院工学系研究科システム創成学専攻

More information

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments 計算機アーキテクチャ第 11 回 マルチプロセッサ 本資料は授業用です 無断で転載することを禁じます 名古屋大学 大学院情報科学研究科 准教授加藤真平 デスクトップ ジョブレベル並列性 スーパーコンピュータ 並列処理プログラム プログラムの並列化 for (i = 0; i < N; i++) { x[i] = a[i] + b[i]; } プログラムの並列化 x[0] = a[0] + b[0];

More information

TSUBAME2.0におけるGPUの 活用方法

TSUBAME2.0におけるGPUの 活用方法 GPU プログラミング 基礎編 東京工業大学学術国際情報センター 1. GPU コンピューティングと TSUBAME2.0 スーパーコンピュータ GPU コンピューティングとは グラフィックプロセッサ (GPU) は グラフィック ゲームの画像計算のために 進化を続けてきた 現在 CPU のコア数は 2~12 個に対し GPU 中には数百コア その GPU を一般アプリケーションの高速化に利用! GPGPU

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx GPU のメモリ階層 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU のメモリ階層 グローバルメモリ 共有メモリ モザイク処理への適用 コンスタントメモリ 空間フィルタへの適用 577 GPU の主要部品 基盤 GPU( チップ )+ 冷却部品 画面出力端子 電源入力端子 メモリ 特性の把握が重要 電源入力端子 画面出力端子 メモリ チップ PCI Ex 端子 http://www.geforce.com/whats

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx GPU のプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU プログラミング環境 (CUDA) GPU プログラムの実行の流れ CUDA によるプログラムの記述 カーネル (GPU で処理する関数 ) の構造 記述方法とその理由 GPU 固有のパラメータの確認 405 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ

More information

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU.....

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU..... CPU GPU N Q07-065 2011 2 17 1 1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU...........................................

More information

07-二村幸孝・出口大輔.indd

07-二村幸孝・出口大輔.indd GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia

More information

untitled

untitled GPGPU NVIDACUDA Learn More about CUDA - NVIDIA http://www.nvidia.co.jp/object/cuda_education_jp.html NVIDIA CUDA programming Guide CUDA http://www.sintef.no/upload/ikt/9011/simoslo/evita/2008/seland.pdf

More information

GPU 画像 動画処理用ハードウェア 低性能なプロセッサがたくさん詰まっている ピーク性能が非常に高い GPUを数値計算に用いるのがGPGPU Graphics Processing Unit General Purpose GPU TSUBAME2.0: GPUスパコン 本演習ではNVIDIA社の

GPU 画像 動画処理用ハードウェア 低性能なプロセッサがたくさん詰まっている ピーク性能が非常に高い GPUを数値計算に用いるのがGPGPU Graphics Processing Unit General Purpose GPU TSUBAME2.0: GPUスパコン 本演習ではNVIDIA社の 演習II (連続系アルゴリズム) 第2回: GPGPU 須田研究室 M1 本谷 徹 motoya@is.s.u-tokyo.ac.jp 2012/10/19 GPU 画像 動画処理用ハードウェア 低性能なプロセッサがたくさん詰まっている ピーク性能が非常に高い GPUを数値計算に用いるのがGPGPU Graphics Processing Unit General Purpose GPU TSUBAME2.0:

More information

Slide 1

Slide 1 CUDA プログラミングの基本 パート I - ソフトウェアスタックとメモリ管理 CUDA の基本の概要 パート I CUDAのソフトウェアスタックとコンパイル GPUのメモリ管理 パートII カーネルの起動 GPUコードの具体項目 注 : 取り上げているのは基本事項のみです そのほか多数の API 関数についてはプログラミングガイドを ご覧ください CUDA インストレーション CUDA インストレーションの構成

More information

3次多項式パラメタ推定計算の CUDAを用いた実装 (CUDAプログラミングの練習として) Implementation of the Estimation of the parameters of 3rd-order-Polynomial with CUDA

3次多項式パラメタ推定計算の CUDAを用いた実装 (CUDAプログラミングの練習として)  Implementation of the Estimation of the parameters of 3rd-order-Polynomial with CUDA 3 次多項式パラメタ推定計算の CUDA を用いた実装 (CUDA プログラミングの練習として ) Estimating the Parameters of 3rd-order-Polynomial with CUDA ISS 09/11/12 問題の選択 目的 CUDA プログラミングを経験 ( 試行錯誤と習得 ) 実際に CPU のみの場合と比べて高速化されることを体験 問題 ( インプリメントする内容

More information

Microsoft PowerPoint - suda.pptx

Microsoft PowerPoint - suda.pptx GPU の HWアーキテクチャと高性能化手法 須田礼仁 ( 東京大学 ) 2011/03/22 GPU 高性能プログラミング GPU のハードウェアを理解する CUDA のソフトウェアを理解する CUDA でプログラムを書くのは難しくないが, CUDA で高速なプログラムを書くのは難しい どうすれば遅くなるかを理解する! 効果が大きいものから順に説明します 1 高性能プログラミングの手順 1. 現在のコードの,

More information

NUMAの構成

NUMAの構成 GPU のプログラム 天野 アクセラレータとは? 特定の性質のプログラムを高速化するプロセッサ 典型的なアクセラレータ GPU(Graphic Processing Unit) Xeon Phi FPGA(Field Programmable Gate Array) 最近出て来た Deep Learning 用ニューロチップなど Domain Specific Architecture 1GPGPU:General

More information

GPGPUクラスタの性能評価

GPGPUクラスタの性能評価 2008 年度理研 HPC シンポジウム第 3 世代 PC クラスタ GPGPU クラスタの性能評価 2009 年 3 月 12 日 富士通研究所成瀬彰 発表の概要 背景 GPGPU による高速化 CUDA の概要 GPU のメモリアクセス特性調査 姫野 BMT の高速化 GPGPU クラスタによる高速化 GPU Host 間のデータ転送 GPU-to-GPU の通信性能 GPGPU クラスタ上での姫野

