Size: px
Start display at page:

Download ""

Transcription

1 ( ) 2009

2 CRC DS-CDMA OFDM MC-CDMA (Vector Coding) (OFDM) (E-SDM) DS-CDMA CCI AWGN i

3 3 MC-CDMA DS-CDMA MC-CDMA S/P MC-CDMA CP AMC SIR AMC TPC Vector Coding Vector Coding Modulation and Coding Scheme (MCS) MCS N max N min MMSE ii

4 DS-CDMA ( 2 ) MC-CDMA ( 3 ) ( 4 ) Vector Coding ( 5 ) A 104 A A A A A iii

5 CDMA OFDM MC-CDMA VSF-OFCDM WSSUS Vector Coding OFDM MIMO CCI ( ) BER (E s /N 0 = 5dB) ACS (E s /N 0 = 5dB) ACS E s /N BER E s /N 0 (7 users) BER E s /N 0 (7 users) BER (E s /N 0 = 5dB) ACS (E s /N 0 = 5dB) ACS E s /N BER E s /N 0 (7 users) MC-CDMA S/P MC-CDMA CP PBT iv

6 3.5 PBT (F d =8Hz) (MC-CDMA S/P ) (DS-CDMA,RAKE) ( ) ( ) SIR (AWGN) (HiperLAN/2 ) (AWGN) ( ) TPC AMC Vector Coding AMC ACCE ACCE VC MMSE PER MCS (VC) MCS (MMSE) N act (SNR=30dB) v

7 IEEE802.11a MCS MCS Set for Indoor and Outdoor Applications MCS Set vi

8 1990 web Mbps 10Mbps Mbps 2000 LAN AV LAN IEEE802.11b 11Mbps 54Mbps a/g 600Mbps n 300Mbps IMT-Advanced IEEE VHT (Very High Throughput) 1Gbps 1 ( ) 1 100Mbps 100Mbps ( ) LAN IEEE802.11a 8 MIMO (Multiple-Input Multiple-Output) IEEE802.11n 16 1

9 3 (3G) 3.5G 3.9G G CDMA 2 3 MC-CDMA (MultiCarrier Code Division Multiple Access) MC-CDMA 2

10 DS-CDMA (Direct Spread CDMA) RAKE MC-CDMA 4 4 NTT VSF-OFCDM (Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing) MCS (Modulation and Coding Scheme) SNR (Signal to Noise Ratio) CRC (Cyclic Redundancy Check) MCS MCS 5 Vector Coding MIMO Vector Coding 1 CRC 6 3

11 1 1.1 DSL PC AV LAN LAN 1.1 1,000M 1Gbps s ] p [b 度速送伝 100M 10M 1M 100k a/g b 3G 2.5G n 3.5G 3.9G 10k 2G 1k 1990 年 1995 年 2000 年 2005 年 2010 年 携帯電話無線 LAN 1.1: (2G) PDC (Personal Digital Cellular) 9.6kbps 28.8kbps [1.1] 2 D-AMPS (Digital Advanced Mobile Phone System) 13kbps PDC D-AMPS 4

12 1 GSM (Global System for Mobile Communications) [1.2] GSM PDC GPRS (General Packet Radio Service) 115kbps GSM/GPRS GPRS IS-95 (cdmaone) [1.3] W-CDMA (Wideband Code Division Multiple Access) [1.4] [1.5] 3 (3G) 384kbps ITU (International Telecommunication Union) IMT-2000 (Inter Mobile Telecommunications ) 2Mbps 2G 2.5G 3G 3GPP (3rd GenerationPartnership Project) [1.6] 3.5G 3.9G W-CDMA TD-CDMA (Time Division - CDMA) UMTS (Universal Mobile Telecommunications System) 3G 3.5G Mbps HSDPA (High Speed Downlink Packet Access) [1.7] GPP-LTE (3rd Generation Partnership Project - Long Term Evolution) 3.9G [1.8] 100Mbps CDMA LAN 2Mbps b LAN 54Mbps a/g[1.9] DSL LAN 300Mbps n ( ) n 600Mbps [1.10] LAN IEEE WG (Working Group) 3GPP IMT-Advanced IEEE VHT (Very High Throughput) 1Gbps 1Gbps 1.1 LAN DS-SS (Direct Sequence - Spread Spectrum) OFDM (Orthogonal Frequency Division and Multiplexing) 5

13 1 DS-SS TDMA (Time Division Multiple Access) ASIC (FFT) OFDM OFDM 1 OFDM PAPR (Peak to Average Power Ratio) 3GPP-LTE OFDM 1.1: カテゴリ 2G 2.5G PDC GSM GPRS 名称 伝送速度 9.6kbps 28.8kbps 9.6kbps 171kbps 帯域幅 変調方式 ( 下り ) 50kHz DQPSK TDMA 200kHz GMSK TDMA アクセス方式 要素技術 IS-95(cdmaOne) 144kbps 1.25MHz QPSK DS-CDMA スペクトル拡散 3G CDMA Mbps 1.25MHz QPSK/16QAM DS-CDMA スペクトル拡散 UMTS (W-CDMA,TD-CDMA) 384kbps 5MHz QPSK DS-CDMA スペクトル拡散 3.5G HSDPA 14.4Mbps 5MHz QPSK/16QAM DS-CDMA スペクトル拡散 3.9G 3GPP-LTE 100Mbps (2010 年を予定 ) 20MHz QPSK/16QAM/64QAM OFDMA( 下り ) SC-FDMA( 上り ) OFDM MIMO IEEE802.11b 11Mbps 11MHz CCK CSMA スペクトル拡散 無線 LAN IEEE802.11a/g 54Mbps 20MHz BPSK/QPSK/16QAM/64QAM CSMA OFDM IEEE802.11n 300Mbps 20MHz BPSK/QPSK/16QAM/64QAM CSMA OFDM MIMO DS-SS OFDM MIMO (Multiple-Input Multiple-Output) 3GPP- LTE IEEE802.11n WiMAX MIMO MIMO MIMO IEEE802.16m IMT-Advanced 6

14 力電信送力電信送 時間周波数 力電信受力電信受 時間 周波数 1.2: 1.2 ( ) [1.11]

15 1 MCS (Modulation and Coding Scheme) (Adaptive Modulation and Coding:AMC) 1.3 SNR 16QAM, 符号化率 3/4 16QAM, 符号化率 1/2 QPSK, 符号化率 1/2 64QAM, 符号化率 2/3 時間 1.3: MCS MCS n MCS AMC SNR SNR MCS 1.4 8

16 1 スループット MCS3 MCS2 MCS1 MCS1 と 2 の切替え閾値 MCS2 と 3 の切替え閾値 SNR 1.4: SNR MCS SNR MCS 1.4 3GPP-LTE Capability 300Mbps MCS CQI (Channel Quality Information) OFDMA MCS

17 1 パラメータ 制御単位 切り替え基準 通信方式の選定 サブキャリア配置 全リソース共通 電力基準 ( 受信電力 SNR SIR) 最適方式を計算 サブキャリア数変調方式 リソース毎に個別 チャネル基準 ( チャネル容量 チャネル相関 ) 閾値による切り替え Ack 等による切り替え 符号化率 誤り基準 (CRC Ack) 送信電力 尤度情報 符号多重数 空間多重数 復号パス 1.5: AMC 1.5 MCS IEEE802.11a 8 MCS MCS 1.2: IEEE802.11a MCS No MCS 1 6Mbps BPSK, 1/2 2 9Mbps BPSK, 3/4 3 12Mbps QPSK, 1/2 4 18Mbps QPSK, 3/4 5 24Mbps 16QAM, 1/2 6 36Mbps 16QAM, 3/4 7 48Mbps 64QAM, 2/3 8 54Mbps 64QAM, 3/4 MCS 10

18 1 3GPP-LTE MCS [1.12] OFDM OFDM 3GPP-LTE OFDMA ( ) MCS n MIMO ( SNR SIR) ( ) (CRC Ack) SNR (Signal to Noise Ratio) SIR (Signal to Interference Ratio) [1.13] SNR SIR MIMO SNR 11

19 1 AMC MCS Ack Ack MCS 1 SNR MCS MCS 2 MCS CRC MCS SNR SNR SNR SNR SNR CRC (Cyclic Redundancy Check) CRC OK: SNR δ down db CRC NG: SNR δ up db δ down δ up (PER) δ down = 0.99dB δ up = 0.01dB PER CRC OK 1 CRC NG 12

20 1 PER SNR CRC OK CRC OK CRC Error CRC Error CRC OK MCS1 と MCS2 の切り替え閾値 MCS2 MCS1 時間 1.6: γ δ down γ δ up γ PER γ MCS DS-CDMA DS-CDMA IS-95 3G W- CDMA DS-CDMA 1.7 DS-CDMA 13

21 1 基地局 端末 ( ユーザ #1) ユーザ #1 ユーザ #2 ユーザ #K 変調 変調 変調 拡散 拡散 拡散 RF RF D D 2 逆拡散逆拡散逆拡散 位相補正位相補正位相補正 復調 D F-1 逆拡散 位相補正 RAKE 受信 (a) 端末 基地局 ユーザ #1 ユーザ #2 変調変調 拡散 拡散 RF RF RF D D F-1 逆拡散 逆拡散 逆拡散 位相補正位相補正 位相補正 ユーザ #1 復調 ユーザ #K 変調 拡散 RF ユーザ #K (b) 1.7: CDMA RAKE RAKE RAKE RAKE RAKE [1.14] Walsh [1.16] W-CDMA OVSF (Orthogonal Variable Spreading Factor) [1.15] Walsh 14

22 1 Gold [1.16] DS-CDMA [1.17][1.18] W-CDMA 2000 [1.19][1.20] 2 CAZAC (Constant Amplitude Zero Anto-Correlation) [1.21] CAZAC 3GPP-LTE CDMA IS-95 64kbps W-CDMA 384kbps QPSK W-CDMA OVSF [1.22] [1.23][1.24] [1.25] 2000 HSDPA 16QAM AMC HSPA DS-CDMA OFDMA OFDM PAPR (Peak to Average Power Ratio) CDMA 4G MC-CDMA OFCDM CDMA OFDM OFDM OFDM S/P P/S GI 15

23 1 IFFT GI 変調 S/P & RF RF P/S 付加 GI 除去 S/P FFT & P/S 等化 腹調 1.8: OFDM OFDM (FFT) (IFFT) CDMA OFDM 1960 ASIC OFDM CDMA RAKE OFDM DS-CDMA (Inter-carrier Interference:ICI) OFDM IQ ICI [1.26][1.27] OFDM PAPR PAPR 1990 [1.28]-[1.30] WiMAX 3GPP-LTE [1.31] OFDM LAN IEEE802.11a AMC 1 MCS OFDM MCS AMC [1.32] MCS [1.33] OFDM IFFT WiMAX 3GPP-LTE OFDMA 16

24 1 (Orthogonal Frequency Division Multiple Access) [1.34][1.35] MC-CDMA MC-CDMA (Multicarrier - CDMA) CDMA OFDM [1.36] CDMA MC-CDMA OFDM MC-CDMA 1.9 変調 IFFT GI 拡散 S/P & RF RF P/S 付加 GI 除去 S/P FFT & P/S 等化 逆拡散 腹調 符号 K-1 C K-1 (0) C K-1 (1) C K-1 (2) C K-1 (N-2) C K-1 (N-1) 符号 1 C 1 (0) C 1 (1) C 1 (2) C 1 (N) C 1 (N-1) 符号 0 C 0 (0) C 0 (1) C 0 (2) C 0 (N) C 0 (N-1) 周波数 1.9: MC-CDMA OFDM MC- CDMA CDMA 1990 MC-CDMA OFDMA [1.37] MC-CDMA [1.38] AMC NTT 4G VSF-OFCDM (Variable Spreading Factor - Orthogonal Code Division and Multiplexing) [1.39][1.40] MC-CDMA OFDMA 1( OFDMA) VSF-OFCDM SF time SF freq SF time SF freq 17