More information

GPGPUイントロダクション

GPGPUイントロダクション 大島聡史 ( 並列計算分科会主査 東京大学情報基盤センター助教 ) GPGPU イントロダクション 1 目的 昨今注目を集めている GPGPU(GPU コンピューティング ) について紹介する GPGPU とは何か? 成り立ち 特徴 用途 ( ソフトウェアや研究例の紹介 ) 使い方 ( ライブラリ 言語 ) CUDA GPGPU における課題 2 GPGPU とは何か? GPGPU General-Purpose

More information

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 GPU 4 2010 8 28 1 GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 Register & Shared Memory ( ) CPU CPU(Intel Core i7 965) GPU(Tesla

More information

02: 変数と標準入出力

02: 変数と標準入出力 C プログラミング入門 基幹 7 ( 水 5) 10: ファイル入出力 Linux にログインし 以下の講義ページを開いておくこと http://www-it.sci.waseda.ac.jp/ teachers/w483692/cpr1/ 2016-06-15 1 標準ライブラリ関数によりファイルの出力を行う 画像ファイルの生成を例題として 配列の作成を復習する 今日の内容 関数を作ってプログラムを構造化する

More information

GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓

GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU のアーキテクチャ CUDA CUDA によるプログラミング 58 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ チップ単体では販売されていない PCI Ex カードで販売 ( チップ単体と区別せずに GPU と呼ぶことも多い

More information

Microsoft PowerPoint - 高速化WS_ver1.1.1

Microsoft PowerPoint - 高速化WS_ver1.1.1 非静力学海洋モデル kinaco の GPU による高速化 平成 28 年度高速化ワークショップ ~ 京 を中核とするHPCI メニーコアを見据えて~ 平成 29 年 3 月 24 日秋葉原 UDXカンファレンス 山岸孝輝 1, 松村義正 2 1 高度情報科学技術研究機構 2 東京大学大気海洋研究所 Ver. 1.1 発表の概要 GPU の基本 ハードの特徴実行モデル プログラミングモデル性能を引き出すための基本

More information

画像ファイルを扱う これまでに学んだ条件分岐, 繰り返し, 配列, ファイル入出力を使って, 画像を扱うプログラムにチャレンジしてみよう

画像ファイルを扱う これまでに学んだ条件分岐, 繰り返し, 配列, ファイル入出力を使って, 画像を扱うプログラムにチャレンジしてみよう 第 14 回 応用 情報処理演習 ( テキスト : 第 10 章 ) 画像ファイルを扱う これまでに学んだ条件分岐, 繰り返し, 配列, ファイル入出力を使って, 画像を扱うプログラムにチャレンジしてみよう 特定色の画素の検出 ( テキスト 134 ページ ) 画像データが保存されているファイルを読み込んで, 特定色の画素の位置を検出するプログラムを作成しなさい 元画像生成画像 ( 結果の画像 )

More information

DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速

DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速 1 1, 2 1, 2 3 2, 3 4 GP LES ASUCA LES NVIDIA CUDA LES 1. Graphics Processing Unit GP General-Purpose SIMT Single Instruction Multiple Threads 1 2 3 4 1),2) LES Large Eddy Simulation 3) ASUCA 4) LES LES

More information

GPU CUDA CUDA 2010/06/28 1

GPU CUDA CUDA 2010/06/28 1 GPU CUDA CUDA 2010/06/28 1 GPU NVIDIA Mark Harris, Optimizing Parallel Reduction in CUDA http://developer.download.nvidia.com/ compute/cuda/1_1/website/data- Parallel_Algorithms.html#reduction CUDA SDK

More information

N08

N08 CPU のキモチ C.John 自己紹介 英語きらい 絵かけない 人の話を素直に信じない CPUにキモチなんてない お詫び 予告ではCとC# とありましたがやる気と時間の都合上 C++のみを対象とします 今日のネタ元 MSDN マガジン 2010 年 10 月号 http://msdn.microsoft.com/ja-jp/magazine/cc850829.aspx Windows と C++

More information

スライド 1

スライド 1 知能制御システム学 画像処理の高速化 東北大学大学院情報科学研究科鏡慎吾 swk(at)ic.is.tohoku.ac.jp 2008.07.22 今日の内容 ビジュアルサーボのようなリアルタイム応用を考える場合, 画像処理を高速に実装することも重要となる いくつかの基本的な知識を押さえておかないと, 同じアルゴリズムを実行しているのに性能が上がらないということがしばしば生じる 今日は, あくまで普通の

More information

コンピューターグラフィックスS

コンピューターグラフィックスS 今日の内容 コンピューターグラフィックス S 第 8 回 () システム創成情報工学科尾下真樹 28 年度 Q2 前回の復習 演習 (2): ポリゴンモデルの描画 変換行列 の概要 座標系 視野変換 射影変換 のまとめ 教科書 ( 参考書 ) コンピュータグラフィックス CG-ATS 協会編集 出版 2 章 ビジュアル情報処理 -CG 画像処理入門 - CG-ATS 協会編集 出版 章 (-2~-3

More information

memo

memo 計数工学プログラミング演習 ( 第 3 回 ) 2016/04/26 DEPARTMENT OF MATHEMATICAL INFORMATICS 1 内容 ポインタ malloc 構造体 2 ポインタ あるメモリ領域 ( アドレス ) を代入できる変数 型は一致している必要がある 定義時には値は不定 ( 何も指していない ) 実際にはどこかのメモリを指しているので, #include

More information

02: 変数と標準入出力

02: 変数と標準入出力 C プログラミング入門 基幹 7 ( 水 5) 1 10: ファイル入出力 Linux にログインし 以下の講義ページを開いておくこと http://www-it.sci.waseda.ac.jp/teachers/w48369 2/CPR1/ 2016-06-15 今日の内容 2 標準ライブラリ関数によりファイルの出力を行う画像ファイルの生成を例題として 配列の作成を復習する 文字列の扱いを復習する

More information

memo

memo 数理情報工学演習第一 C プログラミング演習 ( 第 5 回 ) 2015/05/11 DEPARTMENT OF MATHEMATICAL INFORMATICS 1 今日の内容 : プロトタイプ宣言 ヘッダーファイル, プログラムの分割 課題 : 疎行列 2 プロトタイプ宣言 3 C 言語では, 関数や変数は使用する前 ( ソースの上のほう ) に定義されている必要がある. double sub(int

More information

02: 変数と標準入出力

02: 変数と標準入出力 C プログラミング入門 基幹 2 ( 月 4) 11: 動的メモリ確保 Linux にログインし 以下の講義ページを開いておくこと http://www-it.sci.waseda.ac.jp/ teachers/w483692/cpr1/ 2014-06-22 1 まとめ : ポインタを使った処理 内容 説明 呼び出し元の変数を書き換える第 9 回 文字列を渡す 配列を渡す 第 10 回 ファイルポインタ

More information

02: 変数と標準入出力

02: 変数と標準入出力 C プログラミング入門 総機 1 ( 月 1) 11: 動的メモリ確保 Linux にログインし 以下の講義ページを開いておくこと http://www-it.sci.waseda.ac.jp/ teachers/w483692/cpr1/ 2015-06-22 1 まとめ : ポインタを使った処理 内容 説明 呼び出し元の変数を書き換える第 9 回 文字列を渡す 配列を渡す 第 10 回 ファイルポインタ

More information

Microsoft PowerPoint - exp2-02_intro.ppt [互換モード]

Microsoft PowerPoint - exp2-02_intro.ppt [互換モード] 情報工学実験 II 実験 2 アルゴリズム ( リスト構造とハッシュ ) 実験を始める前に... C 言語を復習しよう 0. プログラム書ける? 1. アドレスとポインタ 2. 構造体 3. 構造体とポインタ 0. プログラム書ける? 講義を聴いているだけで OK? 言語の要素技術を覚えれば OK? 目的のプログラム? 要素技術 データ型 配列 文字列 関数 オブジェクト クラス ポインタ 2 0.

More information

CUDA 連携とライブラリの活用 2

CUDA 連携とライブラリの活用 2 1 09:30-10:00 受付 10:00-12:00 Reedbush-H ログイン GPU 入門 13:30-15:00 OpenACC 入門 15:15-16:45 OpenACC 最適化入門と演習 17:00-18:00 OpenACC の活用 (CUDA 連携とライブラリの活用 ) CUDA 連携とライブラリの活用 2 3 OpenACC 簡単にGPUプログラムが作成できる それなりの性能が得られる

More information

本書は INpMac v2.20(intime 5.2 INplc 3 Windows7/8/8.1に対応 ) の内容を元に記載しています Microsoft Windows Visual Studio は 米国 Microsoft Corporation の米国及びその他の国における登録商標です

本書は INpMac v2.20(intime 5.2 INplc 3 Windows7/8/8.1に対応 ) の内容を元に記載しています Microsoft Windows Visual Studio は 米国 Microsoft Corporation の米国及びその他の国における登録商標です ACTIVE TOUCH 拡張部品取扱説明書 - 共有メモリアクセスコンポーネント - 1. はじめに 1 (1) 概要... 1 (2) INpMac のインストール... 1 2. Windows アプリケーションとの連携 2 (1) コントロール ( 部品 ) の登録... 2 (2) データの関連付け... 3 3. INtime アプリケーションとの連携 4 (1) 部品 ( コンポーネント

More information

スライド 1

スライド 1 Graphics with Processing 2008-12 モデリング http://vilab.org 塩澤秀和 1 12.1 3D モデリング モデリング 3Dモデルを作り上げること オブジェクト座標系で基本図形やポリゴンを組み合わせる テクスチャ x テクスチャ z y 2 12.2 オブジェクトの関数例 複雑なオブジェクトは, 大きさ 1 を目安としてモデリングし, 関数にしておくと利用しやすい

More information

スライド 1

スライド 1 グラフィックスの世界第 3 回 サイバーメディアセンター サイバーコミュニティ研究部門安福健祐 Processing によるアニメーション setup と draw void setup() size(400, 400); void draw() ellipse( mousex,mousey,100,100); void とか setup とか draw とかはじめて見る が出てきてややこしい ellipseは円描く関数でした

More information

いまからはじめる組み込みGPU実装

いまからはじめる組み込みGPU実装 いまからはじめる組み込み GPU 実装 ~ コンピュータービジョン ディープラーニング編 ~ MathWorks Japan アプリケーションエンジニアリング部シニアアプリケーションエンジニア大塚慶太郎 2017 The MathWorks, Inc. 1 コンピュータービジョン ディープラーニングによる 様々な可能性 自動運転 ロボティクス 予知保全 ( 製造設備 ) セキュリティ 2 転移学習を使った画像分類

More information

CUDA基礎1

CUDA基礎1 CUDA 基礎 1 東京工業大学 学術国際情報センター 黄遠雄 2016/6/27 第 20 回 GPU コンピューティング講習会 1 ヘテロジニアス コンピューティング ヘテロジニアス コンピューティング (CPU + GPU) は広く使われている Financial Analysis Scientific Simulation Engineering Simulation Data Intensive

More information

Microsoft PowerPoint - GPU_computing_2013_01.pptx

Microsoft PowerPoint - GPU_computing_2013_01.pptx GPU コンピューティン No.1 導入 東京工業大学 学術国際情報センター 青木尊之 1 GPU とは 2 GPGPU (General-purpose computing on graphics processing units) GPU を画像処理以外の一般的計算に使う GPU の魅力 高性能 : ハイエンド GPU はピーク 4 TFLOPS 超 手軽さ : 普通の PC にも装着できる 低価格

More information

Microsoft PowerPoint - Lec15 [互換モード]

Microsoft PowerPoint - Lec15 [互換モード] 情報デザイン専攻 画像情報処理論及び演習 II 周波数分解 FFT Gaussian フィルタと周波数分解 今日の授業内容 www.riken.jp/brict/yoshizawa/lectures/index.html www.riken.jp/brict/yoshizawa/lectures/lec5.pdf. 前回 前々回の復習 レポートの説明. 第 3, 回講義水曜日 限教室 68 吉澤信