25 1 MC-CDMA SF freq SF time 768 carriers SF_freq frequency SF_time 拡散単位 768 time 1.10: VSF-OFCDM WSSUS (Wide Sense Stationary Uncorrelated Scattering)

26 1 Transmitter Receiver Propagation Delay Transmission Blocks Transmission Gap Multipath Tail time time Received Signal h(0) h(1) Transmission Block ( 1 block) x 0 x 1 x 3 x 4 x 0 x 1 x 3 x 4 x Nx-2 x Nx-1 x Nx-2 x Nx-1 Multipath Tail h(l-1) x 0 x 1 x 3 x 4 x Nx-2 x Nx-1 N y =N x +L : WSSUS h(l) L Transmission Gap h t (n) L 1 h t (n) = h(l) (1.1) N x x N y = N x +L 1 y y = Hx + n (1.2) l=0 n y H h(0) h(1) h(0) h(1) h(0) h(l 1). h(1).. 0 H =. 0 h(l 1)... h(0) 0 0 h(l 1)... h(1) h(l 1) (1.3) 19

27 (Vector Coding) MIMO H = UDV H (1.4) U V V U H D D N y N x D min(n x, N y ) H N x Vector Coding( VC) VC OFDM [1.41] 1.12 VC OFDM 1.3 [1.41] 1dB OFDM VC OFDM [1.42] R E B VC - flat VC - 2paths VC - 4paths VC - 8paths OFDM - flat OFDM - 2paths OFDM - 4paths OFDM - 8paths SNR [db] 1.12: Vector Coding OFDM 20

28 1 1.3: QPSK (OFDM ) dB 5Hz VC 1.2 VC 1988 [1.41] E-SDM (Eigenmode - Spatial Division Multiplexing) (OFDM) OFDM GI OFDM Cyclic Prefix GI N y N y ( GI N y = N x ) h(0) 0... h(l 1)... h(1) h(1) h(0) 0... h(l 1)... h(2) h(1) h(0) H o = h(l 1) h(l 2)... h(0) h(l 1) h(l 2)... h(0) h(l 1)... h(1) h(0) (1.5) 1.5 H o F H o K K D o D 1 2 o = F H o F H H H o H o = F H D o F (1.6) 21

29 1 1.2 OFDM F Ho H y o = D o s + F Ho H z o (1.7) OFDM VC V U VC OFDM OFDM OFDM VC VC OFDM Cyclic Prefix OFDM [1.43] (E-SDM) MIMO [1.44] MIMO Bell Laboratory [1.45] MIMO 1.13 MIMO WSSUS MIMO OFDM OFDM OFDM MIMO 3.9G 22

30 1 送信端末 h 00 受信端末 x 0 送信 RF h 10 h 01 受信 RF y 0 x 1 x 送信 RF h 11 H 受信 RF y 1 y 1.13: MIMO 1.13 MIMO y m = H m x m + n m (1.8) N t N r x m = [x 0, x 1,..., x Nt 1] y m = [y 0, y 1,..., y Nr 1] n m = [n 0, n 1,..., n Nr 1] n m (AWGN) OFDM N r N t ( N r N t ) H m h 0,0 h 0,1... h 0,Nt 1 h 1,0 h 1,1... h 1,Nt 1 H m = h Nr 1,0 h Nr 1,1... h Nr 1,N t 1 (1.9) ZF (Zero Forcing) MMSE (Minimum Mean Square Error) y m x m W m,zf = (H H m H m ) 1 H H m (1.10) W m,mmse = (H H m H m + σ 2 I) 1 H H m (1.11) σ 2 = E[ n 1 2 ] = E[ n 2 2 ] =... = E[ n Nr 2 ] MIMO (MLD:Maximum Likelihood Decision) [1.47] MLD [1.48] 23

31 1 MLD E-SDM (Eigenmode - Spatial Division Multiplexing) [1.49] E-SDM H m V m V m VC H m [1.50] H m = U m D m Vm H (1.12) U m N r N r V m N t N t D m N r N t V m U m y m = H m V m x m + n m U m y m = D m x m + U m n m (1.13) D m U m H m U m W m,zf W m,mmse U m ZF MMSE [1.51] IEEE802.11n MU-MIMO (Multi-user MIMO) [1.55] IMT- Advanced IEEE802.16m (OFDM ) OFDM MIMO OFDM n MCS OFDM MIMO [1.56][1.57] [1.58] CDMA [1.59] 24

32 1 2 章 3 章 4 章 5 章 目的 既存技術の課題 提案方式 効果目的 既存技術の課題 提案方式 効果 目的 既存技術の課題 提案方式 効果 目的 既存技術の課題 提案方式 効果 1.4: 干渉キャンセラにおいて ビタビ復号器の演算量を削減する レプリカ信号生成時 および干渉キャンセル後で 2 度のビタビ復号を必要とし レイテンシに問題が生じる レプリカ信号生成時のビタビ復号情報を用いて干渉キャンセル後のビタビ復号器の復号パスを適応的に制御する 伝搬路にも依存するが 60% 程度の演算量削減を達成 MC-CDMAのサブキャリア割り当てを適応的に行うことで スループットを改善する MC-CDMA では 逆拡散の際に直交性を補償する必要があり 等化方式が OFDM に比べて複雑であった また 従来では OFDM におけるサブキャリア割り当ての研究はあるが MC-CDMA ではなされていない 伝搬路状況に応じて 受信電力の高い順にサブキャリアを割り当てる 伝搬路に応じてサブキャリアを適応的に割り当てることで 簡易な等化方式でも DS-CDMA に比べてスループットを向上させることが可能となった 適応変調 符号化において 伝搬路の事前情報を用いずに MCS を制御する MCS を切り替えるための SIR 閾値を制御する際に 伝搬路の統計的な性質を知っておく必要があり 非現実的であった 上位の MCS に切り替える閾値 および下位の MCS に切り替える閾値について独立なターゲット誤り率を設定し CRC 結果においてのみ閾値を制御する 異なる伝搬環境においても 事前情報なしに最適に近いスループット特性を達成できた Vector Coding に AMC およびコードチャネル数制御を導入し スループットを改善する 時間領域にける行列について ZF や MMSE を行う研究は存在するが 通信路容量が最大にならない これを最大にするのは Vector Coding だが Vector Coding では利得の小さい符号チャネルが性能を劣化させる AMC とコードチャネル数制御を 同じ制御で実現する 手法は 4 章で用いたような CRC を用いた制御で 伝搬路の事前情報を必要としない MMSE と比較することで Vector Coding の位置づけを確認できた また AMC のみを用いた場合に比べて コードチャネル数制御によりスループットの向上が確認できた OFDM

33 1 適応制御によるによる演算量削減 適応制御によるによるスループットスループット向上 同期 アナログ歪み補正 伝搬路推定 追従 等化 尤度計算 誤り訂正復号 2 章 適応変調 符号化 (AMC) リソース共通 変調方式 符号化率独立制御 MCS 制御 リソース独立 ( ビット ローディング ) 4 章 変調方式 符号化率独立制御 MCS 制御 適応リソース割り当て 時間領域スケジューリング 周波数領域スケジューリング 空間領域スケジューリング 3 章 適応電力制御 リソース共通 ( パワー コントロール ) リソース独立 ( パワー ローディング ) 5 章 適応帯域幅制御 サブキャリア数制御 (OFDM ベース ) 拡散率制御 (CDMA ベース ) 適応多重数制御 空間ストリーム数制御 (MIMO ベース ) 符号チャネル数制御 (CDMA VC) 1.14: MCS [1.60] MCS

34 1 文献 文献 [1.61] パラレル型干渉キャンセラによる干渉低減 文献 文献 [1.62] キャンセラシステムにおいて レプリカ作成時に誤り訂正を適用 2 度のビタビ復号による演算量 ( レイテンシ ) が問題 2 章 DS-CDMA の干渉キャンセラに適応制御を導入し 誤り訂正復号器の演算量を削減 文献 文献 [1.65] ビタビ復号器の演算量削減 文献 文献 [1.67] OFDM におけるキャリアホール伝送 ( 他システムへの干渉回避 ) 文献 文献 [1.68] OFDM におけるサブキャリアごとのスケジューリング ( 性能向上 ) 文献 文献 [1.36] MC-CDMA が次世代の通信方式として期待 MC-CDMA におけるサブキャリアごとのスケジューリングは未検討 文献 文献 [1.66] MC-CDMA と DS-CDMA を比較 MC-CDMA は MLD で受信 3 章 MC-CDMA に適応制御を導入し 受信電力の低いサブキャリアを使わないように制御 簡易な受信方式で DS-CDMA と比較 比較 文献 文献 [1.69] マルチコード DS-CDMA 文献 文献 [1.70] 適応変調には SIR 閾値による切換えが有効 文献 文献 [1.25] CRC 結果による送信電力制御 文献 文献 [1.39][1.40] VSF-OFCDM の提案 文献 文献 [1.71] VSF-OFCDM における適応変調 SIR 閾値は固定 文献 文献 [1.73] HSDPA における適応変調 CRC 結果に応じて閾値を制御 伝搬路に応じた閾値設定が事前に必要 閾値は適応的に変動するが 上限閾値と下限閾値のオフセットを決めるのに伝搬路情報が必要 4 章 VSF-OFCDM に適応変調を導入 CRC 結果をもとに閾値を制御するが 伝搬路の事前情報を必要としない制御方法を提案 文献 文献 [1.52] Vector Coding の提案 文献 文献 [1.50] 空間領域の伝搬路行列に対して固有モード伝送を適用 (E-SDM) 文献 文献 [1.74] 時間領域の伝搬路行列に対して ZF や MMSE を適用 文献 文献 [1.41][1.42] Vector Coding の再評価 WSSUS 伝搬路におけるチャネル容量の最大化 比較 微弱な符号チャネルによる性能劣化 5 章 Vector Coding に適応変調を導入し 変調方式 符号化率のみならず固有チャネルの数を CRC 結果に応じて制御 MMSE と比較し Vector Coding の位置づけを明確化 1.15: 27

35 CDMA QPSK 16QAM MCS CDMA IS-95 HSPA [1.61] [1.62] PHS [1.63]-[1.65] 2 [1.65] ASIC 3GPP-LTE 3 MC-CDMA CDMA MC-CDMA [1.66] MC-CDMA DS-CDMA DS-CDMA MC-CDMA MLD 2 MC-CDMA MC-CDMA DS-CDMA [1.67] [1.68] OFDM MC-CDMA MC-CDMA OFDM DS-CDMA [1.69] 28

36 1 4 MC-CDMA VSF-OFCDM VSF-OFCDM MC-CDMA VSF-OFCDM 4G 100Mbps AMC AMC [1.71][1.72] VSF-OFCDM MCS SIR [1.70] CRC SIR [1.73] [1.73] MCS MCS ( ) MCS ( ) CRC 4 VSF-OFCDM 4G 5 Vector Coding (VC) MIMO VC VC CDMA OFDM VC ZF MMSE [1.74] VC 5 VC VC AMC ( ) VC 29