More information

N 体問題 長岡技術科学大学電気電子情報工学専攻出川智啓

N 体問題 長岡技術科学大学電気電子情報工学専攻出川智啓 N 体問題 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 天体の運動方程式 天体運動の GPU 実装 最適化による性能変化 #pragma unroll 855 計算の種類 画像処理, 差分法 空間に固定された観測点を配置 観測点 ( 固定 ) 観測点上で物理量がどのように変化するかを追跡 Euler 型 多粒子の運動 観測点を配置せず, 観測点が粒子と共に移動 Lagrange 型 観測点

More information

( CUDA CUDA CUDA CUDA ( NVIDIA CUDA I

(    CUDA CUDA CUDA CUDA (  NVIDIA CUDA I GPGPU (II) GPGPU CUDA 1 GPGPU CUDA(CUDA Unified Device Architecture) CUDA NVIDIA GPU *1 C/C++ (nvcc) CUDA NVIDIA GPU GPU CUDA CUDA 1 CUDA CUDA 2 CUDA NVIDIA GPU PC Windows Linux MaxOSX CUDA GPU CUDA NVIDIA

More information

Prog1_10th

Prog1_10th 2012 年 6 月 20 日 ( 木 ) 実施ポインタ変数と文字列前回は, ポインタ演算が用いられる典型的な例として, ポインタ変数が 1 次元配列を指す場合を挙げたが, 特に,char 型の配列に格納された文字列に対し, ポインタ変数に配列の 0 番の要素の先頭アドレスを代入して文字列を指すことで, 配列そのものを操作するよりも便利な利用法が存在する なお, 文字列リテラルは, その文字列が格納されている領域の先頭アドレスを表すので,

More information

02: 変数と標準入出力

02: 変数と標準入出力 C プログラミング入門 基幹 7 ( 水 5) 11: 動的メモリ確保 Linux にログインし 以下の講義ページを開いておくこと http://www-it.sci.waseda.ac.jp/ teachers/w483692/cpr1/ 2016-06-22 1 まとめ : ポインタを使った処理 内容呼び出し元の変数を書き換える文字列を渡す 配列を渡すファイルポインタ複数の値を返す大きな領域を確保する

More information

一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS 信学技報 IEICE Technical Report A P (2014-6) FDTD 法の並列化技術とオープンソ

一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS 信学技報 IEICE Technical Report A P (2014-6) FDTD 法の並列化技術とオープンソ 一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS 信学技報 IEICE Technical Report A P204-4(204-6) FDTD 法の並列化技術とオープンソース化 大賀明夫株式会社 EEM E-mail: oga@e-em.co.jp あらまし FDTD 法の各種並列化技術について説明し実装する

More information

一方, 物体色 ( 色や光を反射して色刺激を起こすもの, つまり印刷物 ) の表現には, 減法混色 (CMY) が用いられる CMY の C はシアン (Cyn),M はマゼンタ (Mgent),Y はイエロー (Yellow) であり, これらは色の 3 原色と呼ばれるものである なお, 同じシア

一方, 物体色 ( 色や光を反射して色刺激を起こすもの, つまり印刷物 ) の表現には, 減法混色 (CMY) が用いられる CMY の C はシアン (Cyn),M はマゼンタ (Mgent),Y はイエロー (Yellow) であり, これらは色の 3 原色と呼ばれるものである なお, 同じシア 第 4 章デジタル画像の処理 デジタル画像処理の基礎について理解し,Jv によるフィルタリング処理や座標変換のプログラムを作成する 4.1 RGB 表色系と CMY 表色系 TV やコンピュータのディスプレイ, デジタルカメラでの色の表現には, 加法混色 (RGB) が用いられる RGB の R は赤 (Red),G は緑 (Green),B は青 (Blue) であり, これらは光の 3 原色と呼ばれるものである

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

tabaicho3mukunoki.pptx

tabaicho3mukunoki.pptx 1 2 はじめに n 目的 4倍精度演算より高速な3倍精度演算を実現する l 倍精度では足りないが4倍精度は必要ないケースに欲しい l 4倍精度に比べてデータサイズが小さい Ø 少なくともメモリ律速な計算では4倍精度よりデータ 転送時間を減らすことが可能 Ø PCIeやノード間通信がボトルネックとなりやすい GPUクラスタ環境に有効か n 研究概要 l DD型4倍精度演算 DD演算 に基づく3倍精度演算

More information

バイオプログラミング第 1 榊原康文 佐藤健吾 慶應義塾大学理工学部生命情報学科

バイオプログラミング第 1 榊原康文 佐藤健吾 慶應義塾大学理工学部生命情報学科 バイオプログラミング第 1 榊原康文 佐藤健吾 慶應義塾大学理工学部生命情報学科 ポインタ変数の扱い方 1 ポインタ変数の宣言 int *p; double *q; 2 ポインタ変数へのアドレスの代入 int *p; と宣言した時,p がポインタ変数 int x; と普通に宣言した変数に対して, p = &x; は x のアドレスのポインタ変数 p への代入 ポインタ変数の扱い方 3 間接参照 (

More information

演算増幅器

演算増幅器 コンピュータグラフィックス 2 前回は GLUT を使った簡単な 2 次元グラフィックスについて習った 今週は以下の項目について 補足していく イベント駆動型プログラムの動作について コンピュータグラフィックスの座標系 イベント駆動型プログラム従来のプログラムとの違いこれまでに学習してきたプログラムは上から下に順次実行され 条件分岐や繰り返し処理によって プログラムの流れ (flow: フロー )

More information

概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran

概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran CUDA Fortran チュートリアル 2010 年 9 月 29 日 NEC 概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran を用いた Linux

More information

スライド 1

スライド 1 知能制御システム学 画像処理の高速化 OpenCV による基礎的な例 東北大学大学院情報科学研究科鏡慎吾 swk(at)ic.is.tohoku.ac.jp 2007.07.03 リアルタイム処理と高速化 リアルタイム = 高速 ではない 目標となる時間制約が定められているのがリアルタイム処理である.34 ms かかった処理が 33 ms に縮んだだけでも, それによって与えられた時間制約が満たされるのであれば,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 講座準備 講座資料は次の URL から DL 可能 https://goo.gl/jnrfth 1 ポインタ講座 2017/01/06,09 fumi 2 はじめに ポインタはC 言語において理解が難しいとされる そのポインタを理解することを目的とする 講座は1 日で行うので 詳しいことは調べること 3 はじめに みなさん復習はしましたか? 4 & 演算子 & 演算子を使うと 変数のアドレスが得られる

More information

02: 変数と標準入出力

02: 変数と標準入出力 C プログラミング入門 基幹 2 ( 月 4) 09: ポインタ 文字列 Linux にログインし 以下の講義ページを開いておくこと http://www-it.sci.waseda.ac.jp/ teachers/w483692/cpr1/ 2014-06-09 1 関数できなかったこと 配列を引数として渡す, 戻り値として返す 文字列を扱う 呼び出し元の変数を直接書き換える 例 : 2 つの変数の値を入れ替える関数

More information

プログラミングI第10回

プログラミングI第10回 プログラミング 1 第 10 回 構造体 (3) 応用 リスト操作 この資料にあるサンプルプログラムは /home/course/prog1/public_html/2007/hw/lec/sources/ 下に置いてありますから 各自自分のディレクトリにコピーして コンパイル 実行してみてください Prog1 2007 Lec 101 Programming1 Group 19992007 データ構造

More information

IPSJ SIG Technical Report Vol.2013-HPC-138 No /2/21 GPU CRS 1,a) 2,b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla

IPSJ SIG Technical Report Vol.2013-HPC-138 No /2/21 GPU CRS 1,a) 2,b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla GPU CRS 1,a),b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla K0 CUDA5.0 cusparse CRS SpMV 00 1.86 177 1. SpMV SpMV CRS Compressed Row Storage *1 SpMV GPU GPU NVIDIA Kepler

More information

RX ファミリ用 C/C++ コンパイラ V.1.00 Release 02 ご使用上のお願い RX ファミリ用 C/C++ コンパイラの使用上の注意事項 4 件を連絡します #pragma option 使用時の 1 または 2 バイトの整数型の関数戻り値に関する注意事項 (RXC#012) 共用

RX ファミリ用 C/C++ コンパイラ V.1.00 Release 02 ご使用上のお願い RX ファミリ用 C/C++ コンパイラの使用上の注意事項 4 件を連絡します #pragma option 使用時の 1 または 2 バイトの整数型の関数戻り値に関する注意事項 (RXC#012) 共用 RX ファミリ用 C/C++ コンパイラ V.1.00 Release 02 ご使用上のお願い RX ファミリ用 C/C++ コンパイラの使用上の注意事項 4 件を連絡します #pragma option 使用時の 1 または 2 バイトの整数型の関数戻り値に関する注意事項 (RXC#012) 共用体型のローカル変数を文字列操作関数で操作する場合の注意事項 (RXC#013) 配列型構造体または共用体の配列型メンバから読み出した値を動的初期化に用いる場合の注意事項

More information

NM30操作DLL(SSK.DLL)

NM30操作DLL(SSK.DLL) NM33 用 OptCamSDK 取扱説明書 Rev. 1.05 2018/01/17 オプト株式会社 OPT Corporation 391-0013 長野県茅野市宮川 5423-2 Tel: 0266-82-0020 5423-2 Miyagawa,Chino-shi,Nagano-ken 391-0013, Japan Fax: 0266-82-0022 1 目 次 1. 概要... 4 2.

More information

Microsoft PowerPoint - comprog11.pptx

Microsoft PowerPoint - comprog11.pptx Outline プログラミング演習第 回エッジを検出する on 3..4 電気通信大学情報理工学部知能機械工学科長井隆行 画像の本質 輝度の境目に情報あり! 画像の微分と 階微分 エッジ検出 画像をぼかす 本日の課題 画像の本質 エッジ抽出 画像の情報は境目にあり! エッジ 輝度が大きく変化しているところ ( 境界 ) 画像の情報はエッジにあり 輝度 人間の視覚系でも特定のエッジの方向に発火するニューロンが見つかっている

More information

第7章 レンダリング

第7章 レンダリング 7 April 11, 2017 1 / 59 7.1 ( ) CG 3 ( ) 2 / 59 7.2 7.2.1 ( ) 3 (rendering) 1 / (hidden line/surface calculation) a (outer normal algorithm) b Z (Z-buffer algorithm) c (scan-line algorithm) 2 (shading)

More information

Microsoft Word - Cプログラミング演習(10)

Microsoft Word - Cプログラミング演習(10) 第 10 回 (6/25) 3. ファイルとその応用 (3) ファイルの更新 シーケンシャルファイルの更新 シーケンシャルファイルでは, 各レコードが可変長で連続して格納されており, その中の特定のレコードを変更することができない そこで一般的には, マスタファイルからデータを取り出し, 更新処理を行ったあとに新マスタファイルに書き込む 注 ) マスタファイル : 主ファイル, 基本ファイルと呼ばれるファイルで内容は比較的固定的であり,

More information

第7章 レンダリング

第7章 レンダリング 7 May 18, 2012 1 / 60 71 ( ) CG 3 ( ) 2 / 60 72 71 ( ) 3 (rendering) 1 / (hidden line/surface calculation) a (outer normal algorithm) b Z (Z-buffer algorithm) c (scan-line algorithm) 2 (shading) a (flat

More information

ARToolKit プログラムの仕組み 1: ヘッダファイルのインクルード 2: Main 関数 3: Main Loop 関数 4: マウス入力処理関数 5: キーボード入力処理関数 6: 終了処理関数 3: Main Loop 関数 1カメラ画像の取得 2カメラ画像の描画 3マーカの検出と認識