37 1 MIMO VC ( ) CRC MCS MCS AMC E-SDM OFDM [1.1],,, 2002 [1.2] GSM,, 2008 [1.3] Jerry D. Gibson, The Mobile Communications Handbook, CRC PRESS, 1996 [1.4] H. Holma, A. Toskala, WCDMA for UMTS, Wiley, [1.5] W-CDMA,, 2001 [1.6] 3GPP TS25.211, Physical channels and mapping of transport channels onto physical channels (FDD), [1.7] 3GPP TR25.848, Physical Layer Aspects of UTRA High Speed Downlink Packet Access, [1.8] 3GPP TS36.211, Evolved Universal errestrial Radio Access (E-UTRA) Physical Channels and Modulation, [1.9] IEEE Std T M -2007, [1.10] E.Perahia, and R.Stacey, Next Generation Wireless LANs, Cambridge University Press, 2008 [1.11],,,, [1.12] 3GPP TS36.213, Evolved Universal errestrial Radio Access (E-UTRA) Physical layer procedures, [1.13] K. Tsukakoshi, T. Kobashi, and Y. Kamio, Performance of DS-CDMA Adaptive Modulation System in a Multipath-Channel Environment, IEICE Trans. Commun., Vol.E86-B, No.2, February [1.14] J. Mitsugi, M. Mukai, and H. Tsurumi, Path-search algorithm introducing pathmanagement tables for a DS-CDMA mobile terminal, PIMRC 2002, Vol.2, pp , Sept

38 1 [1.15] Y. C. Tseng, C. M Chao, and S. L. Wu, Code placement and replacement strategies for wideband CDMA OVSF code tree management, GLOBECOM 2001, Vol.1, pp , Nov [1.16],,, [1.17] P. Patel and J. Holtzman, Analysis of Simple Successive Interference Cancellation Shame in a DS/CDMA System, IEEE J Select. Areas Commun., Vol.12, No.5, pp , June [1.18] M. Sawahashi, Y. Miki, H. Andoh, and K. Higuchi, Pilot Symbol-Assisted Coherent Multistage Interference Canceller Using Recursive Channel Estimation for DS- CDMA Mobile Radio, IEICE Trans., Commun., Vol.E79-B, No.9, pp , Septermber [1.19] K. Higuchi, K. Okawa, M. Sawahashi, and F. Adachi, Field Experiments on Pilot Symbol-Assisted Coherent Multistage Interference Canceller in DS-CDMA Reverse Link, IEICE Trans., Commun., Vol.E86-B, No.1, pp , January [1.20] N. Miki, S. Abeta, H. Atarashi, and M. Sawahashi, Multipath Interference Canceller Employing Multipath Interference Replica Generation with Previously Transmitted Packet Combining for Incremental Redundancy in HSDPA, IEICE Trans., Commun., Vol.E86-B, No.1, pp , January [1.21] Y. Wen, W. Huang, and Z. Zhang, CAZAC sequence and its application in LTE random access, Proc. of 2006 IEEE Information Theory Workshop (ITW 06), pp , October [1.22] F. Adachi, K. Ohno, A. Higashi, T. Dohi, and Y. Okumura, Coherent Multicode DS-CDMA Mobile Radio Access, IEICE Trans. Commun., vol. E79-B, no. 9, pp , Sept [1.23] S. Ariyavisitakul, Signal and interference statistics of a CDMA system with feedback power control - part II, IEEE Trans. Commun., Vol.42, pp , Feb./March/April [1.24] T. Dohi, M. Sawahashi, and F. Adachi, Performance of SIR based power control in the presence of non-uniform traffic distribution, Proc. of ICUPC 95, pp , Tokyo, Japan, Nov [1.25] K. Higuchi, H. Andoh, K. Okawa, M. Sawahashi, and F. Adachi, Experiments on adaptive transmit power control using outer loop for W-CDMA mobile radio, IEICE Technical Report, RCS98-18, pp.51-57, April [1.26] J. Tubbax, B. Come et. al, Compensation of IQ imbalance and phase noise in OFDM systems, IEEE Trans. on Wireless Commun. Vol.4, Issue 3, pp , May [1.27] Z. Qiyue, A. Tarighat, and A. Sayed, Joint compensation of IQ imbalance and phase noise in OFDM wireless systems, IEEE Trans. on Commun. Vol.57, Issue 2, pp , February

39 1 [1.28] S. Y. L. Goff, B. K. Khoo, C. C. Tsimenidis, and B.S. Sharif, A novel selected mapping technique for PAPR reduction in OFDM systems, IEEE Trans. on Commun., Vol.56, Issue 11, pp , November [1.29] Y. Guosen and W. Xiaodong, A hybrid PAPR reduction scheme for coded OFDM, IEEE Trans. on Wireless Commun., Vol.5, Issue 10, pp , Oct [1.30] H. Chen and H. Liang, Combined Selective Mapping and Binary Cyclic Codes for PAPR Reduction in OFDM Systems IEEE Trans. on Wireless Commun., Vol.6, Issue 10, pp , October [1.31] Y. Baoguo, K. B. Letaief, R. S. Cheng, and G. Zhigang, Channel estimation for OFDM transmission in multipath fadingchannels based on parametric channel modeling, IEEE Trans. on Commun., Vol.49, Issue 3, pp , March [1.32] K. Liu, F. Yin, W. Wang, and Y. Liu, An Efficient Greedy Loading Algorithm for Adaptive Modulation in OFDM Systems, IEEE PIMRC 2005, pp , Sept [1.33] Y. Li and G. Su, An Adaptive Modulation and Power-allocation Algorithm in OFDM System, IEEE ICCCAS 2004, pp , June [1.34] H. Jianwei, V. G. Subramanian, R. Agrawal, and R. A. Berry, Downlink scheduling and resource allocation for OFDM systems, IEEE Trans. on Wireless Commun. Vol.8, Issue 1, pp , Jan [1.35] Z. Chan, and G. Wunder, A Novel Low Delay Scheduling Algorithm for OFDM Broadcast Channel, IEEE GLOBECOM 2007, pp , Nov [1.36] N. Yee, J. P. Linnartz, and C. Fettweis, Multi-Carrier CDMA in indoor wireless radio network, IEICE Trans. Commun., vol. E77-B(7), pp , July [1.37] H. Rohling and R. Grunheid, Performance Comparison of Different Multiple Access Schemes for the Downlink of an OFDM Communication System, IEEE VTC 1997, Vol.3, pp , May [1.38] Adaptive modulation based MC-CDMA systems for 4G wireless consumer applications Chatterjee, S.; Fernando, W.A.C.; Wasantha, M.K.; Consumer Electronics, IEEE Transactions on Volume 49, Issue 4, Nov Page(s): [1.39] H. Atarashi, S. Abeta, and M. Sawahashi, Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) for Broadband Wireless Packet Access, IEICE Trans. Commun., Vol.E86-B, No.1, January 2003 [1.40] Y. Kishiyama, N. Maeda, K. Higuchi, H. Atarashi, M. Sawahashi, Field Experiments on Throughput Performance above 100 Mbps in Forward Link for VSF- OFCDM Broadband Wireless Access, IEICE Trans. Commun., Vol.E88-B, No.2, pp , Feb [1.41],, IEICE ( ), RCS , pp

40 1 [1.42],, Vector Coding OFDM, IEICE ( ), RCS , pp [1.43] Z. Wang, and G.B. Giannakis, Wireless multicarrier communications, IEEE Signal Processing Mag., vol.47, pp , Dec [1.44] D. Gesbert, M. Shafi, D. S. Shju, P. Smith, and A. Naguib, From theory to practice: An overview of MIMO space-time coded wireless systems, IEEE J. Select. Areas Commun., vol.21, No.2, pp , April [1.45] G. J. Foschini and M. J. Gans, Layered space-time architecture for wireless communication in a fading environment when using multielement antennas, Bell Labs Technical Journal, vol.1, pp.41-59, [1.46], MIMO, B, Vol.J86-B, No.9, pp , Sep [1.47] A. van Zelst, R. van Nee, and G. A. Awater, Space division multiplexing (SDM) for OFDM systems, Proc. IEEE Vehicular Technology Conference 2000-spring, pp , May [1.48] K. Higuchi, H. Kawai, N. Maeda, and M. Sawahashi, Adaptive selection of surviving symbol replica candidates based on maximum reliability in QRM-MLD for OFCDM MIMO multiplexing, Proc. IEEE Globecom2004, vol.4, pp , Nov [1.49] H. Sampath, P. Stoica, and A. Paulraj, Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion, IEEE Trans. Commun., vol.49, No.12, pp , Dec [1.50] G. H. Golub, and C. F. V. Loan, Matrix Computations. 3rd ed., Johns Hopkins University Press, Baltimore, [1.51],,, MIMO, B, Vol.J87-B, No.9, pp , Sep [1.52] J. T. Aslanis, S. Kasturia, G. P. Dudevoir, and J. M. Cioffi, Vector Coding for Partial Response Channels, MILCOM 88, Vol.2, pp , October 1988 [1.53] H. Z. Jafarian and S. Pasupathy, Complexity Reduction of the MLSD/MLSDE Receiver Using the Adaptive State Allocation Algorithm, IEEE Trans. on Wireless Commun., Vol.1, No.1, pp , Jan [1.54] C. Teekapakvisit, Yonghui Li, V.D. Pham, and B. Vucetic, Low Complexity Adaptive Iterative Receiver for Layered Space-time Coding CDMA Systems, Proc. of PIMRC 2005, pp [1.55] S. Zukang, C. Runhua, J. G. Andrews, R. W. Heath, and B. L. Evans, Sum Capacity of Multiuser MIMO Broadcast Channels with Block Diagonalization, IEEE Trans. on Wireless Commun., Vol.6, Issue 6, pp , June [1.56] A. N. Barreto, and S. Furrer, Adaptive bit loading for wireless OFDM systems, IEEE PIMRC 2001, Vol.2, pp.g88-g92, Sept

41 1 [1.57] S. Bergman,D. P. Palomar, and B. Ottersten, Optimal Bit Loading for MIMO Systems with Decision Feedback Detection, IEEE VTC 2009, pp.1-5, April [1.58] D. J. Love, and R. W. Heath Jr., OFDM power loading using limited feedback, IEEE Trans. on Vehicular Technology, Vol.54, Issue 5, pp , Sept [1.59] M. A. Khalighi, J. M. Brossier, G. V. Jourdain, and K. Raoof, Water filling capacity of Rayleigh MIMO channels, IEEE PIMRC 2001, Vol.1, pp.a155-a158, Sept [1.60] N. Miki, Y. Kishiyama, K. Higuchi, and M. Sawahashi, Optimum Adaptive Modulation and Channel Coding Scheme for Frequency Domain Channel-Dependent Scheduling in OFDM Based Evolved UTRA Downlink, IEEE WCNC 2007, pp , March [1.61] R. Kohno, H. Imai, M. Hatori, and S.Pasupathy, An Adaptive Canceller of Cochannel Interference for Spread Spectrum Multiple-Access Communication Networks in a Power Line, IEEE J Select. Areas Commun., Vol.8, No.4, pp , May [1.62] Y. Sanada and Q. Wang, A Co-Channel Interference Cancellation Technique using Orthogonal Convolutional Codes, IEEE Trans. on Commun., Vol.44, No.5, pp , May [1.63] K. Kwazoe, S. Honda, S. Kubota, and S. Kato, Universal-coding-rate Scarce State Transition Viterbi Decoder, IEEE ICC 1992, Vol.3, pp , June [1.64] S. Ping, Y. Yan, and C. Feng, An Effective Simplifying Shame for Viterbi Decoder, IEEE Trans. Commun. Vol.39, No.1, pp.1-3, Jan [1.65] T. Yamazato, I. Sasase, and S. Mori, A New Vitabi Algorithm with Adaptive Path Reduction Method, IEICE Trans. on Fun., Vol.E76-A, No.9, pp , Sep [1.66] S. Kaiser, OFDM-CDMA versus DS-CDMA: Performance Evaluation for Fading Channels, IEEE ICC 1995, Vol.3, pp , June [1.67],,,, OFDM,, [1.68] M. Wahlqvist, H. Olofsson, M. Ericson, C. Ostberg, and R. Larsson, Capacity comparison of an OFDM based multiple access system using different dynamic resource allocation, IEEE VTC 1997 Spring, Vol.3, pp , May [1.69] F. Adachi, K. Ohno, A. Higashi, T. Dohi, and Y. Okumura, Coherent Multicode DS-CDMA Mobile Radio Access, IEICE Trans. Commun., vol. E79-B, No. 9, pp , Sept [1.70] S. Falahati, A. Svensson, T. Ekman, and M. Sternad, Adaptive Modulation Systems for Predicted Wireless Channels, IEEE Trans. on Communications, Vol.52, No.2, pp , February 2004 [1.71] A. Harada, S. Abeta, and M. Sawahashi, Adaptive Radio Parameter Control Considering QoS for Forward Link OFCDM Wireless Access, IEEE VTC 2002 Spring, Vol.3, pp , May

42 1 [1.72] VSF-OFCDM, IEICE ( ), RCS , pp [1.73] J. Lee, R. Arnott, K. Hamabe, and N. Takano, ADAPTIVE MODULATION SWITCHING LEVEL CONTROL IN HIGH SPEED DOWNLINK PACKET AC- CESS TRANSMISSION, 3G Mobile Communication Technology Conference, May [1.74] Y. Takahashi, Y. Iwanami, and E. Okamoto, A time-domain block equalization scheme on SIMO frequency selective channels, IEEE Regicon 10 Conference

43 2 DS-CDMA CDMA ( ) % 2.1 CDMA (Co-Channel Interference:CCI) CCI (Multiuser Detection) [2.1] [2.2][2.3] CCI [2.4][2.5] [2.6] 36

44 2 DS-CDMA LAN [2.7][2.8] [2.7] DSP 1990 SST (Scarce State Transition) [2.9] [2.11] M- [2.12] [2.13] ACS (Add Compare Select) [2.7] 2 1 ACS CCI IS-95 Walsh ( ) Walsh PN 2.2 CCI 2.2 Wlash Walsh 37

45 2 DS-CDMA 2.1: De-spread & Correlation De-interleaving & Viterbi Decoding Received Signal Memory USER 1 De-spread & Correlation De-interleaving & Viterbi Decoding Encoding & Interleaving Re-spread USER 2 De-spread & Correlation De-interleaving & Viterbi Decoding Encoding & Interleaving Re-spread USER K De-spread De-interleaving Encoding & Correlation & Viterbi Decoding & Interleaving Re-spread 2.2: CCI 38

46 2 DS-CDMA M (Walsh ) 1/m (M = 2 m ) PN GP = T S /T C T S T C y(t) = K Pi W r (t τ i )C i (t τ i ) + n(t) (2.1) i=1 W r (t) r r = 1,..., M C i (t) i GP PN P i i τ i i (0 τ i T S ) n(t) N 0 /2[W/Hz] AWGN AWGN M k u 1 Z k (u) = T S 0 P = + T S TS TS 0 K P i=1 i k 1 + T S T S y(t)c k (t τ k )W u (t τ k )dt W r (t τ k )W u (t τ k )dt TS 0 C i (t τ i )C k (t τ k ) W r (t τ i )W u (t τ k )dt TS 0 n(t)c k (t τ k )W u (t τ k )dt = TS P T S W r (t τ k )W u (t τ k )dt K Ik u = P i=1 i k T S 0 + I u k + N u k (2.2) TS 0 C i (t τ i )C k (t τ k ) W r (t τ i )W u (t τ k )dt (2.3) 1 TS Nk u = n(t)c k (t τ k )W u (t τ k )dt (2.4) T S 0 39

47 2 DS-CDMA [2.8] V ar{i u k } = K i=1 i k γ ik E S 3GP 3 (2.5) E S = P T S γ ik k i PN γ ik 3GP 2 [2.14] V ar{n u k } = N 0 2 (2.6) Walsh u u = r { ES + Ik u Z k (u) = + N k u u = r Ik u + N k u u r (2.7) Z k (u) d [2.7] P d n1 = Q ( ) d SNRn1 2 (2.8) SNR n1 SNR n SNR n1 = 1 K 1 GP + N 0 2E s (2.9) K Q(t) Q Q(t) = 1 2π P e n t d free +3 exp( x2 )dx (2.10) 2 d=d free d A d P d n1 (2.11) A d d SNR SNR n2 SNR n2 = 1 2P e n K 1 GP + N 0 2E s (2.12) 40

48 2 DS-CDMA 2.12 P e n d free +3 d=d free B d P d n2 (2.13) B d d is the total number of nonzero information bits on all d free P d n2 SNR n2 P d n2 = Q ( ) d SNRn2 2 (2.14) Walsh 1 ( ) AWGN (T h1) P (Z k (u) > T h1 u r) 0 Z k (u) T h t 5 t T h1 2 2 t t ACS 41

49 2 DS-CDMA 2.3: ( ) 2.4: 1 2.5: 2.6: (T h2) P (Z k (u) < T h2 u = r) 0 Z k (u) < T h2 2.6 t 4 t 5 01 Walsh T h2 42

50 2 DS-CDMA ACS ACS 2.7 ACS 2 2 ACS (ACS ) = 1 (ACS ) (ACS ) (2.15) ACS ACS ACS (ACS ) = ( ) ( ) (2.16) 2.7: 2.1: Constraint Length 4 Coding Rate 1/3 Spread Sequence long PN sequence Processing Gain Packet Length 192 bit Bit Rate 64 kbps Noise AWGN 43

51 2 DS-CDMA AWGN 2.1 IS-95 AWGN AWGN (BER) T h1 T h2 1 T h1 2 T h2 2.9 ACS BER ACS T h1 T h ACS E s /N 0 T h1 T h % 27 20% ACS E s /N 0 T h1 T h2 E s /N 0 E s /N 0 ACS E s /N 0 ACS 2.11 BER E s /N 0 (ACS ) 3 0.3dB 2.10 ACS 44

52 2 DS-CDMA 2.8: BER (E s /N 0 = 5dB) 2.9: ACS (E s /N 0 = 5dB) 2.10: ACS E s /N : BER E s /N 0 (7 users) Hz 2.12 No Fading AWGN

53 2 DS-CDMA 10dB 10dB AWGN BER ACS 3 T h1 T h ACS E s /N BER E s /N AWGN ( 2.10) E s /N 0 ACS ACS 0.5-1dB 3 ACS 60% E s /N 0 80% ACS AWGN : BER E s /N 0 (7 users) 46

54 2 DS-CDMA 2.13: BER (E s /N 0 = 5dB) 2.14: ACS (E s /N 0 = 5dB) 2.15: ACS E s /N : BER E s /N 0 (7 users)

55 2 DS-CDMA E s /N dB 80% ASIC LAN WiMAX (64 ) [2.15] LDPC[2.16] [2.17] 2.6 [2.1] S. Verdu, Minimum Probabirity of Error for Asynchronous Gaussian Multiple- Access Channels, IEEE Trans. Inform. Theory, Vol.IT-32, No.1, pp.85-96, January [2.2] A. Kajiwara and M. Nakagawa, Crosscorrelation Cancellation in SS/DS Block Demodulator, IEICE Transact., Vol.E74, No.9, pp , September [2.3] A. Duel-Hallen, Decorrelating Decision-Feedback Multiuser Dtector for Synchronous Code-Dvision Multiple-Access Channel, IEEE Trans. on Commun., Vol.41, No.2, pp , February [2.4] R. Kohno, H. Imai, M. Hatori, and S. Pasupathy, An Adaptive Canceller of Cochannel Interference for Spread Spectrum Multiple-Access Communication Networks in a Power Line, IEEE J Select. Areas Commun., Vol.8, No.4, pp , May [2.5] P. Patel and J. Holtzman, Analysis of Simple Successive Interference Cancellation Shame in a DS/CDMA System, IEEE J Select. Areas Commun., Vol.12, No.5, pp , June [2.6] S. LIN and D. J. COSTELLO, Error Control Coding:Fundamentals and Applications, Prentice Hall 1983 [2.7] Y. Sanada and Q. Wang, A Co-Channel Interference Cancellation Technique using Orthogonal Convolutional Codes, IEEE Trans. on Commun., Vol.44, No.5, pp , May [2.8] Y. Sanada and Q. Wang, A Co-channel Interference Cancellation Technique using Orthogonal Convolutional Codes on Multipath Rayleigh Fading Channel, IEEE Trans. on Vehicular Technology, Vol.46, No.1, pp , Feb [2.9] K. Kwazoe, S. Honda, S. Kubota, and S. Kato, Universal-coding-rate Scarce State Transition Viterbi Decoder, IEEE ICC 1992, Vol.3, pp , June [2.10] S. Ping, Y. Yan, and C. Feng, An Effective Simplifying Shame for Viterbi Decoder, IEEE Trans. Commun. Vol.39, No.1, pp.1-3, Jan

56 2 DS-CDMA [2.11] T. Yamazato, I. Sasase, and S. Mori, A New Vitabi Algorithm with Adaptive Path Reduction Method, IEICE Trans. Fundamentals., Vol.E76-A, No.9, pp , Sept [2.12] J. B. Anderson and S. Mohan, Sequential coding algorithums:a Survey and cost analysis, IEEE Trans. Commun., COM-32, pp , Feb [2.13],,,, M-, SST94-6, pp.7-12, [2.14] S. Tachikawa, Characteristics of M-ary/Spread Spectrum Multiple Access Communication Systems using Co-Channel Interference Cancellation Techniques, IEICE Trans. on Commun., Vol.E76-B, No.8, pp , August [2.15] C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon limit error-correcting coding and decoding: Turbo codes, IEEE ICC 1993, pp , May [2.16] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, M.I.T. Press, [2.17] C. M. Vithanage, P. M. A. P. Rajatheva, and E. Shwedyk, Performance of Turbo Equalized Space-time Coded Signals with Reduced Complexity Receiver Using M Algorithm, IEEE VTC 2004 Spring, Vol.2, pp , May

57 3 MC-CDMA 3G DS-CDMA DS-CDMA RAKE MC-CDMA RAKE MC-CDMA MC-CDMA DS-CDMA RAKE 3.1 3G DS-CDMA [3.1]-[3.5] DS-CDMA 3G 384kbps 2Mbps LAN 3GPP-LTE OFDM 1 DS-CDMA OFDM CDMA OFDM MC-CDMA[3.6][3.7] MC-CDMA VSF-OFCDM 4G OFCDM OFDM [3.8] OFCDM MC-CDMA DS-CDMA RAKE 50

58 3 MC-CDMA [3.9] MC-CDMA DS-CDMA [3.9] DS-CDMA RAKE MC-CDMA MC-CDMA ( ) DS-CDMA MC-CDMA DS-CDMA MC-CDMA DS-CDMA DS-CDMA DS-CDMA ( ) Walsh ( ) PN( Pseudo Random) PN [3.10] DS-CDMA W-CDMA DS-CDMA RAKE [3.11]

59 3 MC-CDMA MC-CDMA S/P MC-CDMA CDMA IDFT (Inverse Descrete Fourier Transform) 2 IFFT (Inverse Fast Fourier Transform) 2 MC-CDMA 3.1 MC- CDMA ( S/P ) ( )OFDM RAKE MC-CDMA MC-CDMA CP u C PG-1 (i) u C0 C 0 (i) 符号化データ time S/P IFFT P/S u C PG-1 (i) u C0 C 0 (i) 3.1: MC-CDMA S/P 3.1 IFFT u [3.7] s u sp(t) = + i= P G 1 n=0 P G 1 m=0 3.1 b u n(i) c u m(i)p c (t mt c it s) exp{j2π(f 0 +(n P G/2) f)t} (3.1) T c P G (=OFDM ) P G T s T s T s = P G T s 52