ARToolKit プログラムの仕組み 1: ヘッダファイルのインクルード 2: Main 関数 3: Main Loop 関数 4: マウス入力処理関数 5: キーボード入力処理関数 6: 終了処理関数 3: Main Loop 関数 1カメラ画像の取得 2カメラ画像の描画 3マーカの検出と認識 ARToolKit プログラムの仕組み 1: ヘッダファイルのインクルード 2: Main 関数 3: Main Loop 関数 4: マウス入力処理関数 5: キーボード入力処理関数 6: 終了処理関数 3: Main Loop 関数 1カメラ画像の取得 2カメラ画像の描画 3マーカの検出と認識 4 次の画像のキャプチャ指示 5マーカの信頼度の比較 6マーカの位置 姿勢の計算 7バッファの内容を画面に表示

More information

memo

memo 計数工学プログラミング演習 ( 第 4 回 ) 2016/05/10 DEPARTMENT OF MATHEMATICA INFORMATICS 1 内容 リスト 疎行列 2 連結リスト (inked ists) オブジェクトをある線形順序に並べて格納するデータ構造 単方向連結リスト (signly linked list) の要素 x キーフィールド key ポインタフィールド next x->next:

More information

MPI または CUDA を用いた将棋評価関数学習プログラムの並列化 2009/06/30

MPI または CUDA を用いた将棋評価関数学習プログラムの並列化 2009/06/30 MPI または CUDA を用いた将棋評価関数学習プログラムの並列化 2009/06/30 目次 1. まえがき 3 2. 計算方法 4 3. MPI を用いた並列化 6 4. CUDA を用いた並列化 11 5. 計算結果 20 6. まとめ 24 2 1. まえがき 目的将棋の評価関数を棋譜から学習するボナンザメソッドの簡易版を作成し それを MPI または CUDA を用いて並列化し 計算時間を短縮することを目的とする

More information

POSIXプログラミング Pthreads編

POSIXプログラミング Pthreads編 POSIXプログラミング Pthreads 編 デジタルビジョンソリューション 中山一弘佐藤史明 参考図書 Pthreads プログラミング, Bradford Nichols, Dick Buttlar, Jacqeline Proulx Farrell, ISBN4-900900-66-4 Pthreads POSIX スレッド標準を実装したライブラリを Pthreads と呼ぶ C 言語のデータ型

More information

hpc141_shirahata.pdf

hpc141_shirahata.pdf GPU アクセラレータと不揮発性メモリ を考慮した I/O 性能の予備評価 白幡晃一 1,2 佐藤仁 1,2 松岡聡 1 1: 東京工業大学 2: JST CREST 1 GPU と不揮発性メモリを用いた 大規模データ処理 大規模データ処理 センサーネットワーク 遺伝子情報 SNS など ペタ ヨッタバイト級 高速処理が必要 スーパーコンピュータ上での大規模データ処理 GPU 高性能 高バンド幅 例

More information

gengo1-11

gengo1-11 関数の再帰定義 自然数 n の階乗 n! を計算する関数を定義してみる 引数は整数 返却値も整数 n! = 1*2*3*... * (n 1)*n である ただし 0! = 1 とする int factorial(int n) int i, tmp=1; if( n>0 ) for(i=1; i

More information

FORTRAN( と C) によるプログラミング 5 ファイル入出力 ここではファイルからデータを読みこんだり ファイルにデータを書き出したりするプログラムを作成してみます はじめに テキスト形式で書かれたデータファイルに書かれているデータを読みこんで配列に代入し 標準出力に書き出すプログラムを作り

FORTRAN( と C) によるプログラミング 5 ファイル入出力 ここではファイルからデータを読みこんだり ファイルにデータを書き出したりするプログラムを作成してみます はじめに テキスト形式で書かれたデータファイルに書かれているデータを読みこんで配列に代入し 標準出力に書き出すプログラムを作り FORTRAN( と C) によるプログラミング 5 ファイル入出力 ここではファイルからデータを読みこんだり ファイルにデータを書き出したりするプログラムを作成してみます はじめに テキスト形式で書かれたデータファイルに書かれているデータを読みこんで配列に代入し 標準出力に書き出すプログラムを作ります FORTRAN の場合 OPEN 文でファイルを開いた後 標準入力の場合と同様に READ 文でデータを読みこみます

More information

研究報告用MS-Wordテンプレートファイル

研究報告用MS-Wordテンプレートファイル マルチコアおよび GPGPU 環境における画像処理最適化 矢野勝久 高山征大 境隆二出宮健彦 スケーラを題材として, マルチコアおよび GPGPU 各々の HW 特性に適した画像処理の最適化を図る. マルチコア環境では, 数値演算処理の削減,SIMD 化など直列性能の最適化を行った後,OpenMP を利用して並列化を図る.GPGPU(CUDA) では, スレッド並列を優先して並列処理の設計を行いブロックサイズを決める.

More information

7 ポインタ (P.61) ポインタを使うと, メモリ上のデータを直接操作することができる. 例えばデータの変更 やコピーなどが簡単にできる. また処理が高速になる. 7.1 ポインタの概念 変数を次のように宣言すると, int num; メモリにその領域が確保される. 仮にその開始のアドレスを 1

7 ポインタ (P.61) ポインタを使うと, メモリ上のデータを直接操作することができる. 例えばデータの変更 やコピーなどが簡単にできる. また処理が高速になる. 7.1 ポインタの概念 変数を次のように宣言すると, int num; メモリにその領域が確保される. 仮にその開始のアドレスを 1 7 ポインタ (P.61) ポインタを使うと, メモリ上のデータを直接操作することができる. 例えばデータの変更 やコピーなどが簡単にできる. また処理が高速になる. 7.1 ポインタの概念 変数を次のように宣言すると, int num; メモリにその領域が確保される. 仮にその開始のアドレスを 10001 番地とすると, そこから int 型のサイズ, つまり 4 バイト分の領域が確保される.1

More information

1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU

1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU GPGPU (I) GPU GPGPU 1 GPU(Graphics Processing Unit) GPU GPGPU(General-Purpose computing on GPUs) GPU GPGPU GPU ( PC ) PC PC GPU PC PC GPU GPU 2008 TSUBAME NVIDIA GPU(Tesla S1070) TOP500 29 [1] 2009 AMD