60 3 MC-CDMA b u n(i) u n i c u m(i) u m f 0 f(= 1/T c ) p c (t) = 1 (0 t T c ), p c (t) = 0 (otherwise) MC-CDMA CP MC-CDMA CP CDMA MC-CDMA 3.2 IFFT MC-CDMA CP u u C 0 (i) u C 1 (i) 符号化データ time Copier u C 2 (i) IFFT P/S u C PG-1 (i) 3.2: MC-CDMA CP [3.7] s u cp(t) = + i= P G 1 n=0 b u (i) c u n(i)p c (t it c ) exp{j2π(f 0 + (n P G/2) f)t} (3.2) b u (i) u i

61 3 MC-CDMA QPSK S/P CP 2 IFFT FFT 54

62 3 MC-CDMA S/P Convolutional Encoder & Interleaver QPSK Mod. S/P or Copy Spread Spread IFFT & P/S Code Channel 1 Information from the receiver Frequency Controller (a) Transmitter FFT Equalizer De-spread De-spread P/S or Combiner QPSK Demod. De-interleaver & Viterbi Decoder P/S Code Channel 1 Frequency Controller Frequency Assignment Information (b) Receiver 3.3: S/P MC-CDMA u 3.1 i=0 ( 0 t T s) u s(t) = P G 1 n=0 P G 1 m=0 b n c m p c ( t) exp(j2πf n t) (3.3) p c ( t) = p c {t mt c } f n = f 0 + (n P G/2) f s(t) 55

63 3 MC-CDMA OFDM L 1 h(t) = h l δ(t τ l ) (3.4) l=0 h l τ l l L 3.4 r(t) r(t) = (s h)(t) = = L 1 l=0 P G 1 n=0 P G 1 n=0 P G 1 m=0 P G 1 m=0 b n c m p c ( t) exp{j2πf n (t τ l )} H k b n c m p c ( t) exp(j2πf n t) (3.5) H n L 1 H n = h l exp( j2πf n τ l ) (3.6) l=0 r(t) f 0 [3.7] r (t) = P G 1 n=0 P G 1 m=0 H n b n c m p c ( t) exp{j2π(n P/2)t/T s} + z(t) (3.7) z(t) AWGN (Additive White Gaussian Noise) n m FFT r n = 1 Tc r (t) exp{ j2π(n P/2)t/T T s}dt c CP 0 = H n b n c m + z n (3.8) r n = H n b c n + z n (3.9) S/P CP RAKE (Partial Bandwidth Transmission:PBT) 3.4 PBT FDD (Frequency Division Duplex) 56

64 3 MC-CDMA P G PBT 3.4: PBT OFDM [3.12] R ofdm = 2P P + 1 R sc (3.10) R sc R ofdm OFDM P OFDM sinc 2 OFDM PBT 3.10 W-CDMA 3.84MHz 5MHz(2 ) IEEE802.11b 11MHz 22MHz 3.10 OFDM g 1/2 ( b ) 57

65 3 MC-CDMA PBT PBT (Least Square) 3.5: PBT P G 1-1 P G 1 1 P G 1 λ (packets/time units) k p k p k = e λ λ k. (3.11) k! ID ID

66 3 MC-CDMA 12 2 ] B d [ r e w o P d e iv e c e R Ideal Estimation Packet 3.6: (F d =8Hz) kbps QPSK BPSK DS-CDMA MC-CDMA 64 DS-CDMA MC-CDMA [3.1] MC-CDMA 3.10 DS-CDMA MC-CDMA MC-CDMA DS-CDMA MC-CDMA DS-CDMA QPSK 16QAM 64QAM 59

67 3 MC-CDMA OFDM [3.5] DS-CDMA 4 8Hz DS-CDMA MC-CDMA OFDM BCH <Modulation> Data Spreading Data Rate Number of Users 4 <Spreading Code> Short Code Long Code Processing Gain 64 Coding for data Coding for Header Packet Length Dopplar Frequency 3.1: Coherent QPSK BPSK 64 N kbps (N: Number of Code Channels) Hadamard Codes (64 period) Partial M Sequence ( period) Convolutional Code & Soft Decision Viterbi Decoding (Constraint Length 7, Coding Rate 1/3) BCH(15,7) & Repetition Code (3 times) 10 msec 8.0Hz MC-CDMA S/P DS-CDMA(RAKE ) (BER) No PBT 1 PBT PBT 2 LS Least Square Ideal est PBT PBT 2dB ( 3dB) PBT 60

68 3 MC-CDMA 4 PBT 1 3.7: (MC-CDMA S/P ) 3.8: (DS- CDMA,RAKE) 3.9: 61

69 3 MC-CDMA 3.9 DS-CDMA(RAKE ) MC-CDMA S/P CP (PER) RAKE 4 63 Traffic=1.0 (Traffic=1.0) PER MC-CDMA DS-CDMA RAKE 1% E b /N 0 S/P 5dB CP 4dB MC-CDMA S/P CP CP dB (0 ) (63 ) 5dB S/P 6 ] B d [ r e w o P d e liz a m r o N Subcarrier Index 3.10: Traffic MC-CDMA 62

70 3 MC-CDMA 3.11: 3.12: 63

71 3 MC-CDMA 3.5 MC-CDMA DS-CDMA RAKE MC-CDMA DS-CDMA RAKE MC-CDMA 2 S/P CP CP MC-CDMA OFCDM DS-CDMA [3.13] PAPR OFDM CDMA DS-UWB ZigBee VSF-OFCDM 4G IMT-Advanced LTE-Advanced IEEE802.16m OFDMA DS-CDMA 2 P i (i = 0, 1, N 1) t i i N 2 R(t) s 0 = s 3 = γ 0 = n n t 0 j s 1 = t 1 j s 2 = j=1 n t 3 j s 4 = j=1 n P j t 0 j γ 1 = j=1 j=1 n j=1 t 4 j n P j t 1 j γ 2 = n j=1 j=1 j=1 t 2 j n P j t 2 j 64

72 3 MC-CDMA Γ = (ns 2 s 4 + 2s 1 s 2 s 3 ) (s s 2 1s 4 + ns 2 3) a 0 = {(γ 0 s 2 s 4 + γ 1 s 2 s 3 + γ 2 s 1 s 3 ) (γ 2 s γ 0 s γ 1 s 1 s 4 )}/Γ a 1 = {(nγ 1 s 4 + γ 0 s 2 s 3 + γ 2 s 1 s 2 ) (γ 1 s γ 0 s 1 s 4 + nγ 2 s 3 )}/Γ a 2 = {(nγ 2 s 2 + γ 0 s 1 s 3 + γ 1 s 1 s 2 ) (γ 0 s nγ 1 s 3 + nγ 2 s 2 1)}/Γ R(t) = a 0 + a 1 t + a 2 t 2 (3.12) [3.1] F. Adachi, K. Ohno, A. Higashi, T. Dohi, and Y. Okumura, Coherent Multicode DS-CDMA Mobile Radio Access, IEICE Trans. Commun., vol. E79-B, no. 9, pp , Sept [3.2],,,, DS-CDMA, IEICE ( ), RCS95-79, pp [3.3] T. Dohi, Y. Okumura, A. Higashi, K. Ohno and F. Adachi, Experiments on Coherent Multicode DS-CDMA, IEICE Trans. Commun., vol. E79-B, no. 9, pp , Sept [3.4],,,, DS-CDMA, IEICE ( ), RCS95-80, pp [3.5],,,, DS-CDMA, IEICE ( ), RCS96-14, pp [3.6],,, IEICE ( ), RCS96-48, pp [3.7] N. Yee, J. P. Linnartz and C. Fettweis, Multi-Carrier CDMA in indoor wireless radio network, IEICE Trans. Commun. vol. E77-B(7), pp , July [3.8] M. Yoshida and A. Sugitani, A Comparison of OFCDM and Segmented-OFDM in Broadband MIMO Downlink Channel, IEEE WCNC 2004, Vol.2, pp , March [3.9] S. Kaiser, OFDM-CDMA versus DS-CDMA: Performance Evaluation for Fading Channels, IEEE ICC 1995, pp , June

73 3 MC-CDMA [3.10],, DS-CDMA RAKE, IEICE ( ), RCS95-98, pp [3.11] A. Higashi, T. Taguchi and K. Ohno, Performance of coherent detection and RAKE for DS-CDMA uplink channels, IEEE PIMRC 1995, pp , Sept , 1995, Toronto, Canada. [3.12] E. A. Sourour and M. Nakagawa, Performance of Orthogonal Multicarrier CDMA in a Multipath Fading Channel, IEEE Trans. on Commun., vol. 44, no. 3, pp , March [3.13] L. Mailaender, Complexity Comparison of OFDM and CDMA for Wideband Communication Systems, IEEE VTC 2006 Fall, pp.1-5, Sept

74 4 (AMC) AMC MCS MCS AMC MCS MCS (TPC) AMC TPC 4.1 LAN (Adaptive Modulation and Coding:AMC) [4.1]-[4.3] a n G HSDPA 3GPP-LTE 4G 1Gbps 100Mbps ARQ[4.4]-[4.7] AMC AMC OFDM MCS (Modulation and Coding Scheme) AMC MCS 1.3 SNR SIR 1 [4.8] MCS SIR MCS 1.3 SIR 67

75 4 ( ) [4.9] HSDPA CRC SIR MCS MCS ( ) MCS ( ) CRC MCS TPC (Transmission Power Control) MCS TPC TPC CRC 4G VSF-OFCDM[4.11] [4.12] VSF-OFCDM AMC [4.10] MCS 4G ARQ MCS 4.2 AMC MCS MCS MCS MCS MCS [4.10] VSF-OFCDM MCS MCS1 MCS3 64QAM MCS(n) MCS n = 1, 2,..., N N MCS MCS MCS(1) MCS MCS(N) 4.1 N=4, MCS(1)=MCS4, MCS(2)=MCS5, MCS(3)=MCS6, MCS(4)=MCS7 N=3, MCS(1)=MCS1, MCS(2)=MCS2, MCS(3)=MCS3 68

76 4 4.1: MCS Set for Indoor and Outdoor Applications MCS # Modulation Coding Rate Condition MCS7 64QAM R = 3/4 Indoor MCS6 16QAM R = 5/6 Indoor MCS5 16QAM R = 1/2 Indoor MCS4 QPSK R = 3/4 Indoor MCS3 16QAM R = 3/4 Outdoor MCS2 QPSK R = 3/4 Outdoor MCS1 QPSK R = 1/2 Outdoor MCS SIR 4.1 SIR MCS(1) MCS(2) SIR MCS(2) MCS(3) SIR MCS(2) MCS MCS(1) MCS(2) MCS(2) MCS(3) SIR [4.9] 4.1 トップールス AMC 時のスループット MCS2 MCS3 MCS1 最適な 下限閾値 最適な 上限閾値 SIR 4.1: ( ) 69

77 4 トップールス AMC 時のスループット MCS2 MCS3 MCS1 下限閾値 上限閾値 SIR 4.2: ( ) 4.3 CRC SIR CRC OK : SIR δ amc down CRC Error : SIR δ amc up PER (Packet Error Rate) 0.01 δdown amc δup amc 0.01dB 0.09dB CRC Error 99 CRC OK PER=0.01 PER 0.01 δdown amc =0.02dB δamc up =1.98dB PER=x δ amc down = x γ [db] δ amc up = (1.0 x) γ [db] (4.1) γ γ γ 1 CRC MCS MCS 2 1 MCS MCS 1 70