More information

memo

memo 計数工学プログラミング演習 ( 第 3 回 ) 2017/04/25 DEPARTMENT OF MATHEMATICAL INFORMATICS 1 内容 ポインタの続き 引数の値渡しと参照渡し 構造体 2 ポインタで指されるメモリへのアクセス double **R; 型 R[i] と *(R+i) は同じ意味 意味 R double ** ポインタの配列 ( の先頭 ) へのポインタ R[i]

More information

名称 : 日本 GPU コンピューティングパートナーシップ (G-DEP) 所在 : 東京都文京区本郷 7 丁目 3 番 1 号東京大学アントレプレナープラザ, 他工場 URL アライアンスパートナー コアテクノロジーパートナー NVIDIA JAPAN ソリュ

名称 : 日本 GPU コンピューティングパートナーシップ (G-DEP) 所在 : 東京都文京区本郷 7 丁目 3 番 1 号東京大学アントレプレナープラザ, 他工場 URL   アライアンスパートナー コアテクノロジーパートナー NVIDIA JAPAN ソリュ GPUDirect の現状整理 multi-gpu に取組むために G-DEP チーフエンジニア河井博紀 (kawai@gdep.jp) 名称 : 日本 GPU コンピューティングパートナーシップ (G-DEP) 所在 : 東京都文京区本郷 7 丁目 3 番 1 号東京大学アントレプレナープラザ, 他工場 URL http://www.gdep.jp アライアンスパートナー コアテクノロジーパートナー

More information

02: 変数と標準入出力

02: 変数と標準入出力 C プログラミング入門 基幹 7 ( 水 5) 1 11: 動的メモリ確保 Linux にログインし 以下の講義ページを開いておくこと http://www-it.sci.waseda.ac.jp/teachers/w48369 2/CPR1/ 2017-06-28 まとめ : ポインタを使った処理 2 内容呼び出し元の変数を書き換える文字列を渡す 配列を渡すファイルポインタ複数の値を返す大きな領域を確保する

More information

AquesTalk Mac マニュアル

AquesTalk Mac マニュアル AquesTalk Mac マニュアル 2010/1/6 ( 株 ) アクエスト http://www.a-quest.com/ 1. 概要 本文書は 規則音声合成ライブラリ AquesTalk Mac( 以下 AquesTalk ) をアプリケーションに組み込んで使用するためのプログラミングに関して 方法および注意点を示したものです AquesTalk Mac は Win 版の AquesTalk

More information

Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ 3.7x faster P100 V100 P10

Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ 3.7x faster P100 V100 P10 NVIDIA TESLA V100 CUDA 9 のご紹介 森野慎也, シニアソリューションアーキテクト (GPU-Computing) NVIDIA Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ

More information

Fujitsu Standard Tool

Fujitsu Standard Tool 低レベル通信ライブラリ ACP の PGAS ランタイム向け機能 2014 年 10 月 24 日富士通株式会社 JST CREST 安島雄一郎 Copyright 2014 FUJITSU LIMITED 本発表の構成 概要 インタフェース チャネル ベクタ リスト メモリアロケータ アドレス変換 グローバルメモリ参照 モジュール構成 メモリ消費量と性能評価 利用例 今後の課題 まとめ 1 Copyright

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft Word - paper.docx

Microsoft Word - paper.docx による高速画像処理 名古屋大学大学院情報科学研究科出口大輔, 井手一郎, 村瀬洋 概要 : 本発表では, 近年注目を集めている GP(General Purpose computing on s) の技術に着目し,GP を利用するための開発環境の使い方やプログラミングのノウハウを分かりやすく解説する. GP は を汎用計算に利用しようという試みであり, 現在では物理シミュレーション, 数値計算, 信号解析,

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 情報処理 Ⅱ 第 10 回 2010 年 12 月 20 日 ( 月 ) 授業の進め方 プリプロセッサ指令 構造体 ファイル入出力 その他の型 記憶域管理関数 2 年以降でさらに学習 習熟 自分の思う通りに, 適切な形で, 配列 文字列プログラムとして表現する. ポインタ変数の関数識別子算術型有効範囲再帰呼び出しライブラリ関数制御文演算子 式評価 プログラムの作成 コンパイル 実行 2 本日学ぶこと

More information

< F2D834F838C A815B A CC>

< F2D834F838C A815B A CC> グレゴリー ライプニッツの公式 [Java アプレット ] [Java アプリケーション ] 1. はじめに 次のグレゴリー ライプニッツの公式を用いて π の近似値を求めてみましょう [ グレゴリー ライプニッツの公式 ] π 4 =1-1 3 + 1 5-1 7 + 1 9-1 + 11 シミュレーションソフト グレゴリー ライプニッツの公式による π の近似 を使って π の近似値が求まる様子を観察してみてください

More information

(MIRU2010) NTT Graphic Processor Unit GPU graphi

(MIRU2010) NTT Graphic Processor Unit GPU graphi (MIRU2010) 2010 7 889 2192 1-1 905 2171 905 NTT 243 0124 3-1 E-mail: ac094608@edu.okinawa-ct.ac.jp, akisato@ieee.org Graphic Processor Unit GPU graphic processor unit CUDA Fully automatic extraction of

More information

Microsoft Word - no15.docx

Microsoft Word - no15.docx 7. ファイルいままでは プログラムを実行したとき その結果を画面で確認していました 簡単なものならそれでもいいのですか 複雑な結果は画面で見るだけでなく ファイルに保存できればよいでしょう ここでは このファイルについて説明します 使う関数のプロトタイプは次のとおりです FILE *fopen(const char *filename, const char *mode); ファイルを読み書きできるようにする

More information

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - ip02_01.ppt [互換モード] 空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-