78 4 MCS MCS MCS MCS(n) SIR th (n) SIR th (n 1) SIR th (n) MCS(n) MCS(n+1) SIR th (n 1) MCS(n) MCS(n-1) MCS(n) MCS(n+1) SIR th (n) MCS(n+1) MCS(n) MCS(n) SIR th (n) CRC OK SIR th (n) δdown amc = 0.01 [db] (4.2) CRC Error SIR th (n) δ amc up = 0.99 [db] (4.3) SIR th (n 1) CRC OK SIR th (n 1) δdown amc Max thpt(n 1) = Max thpt(n) [db] (4.4) CRC Error SIR th (n 1) δup amc Max thpt(n 1) = 1.0 Max thpt(n) [db] (4.5) Max thpt(n) MCS(n) MCS SIR mes > SIR th (n) MCS(n) MCS(n+1) SIR mes < SIR th (n 1) MCS(n) MCS(n-1) MCS SIR mes SIR 0.01dB 0.99dB PER 0.01 MCS PER 0.01 MCS SIR MCS(2) 10Mbps MCS(1) 4Mbps MCS(2) 4Mbps MCS(1) MCS(1) 4Mbps MCS(2) 71

79 4 MCS(2) 4Mbps PER δ down δ up 0.4dB 0.6dB MCS(3) SIR th (3) SIR th (2) MCS(2) SIR th (2) MCS(3) MCS(2) SIR th (2) PER AMC CDMA (TPC) TPC 1. ( ) 2. AMC MCS MCS(1) AMC MCS(2) TPC MCS TPC TPC MCS MCS MCS(1) SIR SIR MCS MCS(N) SIR MCS MCS MCS(1) SIR th (0) MCS MCS(N) SIR th (N) SIR th (0) TPC SIR th (N) TPC MCS(n = 2, 3,..., N 1) TPC MCS(1) SIR mes < SIR th (0) tpc MCS(N) SIR mes > SIR th (N) tpc SIR th (0) SIR th (N) MCS(1) CRC Error SIR th (0) δ tpc(0) up 72

80 4 MCS(1) CRC OK SIR th (0) δ tpc(0) down MCS(N) CRC Error SIR th (N) δ tpc(n) up MCS(N) CRC OK SIR th (N) δ tpc(n) down δ δ tpc(0) up = δ tpc(0) down = 0.5dB δ tpc(n) up = 0.99dB and δ tpc(n) down = 0.01dB MCS 50% MCS 99% VSF-OFCDM[4.11][4.12] ARQ Chase Combining[4.13] MCS SIR MCS MCS ARQ ( ) 1 MCS ARQ 1 VSF-OFCDM MCS 3GPP [4.14] VSF-OFCDM ( ) [4.12] HiperLAN/2 [4.15] 5Hz [4.10] 12 1dB 80Hz 73

81 4 1.25MHz SF 2 300kHz Transmitter Data Generation Turbo Coding Puncturing Adaptive Modulation Transmitted Signal IFFT & GI Insertion Scrambl ing Pilot Symbol Insertion 2-dimension Spreading & Other users Multiplexing Gain Inter- leaving S/P Reveiver Feedback Information of TPC SIR Measure Feedback Information of AMC Received Signal GI Removal & FFT De- scrambling Pilot Data Channel Estimation Coherent Detection De- spreading De- interleaving P/S Threshold Control Data Verification Turbo Decoding De- puncturing De- mapping Feedback Information of H-ARQ 4.3: 74

82 4 Bandwidth 4.2: Num. of Subcarriers 768 Symbol Duration (Data + GI) [MHz] [usec] [usec] SF Indoor: 16 (8 x 2) (SF time x SF freq) Outdoor: 32 (8 x 4) No. of users Indoor case: 1 Outdoor case: 8 Feedback Information (Both AMC and ARQ) Feedback Delay (Both AMC and ARQ) H-ARQ method MCS Set (See Table 4.1) Channel Model Channel Estimation Synchronization Error Free 1 packet Chase Combining Indoor: MCS(4),(5),(6),(7) Outdoor: MCS(1),(2),(3) AWGN (single static path) Indoor: HiperLAN/2 Model (F d = 5Hz) Outdoor: Exponential Model (F d = 80Hz, Num.of paths = 12, Delay Spread = 0.21 [usec]) Pilot Aided (frequency tone) Ideal SIR 4.4 VSF-OFCDM SIR VSF-OFCDM OFCDM SIR r n,m n m 0 3 k (k = 0, 1,..., 47) SIR 75

83 4 P S (k) P I (k) SIR mes = 47 k=0 P S (k) P I (k) (4.6) P S (k) P I (k) P S (k) = R(k) 2 (4.7) P I (k) = 1 64 R(k) = (k+1) n=16k+1 16(k+1) n=16k+1 m=0 {r n,m R(k)} 2 (4.8) 3 r n,m (4.9) pilot Data pilot Data pilot 16 Carriers No Use No Use 768 Carriers No Use From previous packet 1 Packet r r r r 1,1 1,2 1,3 1,4 To From next next packet packet 16 r r r r 16,1 16,2 16,3 16, : SIR AWGN HyperLAN/2 E S /N 0 MCS 4.1 MCS4 MCS7 64QAM

84 4 MCS SIR MCS SIR AMC SIR SIR Throughput [ Mbps ] MCS4 MCS5 MCS6 MCS7 Proposed 30 ] s p b M [ 20 t u p g h u ro T10 MCS4 MCS5 MCS6 MCS7 Proposed E S / N 0 [ db ] E / N S 0 [ db ] 4.5: (AWGN) 4.6: (HiperLAN/2 ) MCS AWGN 8 AMC ARQ QPSK MCS 4.1 MCS1 MCS3 16QAM MCS 77

85 4 Throughput [ Mbps ] MCS1 MCS2 MCS3 Proposed 10 ] s p b 8 M [ t u 6 p g h u ro 4 T MCS1 MCS2 MCS3 Proposed E S / N 0 [ db ] E / N S 0 [ db ] 4.7: (AWGN) 4.8: ( ) AMC TPC 4.9 AMC TPC TPC 80Hz AMC TPC 4.9 E S /N 0 MCS1 E S /N 0 MCS3 E S /N 0 TPC 4.9 InitialE S /N Initial E S /N 0 TPC E S /N 0 6dB InitialE S /N 0 0dB 10dB TPC 4.9 MCS1 InitialE S /N 0 45dB 50dB MCS3 TPC 4.9 InitialE S /N 0 15dB 30dB AMC MCS MCS 78

86 4 ] s 8 p b M [ 6 t u p h g u 4 ro T 2 0 MCS1 MCS2 MCS3 Proposed E / N S 0 [ db ] Transmitted Power Change [ db ] Initial E S / N0 0dB 10dB 15dB 30dB 45dB 50dB 0dB 10dB 15dB 30dB 45dB 50dB 0 5e-05 10e-05 15e-05 Time [ sec ] 4.9: TPC AMC : (AMC) SIR SIR CRC MCS MCS VSF-OFCDM MCS (TPC) MCS AMC CRC AMC TPC MCS MCS CRC 3G ( ) 3GPP-LTE (Sounding Reference Signal) AMC a 79

87 4 4.7 [4.1] S. Falahati, A. Svensson, T. Ekman, and M. Sternad, Adaptive Modulation Systems for Predicted Wireless Channels, IEEE Trans. on Commun., Vol.52, No.2, pp , February [4.2] V. K. N. Lau and S. V. Maric, Variable Rate Adaptive Modulation for DS-CDMA, IEEE Trans. on Commun, Vol.47, No.4, pp , April [4.3] E. Armanious, D. D. Falconer, and H. Yanikomeroglu, Adaptive Modulation, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insight, IEEE WCNC2003, Vol.1, pp , March [4.4] N. Miki, H. Atarashi, S. Abeta, and M. Sawahashi, Comparison of Hybrid ARQ Packet Combining Algorithm in High Speed Downlink Packet Access in a Multipath Fading Channel, IEICE Trans. Fundamentals, Vol.E85-A, No.7, pp , July [4.5] N.Miki, H.Atarashi, S.Abeta, and M.Sawahashi, Comparison of Hybrid ARQ Schemes and Optimization of Key Parameters for High-Speed Packe Transmission in W-CDMA Forward Link, IEICE Trans. Fundamentals, Vol.E84-A, No.7, pp , July [4.6] T. Asai, K. Higuchi, and M. Sawahashi, Experimental Evaluations on Throughput Performance of Adaptive Modulation and Channel Coding and Hybrid ARQ in HSDPA, IEICE Trans. Fundamentals, Vol.E86-A, No.7, pp , July [4.7] M. Dottling, J. Michel, and B. Raaf, Hybrid ARQ and adaptive modulation and coding schemes for high speed downlink packet access, PIMRC 2002, Vol.3, pp , Sept [4.8] K. Tsukakoshi, T. Kobashi, and Y. Kamio, Performance of DS-CDMA Adaptive Modulation System in a Multipath-Channel Environment, IEICE Trans. Commun., Vol.E86-B, No.2, pp , February [4.9] J. Lee, R. Arnott, K. Hamabe, and N. Takano, ADAPTIVE MODULATION SWITCHING LEVEL CONTROL IN HIGH SPEED DOWNLINK PACKET AC- CESS TRANSMISSION, IEE 3G Mobile Communication Technology Conference, May [4.10] A. Harada, S. Abeta, and M. Sawahashi, Adaptive Radio Parameter Control Considering QoS for Forward Link OFCDM Wireless Access, IEEE VTC2002, Vol.3, pp , May [4.11],,,,, IEICE ( ), SST , pp.1-6. [4.12] H. Atarashi, S. Abeta and M. Sawahashi, Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) for Broadband Wireless Packet Access, IEICE Trans. Commun. Vol.E86-B, No.1, pp , January

IMT-Advanced Testbed Development for IMT-Advanced Radio Experiments Toshinori SUZUKI, Noriaki MIYAZAKI, and Satoshi KONISHI IMT-Advanced 3 IMT-2000 IT

IMT-Advanced Testbed Development for IMT-Advanced Radio Experiments Toshinori SUZUKI, Noriaki MIYAZAKI, and Satoshi KONISHI IMT-Advanced 3 IMT-2000 IT IMT-Advanced Testbed Development for IMT-Advanced Radio Experiments Toshinori SUZUKI, Noriaki MIYAZAKI, and Satoshi KONISHI IMT-Advanced 3 IMT-2000 ITU-R IMT-Advanced 100 Mbit/s 1Gbit/s IMT-Advanced IMT-Advanced

More information

ohgane

ohgane Signal Detection Based on Belief Propagation in a Massive MIMO System Takeo Ohgane Hokkaido University, Japan 28 October 2013 Background (1) 2 Massive MIMO An order of 100 antenna elements channel capacity

More information

Keysight Technologies LTE規格に準拠したトランスミッタのACLR測定

Keysight Technologies LTE規格に準拠したトランスミッタのACLR測定 Keysight Technologies LTE ACLR Application Note IP LTE 3GPP LTE LTE 1 LTE ACLR LTE Keysight X PXA/MXA/EXA LTE Keysight MXG LTE LTERF LTE 6 1.4 20 MHz OFDMA SC-FDMA 2 FDD TDD MIMO LTE CDMA RF LTE 1 LTE

More information

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB (DLL) UWB DLL 1. UWB FCC (Federal Communications

More information

4 1 7 Ver.1/ MIMO MIMO Multiple Input Multiple Output MIMO = = MIMO LAN IEEE802.11n MIMO Alamouti STBC Space Time Block Code

4 1 7 Ver.1/ MIMO MIMO Multiple Input Multiple Output MIMO = = MIMO LAN IEEE802.11n MIMO Alamouti STBC Space Time Block Code 4 -- 1 7 MIMO 2009 4 MIMO Multiple Input Multiple Output MIMO = = MIMO LAN IEEE802.11n MIMO Alamouti STBC Space Time Block Code 1 7-1 MIMO 7-2 MIMO 7-3 MIMO MIMO 7-4 MIMO 8 8-5 c 2010 1/(18) 4 -- 1 --

More information

June 27, 2011 Copyright 2011 NTT DOCOMO, Inc. All rights reserved 2 LTE LTE LTE

June 27, 2011 Copyright 2011 NTT DOCOMO, Inc. All rights reserved 2 LTE LTE LTE June 27, 2011 Copyright 2011 NTT DOCOMO, Inc. All rights reserved June 27, 2011 Copyright 2011 NTT DOCOMO, Inc. All rights reserved 2 LTE LTE LTE June 27, 2011 Copyright 2011 NTT DOCOMO, Inc. All rights

More information

format

format 非直交多元接続 (NOMA) 慶應義塾大学理工学部電子工学科 眞田研究室 4 年 安藤健二 -1- 背景通信に使うことのできる周波数帯域は限られているため, 増加するトラフィックに対し帯域利用効率のよい多元接続方式が求められる -2-82.2 105.2 123.5 154.6 181.3 234.8 274.3 328.9 349.0 422.0 469.8 546.4 586.2 0 100 200

More information

次世代モバイルネットワークの概要

次世代モバイルネットワークの概要 Next-Generation Mobile Network 加藤次雄 あらまし 45 3 202010 200 3.9 3.9G LTE Long Term Evolution 2010 12 LTE Abstract The number of people using cell phones in the world has exceeded 4.5 billion and this figure

More information

1-4 DL 10 bps / Hz UL 2.5 bps / Hz 1-6 DL 10 bps / Hz WCDMA Evolved UTRA / UTRAN 1-4 DL 5 bps / Hz UL 2.5 bps / Hz 1-7 DL 5 bit / Hz WCDMA HSDPA / HSUPA 1-2 DL 1.0 1.7 bit / Hz 1-7 DL 5 bit / Hz 1-10 5

More information

デジタル通信を支える無線技術

デジタル通信を支える無線技術 Aug. 02, 2008 Copyright 2008 Niigata Internet SOCiety & I.Suzuki All Rights Reserved. 2 1. LAN 2. 3. LAN 4. 802.11 3 4 1. LAN 2. 3. LAN 4. 802.11 5 WMAN 50Km WiMax WLAN 100m 802.11 WPAN 10m ZigBee Bluetooth

More information

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i 24 Investigation on HC/MC-CDMA Signals with Non-Uniform Frequency Intervals 1130401 2013 3 1 CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA,

More information

Microsoft PowerPoint - ⑥説明者(太刀川).ppt

Microsoft PowerPoint - ⑥説明者(太刀川).ppt 高速無線 LAN の 安定な通信のための MC-CDMA 符号ダイバーシチ方式 長岡技術科学大学電気系准教授太刀川信一 Σ 1. 研究背景近年の高度無線情報通信の発展はめざましく ますます その利用範囲は広がっていく 現在の無線 LAN 携帯電話等の通信単一 ( 少数 ) の周波数に 1-1 等の情報を乗じて送る Single Carrier: SC f t 1 例 :DS/SS これからの高速無線

More information

untitled

untitled 3GPP2 3.9G 2008 11 25 Innovation - Execution - Partnerships $=100 2,500 2,000 2008 2,200 20.4 20.4% 20.6% 20.4% 17.8% 25% 20% 1,500 15.5% 15.5% 13.6% 14.8% 15% 1,000 10.6% 1,540 1,830 2,281 10% 500 0 $=100

More information

新技術説明会 様式例

新技術説明会 様式例 1 周波数領域信号処理による 局部発振器位相雑音補償技術 東京工業大学理工学研究科電気電子工学専攻 助教タンザカン ミリ波帯を活用した無線通信システム ミリ波帯を活用した無線通信システムを実現するための取り組みが行われている. 屋内無線通信 (IEEE 802.11ad[1] など ) セルラネットワーク (5G) [2] ミリ波帯を活用することによって, より高速 大容量な通信を実現することができる.

More information

untitled

untitled 1 SS 2 2 (DS) 3 2.1 DS................................ 3 2.2 DS................................ 4 2.3.................................. 4 2.4 (channel papacity)............................ 6 2.5........................................

More information

Microsoft Word - _Kazuki_09年7月RCS_papr_final.doc

Microsoft Word - _Kazuki_09年7月RCS_papr_final.doc THE ISTITUTE OF ELECTROICS, IEICE Technical Report IFORMATIO AD COMMUICATIO EGIEERS OFDM PAPR 90-579 6-6-05 E-mail: kazuki@mobile.ecei.tohoku.ac.jp, adachi@ecei.tohoku.ac.jp (OFDM (PAPR PAPR Tomlinson-Harashima

More information

Keysight MIMO MIMO Cluster n Path n σ n, AoA σ n, AoD Θ n, AoA MS/UE Array Boresight Rx0 Tx0 Θ n, AoD LOS BS Array Boresight Θ n+1, AoA Rx1 Tx1 Path n

Keysight MIMO MIMO Cluster n Path n σ n, AoA σ n, AoD Θ n, AoA MS/UE Array Boresight Rx0 Tx0 Θ n, AoD LOS BS Array Boresight Θ n+1, AoA Rx1 Tx1 Path n Keysight MIMO MIMO Cluster n Path n σ n, AoA σ n, AoD Θ n, AoA MS/UE Array Boresight Rx0 Tx0 Θ n, AoD LOS BS Array Boresight Θ n+1, AoA Rx1 Tx1 Path n+1 Cluster n+1 ... 3 1. MIMO... 3 1.1 MIMO 1.2 MIMO

More information

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133 A Study of Adaptive Array Implimentation for mobile comunication in cellular system 15 1 31 01GD133 LSI DSP CMA 10km/s i 1 1 2 LS-CMA 5 2.1 CMA... 5 2.1.1... 5 2.1.2... 7 2.1.3... 10 2.2 LS-CMA... 13 2.2.1...

More information

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) NAIST-IS-MT0751044 2.4GHz W-LAN 2008 8 20 ( ) ( ) ( ) ( ) ( ) 2.4GHz W-LAN ISM(Industrial, Sientific and Medical) 2.4GHz IEEE802.11b/gW-LAN 2.4GHz W-LAN 2.4GHz ISM (Industry Scientific and Medical) ISM

More information

2 1. LAN LAN Aug. 02, 2008 Copyright 2008 Niigata Internet SOCiety & I.Suzuki All Rights Reserved LAN LAN WLAN

2 1. LAN LAN Aug. 02, 2008 Copyright 2008 Niigata Internet SOCiety & I.Suzuki All Rights Reserved LAN LAN WLAN . LAN.. LAN 4. 80. Aug. 0, 008 Copyright 008 Niigata Internet SOCiety & I.Suzuki All Rights Reserved. 4. LAN.. LAN 4. 80. WLAN 00m WMAN 50Km WPAN 0m WiMax 80. 0Kbps 00K M 0M 00M G 5 LAN IEEE80.(997) 80.b(999,.4GHz/Mbps)

More information

main.dvi

main.dvi CDMA 1 CDMA ( ) CDMA CDMA CDMA 1 ( ) Hopfield [1] Hopfield 1 E-mail: okada@brain.riken.go.jp 1 1: 1 [] Hopfield Sourlas Hopfield [3] Sourlas 1? CDMA.1 DS/BPSK CDMA (Direct Sequence; DS) (Binary Phase-Shift-Keying;

More information

P361

P361 ΣAD -RFDAC - High-Speed Continuous-Time Bandpass ΣAD Modulator Architecture Employing Sub-Sampling Technnique with 376-8515 1-5-1 Masafumi Uemori Tomonari Ichikawa Haruo Kobayashi Department of Electronic

More information

DVIOUT-ma

DVIOUT-ma アンテナ伝搬 における設計 解析手法ワークショップ ( 第 45 回 ) やさしいマルチユーザ MIMO 西森健太郎 ( 新潟大学 ) 主催 : 電子情報通信学会 アンテナ 伝播研究専門委員会 協賛 : IEEE AP-S Japan Chapter 電子情報通信学会 無線通信システム研究会 電子情報通信学会 ソフトウエア無線研究会 目次 第 1 章 はじめに 1 1.1 技術背景 MIMO 技術による伝送速度の高速化......................

More information

Signal Processing for Low Complexity Terminals and Pilot Signal Design in Multiple-Input Multiple-Output Systems ( ) ( ) LAN 3.9 Multiple-Input Multip

Signal Processing for Low Complexity Terminals and Pilot Signal Design in Multiple-Input Multiple-Output Systems ( ) ( ) LAN 3.9 Multiple-Input Multip No.75 2010 7 5 Signal Processing for Low Complexity Terminals and Pilot Signal Design in Multiple-Input Multiple-Output Systems..................................... ( )........... ( ) Design of Power Efficient

More information

IEEE ax:第 6 世代の Wi-Fi テクニカル ホワイト ペーパー

IEEE ax:第 6 世代の Wi-Fi テクニカル ホワイト ペーパー IEEE 802.11ax 6 Wi-Fi 1 6 Wi-Fi IEEE 802.11ax 802.11ac IEEE 802.11ax LTE IEEE 802.11ax LAN WLAN Wi-Fi IEEE 802.11ax LAN 4K Ultra HD Internet of Things IoT 802.11ac IoT IEEE 802.11ax 3 1024 QAM 35% OFDMA

More information

8c_01.dvi

8c_01.dvi C IEEJ Transactions on Electronics, Information and Systems Vol.134 No.8 pp.1010 1015 DOI: 10.1541/ieejeiss.134.1010 CPM-OFDM PAPR, a) A PAPR Reduction Method for CPM-OFDM Systems using Initial Phase Randomization

More information

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Microsoft PowerPoint - 山形大高野send ppt [互換モード] , 2012 10 SCOPE, 2012 10 2 CDMA OFDMA OFDM SCOPE, 2012 10 OFDM 0-20 Relative Optical Power [db] -40-60 10 Gbps NRZ BPSK-SSB 36dB -80-20 -10 0 10 20 Relative Frequency [GHz] SSB SSB OFDM SSB SSB OFDM OFDM

More information

5989_2365JAJP.qxd

5989_2365JAJP.qxd Agilent Application Note HS-PDSCH(s) HS-DPCCH HS-SCCH 2 1 4 6 5 10 12 8 7 11 13 9 3 ACK ACK ACK ACK ACK 2 www.agilent.co.jp/find/3g 3 4 10 ms 0 1 2 3 4 3 x T SLOT = 7680 5 6 7 CRC HARQ HS-DSCH 16QAM 1

More information

untitled

untitled 4. AWCC 4.1 ITS MIMO ITS MIMO 4.2 AWCC 4.3 AWCC 400 350 300 250 200 150 100 50 0 H17 H18 H19 H20 AWCC(5 ) 31.65.4 / 8.0 / 180 160 140 120 100 80 60 40 20 0 H17 H18 H19 H20 AWCC 40 35 30 25 20 15 10 5 0

More information

無線LANフレーム構成について

無線LANフレーム構成について 無線 LAN フレーム構成について 2016 年 7 月 8 日 梅原大祐 MAC フレームフォーマット IEEE 802.11n QoS フィールド : QoS, A-MSDU, メッシュ関連 2 2 Duration /ID 6 6 6 2 6 2 0 7951 1 2 3 MAC header Sequence QoS HT body FCS メッシュネットワークでないケース : IP frame

More information

LTE移動通信システムのフィールドトライアル

LTE移動通信システムのフィールドトライアル LTE Field Trial for LTE Mobile Network System 鬼柳広幸 箕輪守彦 あらまし LTELong Term Evolution LTE 1.7 GHz 5 MHzEnd to EndLTE 34.6 Mbps9.5 Mbps IP LTE Abstract The Long Term Evolution (LTE) mobile network system

More information

1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2

1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2 (Communication and Network) 1 1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2 1.1 AM s(t) : A(αs(t) + 1) cos 2πf c t A, α : s(t) = cos