More information

< F2D B838A835882CC8CF68EAE2E6A7464>

< F2D B838A835882CC8CF68EAE2E6A7464> ウォーリスの公式 [Java アプレット ] [Java アプリケーション ] 1. はじめに 次のウォーリスの公式を用いて π の近似値を求めてみましょう [ ウォーリスの公式 ] π=2{ 2 2 4 4 6 6 1 3 3 5 5 7 シミュレーションソフト ウォーリスの公式による π の近似 を使って π の近似値が求まる様子を観察してみてください 2.Java アプレット (1) Javaプログラムリスト

More information

スライド 1

スライド 1 Graphics with Processing 2007-11 シェーディングとテクスチャマッピング http://vilab.org 塩澤秀和 1 11.1 シェーディング シェーディング シェーディングとは Shading= 陰影づけ 光の反射 材質のモデル ( 前回 ) ポリゴンの陰影計算モデル = シェーディングモデル シェーディングモデル フラットシェーディング ポリゴンを単一色で描画

More information

表示の更新もそういた作業のひとつに当たる スレッドの使用アニメーション アニメーションやシミュレーションなどは画面の更新が一定のタイミングで行われていく この連続した画面の更新をスレッドを利用して行う しかし paint() メソッドを直接呼び出して表示を更新することはできない その理由

表示の更新もそういた作業のひとつに当たる スレッドの使用アニメーション アニメーションやシミュレーションなどは画面の更新が一定のタイミングで行われていく この連続した画面の更新をスレッドを利用して行う しかし paint() メソッドを直接呼び出して表示を更新することはできない その理由 Java 独習第 3 版 13.12 スレッドの使用 13.13 ダブルバッファリング 2006 年 7 月 12 日 ( 水 ) 南慶典 表示の更新もそういた作業のひとつに当たる 13.12 スレッドの使用アニメーション アニメーションやシミュレーションなどは画面の更新が一定のタイミングで行われていく この連続した画面の更新をスレッドを利用して行う しかし paint() メソッドを直接呼び出して表示を更新することはできない

More information

Microsoft PowerPoint - 第3回目.ppt [互換モード]

Microsoft PowerPoint - 第3回目.ppt [互換モード] 第 3 回プログラミング応用 目的ファイル入出力 1. ファイルの概念 2. ファイルの読み込み 3. ファイルの書き込み CPU 演算 判断 ファイルの概念 内部記憶装置 OS 機械語プログラム 入力装置 キーボード 出力装置 ディスプレイ ファイル 外部記憶装置ハードディスク CD-ROM CPU が外部とデータをやり取りするための媒介 printf 関数や scanf 関数でもうすでにファイルのやり取りの基本は学んでいる

More information

JavaプログラミングⅠ

JavaプログラミングⅠ Java プログラミング Ⅱ 8 回目抽象クラスとインタフェース課題 確認 問題次の各文は正しいか誤っているか答えなさい (1) 抽象クラスのオブジェクトは生成できる (2) 抽象メソッドとはメソッドの本体が未定義のメソッドである (3) 抽象メソッドをメンバーにもつクラスは抽象クラスである (4) 抽象クラスを拡張してすべての抽象メソッドをオーバーライドすれば サブクラスのオブジェクトを生成できる

More information

Microsoft PowerPoint - kougi9.ppt

Microsoft PowerPoint - kougi9.ppt C プログラミング演習 第 9 回ポインタとリンクドリストデータ構造 1 今まで説明してきた変数 #include "stdafx.h" #include int _tmain(int argc, _TCHAR* argv[]) { double x; double y; char buf[256]; int i; double start_x; double step_x; FILE*

More information

Insert your Title here

Insert your Title here マルチコア マルチスレッド環境での静的解析ツールの応用 米 GrammaTech 社 CodeSonar によるスレッド間のデータ競合の検出 2013 GrammaTech, Inc. All rights reserved Agenda 並列実行に起因する不具合の摘出 なぜ 並列実行されるプログラミングは難しいのか データの競合 デッドロック どのようにして静的解析ツールで並列実行の問題を見つけるのか?

More information

適応フィルタのSIMD最適化

適応フィルタのSIMD最適化 茂木和洋 @ まるも製作所 今回は省略 初めての方は #1 の資料を参照 適応フィルタとは 適応フィルタの問題点 ( 速度面で ) SIMD 比較命令でマスク処理 ベンチマーク 固定のフィルタではなく 入力値によって処理を変更し 最適な結果を求める 例 基準値との差異を閾値と比較して 参照画素として使うか使わないかを切り替える 最小自乗法でフィッティングしてフィルタ係数自体を動的に作成する 他いろいろ

More information

.NETプログラマー早期育成ドリル ~VB編 付録 文法早見表~

.NETプログラマー早期育成ドリル ~VB編 付録 文法早見表~ .NET プログラマー早期育成ドリル VB 編 付録文法早見表 本資料は UUM01W:.NET プログラマー早期育成ドリル VB 編コードリーディング もしくは UUM02W:.NET プログラマー早期育成ドリル VB 編コードライティング を ご購入頂いた方にのみ提供される資料です 資料内容の転載はご遠慮下さい VB プログラミング文法早見表 < 基本文法 > 名前空間の定義 Namespace

More information

スライド 1

スライド 1 5.5.2 画像の間引き 5.1 線形変換 5.2 アフィン変換 5.3 同次座標 5.4 平面射影変換 5.5 再標本化 1. 画素数の減少による表現能力の低下 画像の縮小 変形を行う際 結果画像の 画素数 < 入力画像の 画素数 ( 画素の密度 ) ( 画素の密度 ) になることがある この場合 結果画像の表現力 < 入力画像の表現力 ( 情報量 ) ( 情報量 ) 結果的に 情報の損失が生じる!

More information

スライド 1

スライド 1 東北大学工学部機械知能 航空工学科 2015 年度 5 セメスター クラス D 計算機工学 6. MIPS の命令と動作 演算 ロード ストア ( 教科書 6.3 節,6.4 節 ) 大学院情報科学研究科鏡慎吾 http://www.ic.is.tohoku.ac.jp/~swk/lecture/ レジスタ間の演算命令 (C 言語 ) c = a + b; ( 疑似的な MIPS アセンブリ言語 )

More information