More information

turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) interleaver parallel concatenated convolutional code ch

turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) interleaver parallel concatenated convolutional code ch 1 -- 2 6 LDPC 2012 3 1993 1960 30 LDPC 2 LDPC LDPC LDPC 6-1 LDPC 6-2 6-3 c 2013 1/(13) 1 -- 2 -- 6 6--1 2012 3 turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) 6 1 2 1 1 interleaver 2 2 2 parallel concatenated

More information

10_08.dvi

10_08.dvi 476 67 10 2011 pp. 476 481 * 43.72.+q 1. MOS Mean Opinion Score ITU-T P.835 [1] [2] [3] Subjective and objective quality evaluation of noisereduced speech. Takeshi Yamada, Shoji Makino and Nobuhiko Kitawaki

More information

IEEE802.11n LAN WiMAX(Mobile Worldwide Interoperability for Microwave Access) LTE(Long Term Evolution) IEEE LAN Bluetooth IEEE LAN

IEEE802.11n LAN WiMAX(Mobile Worldwide Interoperability for Microwave Access) LTE(Long Term Evolution) IEEE LAN Bluetooth IEEE LAN 23 IEEE802.11n LAN 43422519 ( ) 24 2 6 IEEE802.11n LAN WiMAX(Mobile Worldwide Interoperability for Microwave Access) LTE(Long Term Evolution) IEEE802.11 LAN Bluetooth 2009 9 IEEE802.11 LAN IEE E802.11n

More information

050920_society_kmiz.odp

050920_society_kmiz.odp 1 リアルタイム伝搬測定にもとづく MIMO 固有モード間相関解析 Correlation Analysis of MIMO Eigenmodes Based on Real-Time Channel Measurement 水谷慶阪口啓高田潤一荒木純道 Kei Mizutani Kei Sakaguchi Jun-ichi Takada Kiyomichi Araki 東京工業大学 発表内容 研究背景

More information

2005 1

2005 1 2005 1 1 1 2 2 2.1....................................... 2 2.2................................... 5 2.3 VSWR................................. 6 2.4 VSWR 2............................ 7 2.5.......................................

More information

MainOfManuscript.dvi

MainOfManuscript.dvi OFDM A Study on Transmission Characteristics of OFDM with Directional Antenna 17 2 7 03GD150 LAN OFDM OFDM OFDM 1 i 1 1 1.1...................................... 1 1.2 OFDM............. 2 1.3...............................

More information

15群(○○○)-8編

15群(○○○)-8編 4 群 ( モバイル 無線 )- 1 編 ( 無線通信基礎 ) 6 章ダイバーシチ技術 概要 無線伝搬路は一般に, 複数の経路からなるマルチパス伝搬路であり, 定在波が発生する. このため, 受信レベルが頻繁に落ち込むフェージングという現象が発生し, 無線通信の伝送特性を著しく劣化させる. この劣化を補償する技術の一つとして, ダイバーシチ技術があげられる. ダイバーシチとは, 複数の互いに相関の低い受信波を得て,

More information

IEEE e

IEEE e 2007 IEEE 802.11e LAN VoIP 2008 2 4 3606U075-2 1 5 1.1...................................... 5 1.2...................................... 5 1.3..................................... 6 2 IEEE 802.11e LAN

More information

Microsoft PowerPoint - ①無線通信システム概要12

Microsoft PowerPoint - ①無線通信システム概要12 0 年前期無線通信システム 第 回無線通信システムの概要 IEEE80.a 無線 LAN を例に 荒木純道 0 年 4 月 日 講義内容 無線通信システムの概要 無線通信システム設計の概略 システム劣化要因と対策技術の概略 IEEE80.a 無線 LAN デモ 0 年 4 月 日 講義スケジュール ( 前半 ) 日付教科書内容 第 回 4 月 日 7 無線通信システムの概要

More information

MIMOからMassive MIMOを用いた伝送技術とクロスレイヤ評価手法

MIMOからMassive MIMOを用いた伝送技術とクロスレイヤ評価手法 802.11 LAN MIMOMassive MIMO Wi-Fi 20 OFDMorthogonal frequency division multiplexing IEEE 802.11 LAN MIMOmultiple input multiple output LAN MIMO MIMO LTElong term evolution IEEE 802.11n MIMO LAN LAN MIMO

More information

Keysight Technologies LTEの動作と測定におけるMIMO:LTEテストの概要

Keysight Technologies LTEの動作と測定におけるMIMO:LTEテストの概要 Keysight Technologies LTE MIMO LTE Application Note LTE Long Term Evolution MIMO MIMO LTE 1 MIMO OFDM 64 QAM I/Q 2 1 MIMO LTE Long Term Evolution 3GPP 8 1 MIMO 1 RF 1 MIMO MIMO RF 2 2 MI 2 2 MO Tx SISO

More information

ITAMI.indd

ITAMI.indd OFDMOrthogoal Frequecy Divisio Multiplexig OFDM 96 97 3 LSI DSP OFDM DAB: Digital Audio Broadcastig OFDM LAPAADSL OFDM E-mail itami@te.oda.tus.ac.jp Makoto ITAMI, Member Departmet of Applied Electroics,

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

1

1 3-1-2 156 Mbps Ultrahigh-Speed Wireless LAN Prototype in the 38GHz Band Gang Wu, Masugi INOUE, Homare MURAKAMI, and Yoshihiro HASE This paper describes a 156 Mbps ultrahigh-speed wireless LAN operating

More information

完成卒論.PDF

完成卒論.PDF LAN 4 9920449 2 0 LAN Bluetooth LAN 1 LAN LAN LAN LAN 2 LAN Bluetooth LAN Bluetooth 3 Bluetooth 4 Bluetooth 5 Bluetooth Bluetooth 6 LAN Bluetooth LAN LocalAreaNetwork 1 LAN LAN LAN LAN Ethernet Ethernet

More information

WLAN WLAN AP WLAN WLAN WLAN AP- WLAN SINR WLAN WLAN CE WLAN WLAN WLAN CE 2 3 WLAN 4 WLAN 2. WLAN [10] AP CE [11] AP CE CE [12] CE AP AP AP WLAN WLAN A

WLAN WLAN AP WLAN WLAN WLAN AP- WLAN SINR WLAN WLAN CE WLAN WLAN WLAN CE 2 3 WLAN 4 WLAN 2. WLAN [10] AP CE [11] AP CE CE [12] CE AP AP AP WLAN WLAN A DEIM Forum2015 C2-4 LAN 112 8610 2-1-1 NEC 211 8666 1753 E-mail: mitomo@ogl.is.ocha.ac.jp, {miyoshi,t-murase}@ap.jp.nec.com, oguchi@computer.org LAN AP AP LAN LAN LAN WLAN AP- WLAN 3 LAN LANQoS Quality

More information

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 565-0871 1 5 E-mail: {s-kasihr, wakamiya, murata}@ist.osaka-u.ac.jp PC 70% Design, implementation, and evaluation

More information

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC H.264 CABAC 1 1 1 1 1 2, CABAC(Context-based Adaptive Binary Arithmetic Coding) H.264, CABAC, A Parallelization Technology of H.264 CABAC For Real Time Encoder of Moving Picture YUSUKE YATABE 1 HIRONORI

More information

携帯グループ(完成版)2007

携帯グループ(完成版)2007 The present condition and the next development of mobile phone industry The present condition and the next development of mobile phone industry WiMAX 90 1 16.5 5 5 13 13 5 5 5 1 NEC 1 2007 07 11 2 2G GSM

More information

000-OFDM前付き.indd

000-OFDM前付き.indd まえがき OFDM orthogonal frequency division multiplexing LAN OFDM OFDM MATLAB OFDM MATLAB OFDM MATLAB OFDM OFDM NHK NHK NHK 目 次... ASK.. FSK.. PSK ディジタル変復調技術の基礎.. MATLAB. BER. 次世代モバイル通信.. MATLAB. OFDM.. OFDM..

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 無線通信システム研究会 / 情報理論研究会 / 信号処理研究会 Polar 符号の移動通信システムへの適用と 5G 標準化動向 三木信彦 ( 香川大学 ) 永田聡 (NTT ドコモ ) 27..9 はじめに 本発表では, 近年着目されている Polar 符号について移動通信の適用と 5G 標準化動向について概説 通信路分極 符号化 復号法 他のチャネル符号化との比較 Turbo 符号 (LDPC 符号

More information

5989_7698JAJP(POD).pdf

5989_7698JAJP(POD).pdf Agilent Technical Overview 2 LTE FDD 1.4 3 5 10 15 20 72 180 300 600 900 1200 3 PBCH Physical Broadcast Channel QPSK PDCCH Physical Downlink Control Channel QPSK ACK/NACK PDSCH PMCH PCFICH PHICH P-SCH

More information

スライド 1

スライド 1 多端末環境下における IEEE802.11 と LTE のスループット性能に関する一検討 髙木由美 ( 神戸大 ), 金田茂 ( 大阪大 /STE), 田中義三 ( 住友電工 ), 太田能 ( 神戸大 ), 髙井峰生 (UCLA), 岡田洋侍 ( 住友電工 ) 1 背景 モバイル通信の普及 PHY 技術としては OFDM が主流 Wireless LAN: IEEE802.11 a/g/n Wireless

More information

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Jun Motohashi, Member, Takashi Ichinose, Member (Tokyo

More information

屋外型LTE無線基地局装置(eNodeB)

屋外型LTE無線基地局装置(eNodeB) LTE Outdoor LTE Infrastructure Equipment () 渡辺君夫 町田守 あらまし 3GPPLTE LTE Abstract Fujitsu has developed outdoor LTE infrastructure equipment () based on the specifications in the 3rd Generation Partnership

More information

パナソニック技報

パナソニック技報 技術論文 Panasonic Technical Journal Vol. 58 No. 4 Jan. 2013 LTE-Advanced システム向け帯域拡張技術の開発 Development of arrier Aggregation Technology for LTE-Advanced System 大泉 Toru Oizumi 透 西尾 Akihiko Nishio 昭彦 今村 大地 Daichi

More information

MX370108A/MX269908A LTE IQproducer 製品紹介

MX370108A/MX269908A LTE IQproducer 製品紹介 Product Introduction MX370108A/MX269908A LTE IQproducer MG3710A ベクトル信号発生器 MS2690A/MS2691A/MS2692A/MS2830A シグナルアナライザ MG3710A ベクトル信号発生器 MS269xA/MS2830A シグナルアナライザ用 MS269xA-020, MS2830A-020/021 ベクトル信号発生器オプション

More information

1

1 5-3 Photonic Antennas and its Application to Radio-over-Fiber Wireless Communication Systems LI Keren, MATSUI Toshiaki, and IZUTSU Masayuki In this paper, we presented our recent works on development of

More information

<参考>

<参考> B-ISDN User-Network Interface - Physical Layer Specification for 25600kbit/s 1.1 2002 3 1 THE TELECOMMUNICATION TECHNOLOGY COMMITTEE ... 3... 4 1.1... 4 1.2... 4 kbit/s... 4 2.1... 4 2.1.1... 4 2.1.2...

More information

5G が目指す世界 ( 目標性能 ) 世界的にほぼ共通の要求条件が合意されている今後 3GPP, ITU-R にて 評価条件とともに具体的な要求条件を決定 容量 /km 倍 大容量化 高速通信 ユーザ体感スループット 100 倍 ( ピークデータレート 10Gbps 以上 ) 5G 低

5G が目指す世界 ( 目標性能 ) 世界的にほぼ共通の要求条件が合意されている今後 3GPP, ITU-R にて 評価条件とともに具体的な要求条件を決定 容量 /km 倍 大容量化 高速通信 ユーザ体感スループット 100 倍 ( ピークデータレート 10Gbps 以上 ) 5G 低 2020 年の 5G 実現とその発展 株式会社 NTT ドコモ 5G 推進室 5G が目指す世界 ( 目標性能 ) 世界的にほぼ共通の要求条件が合意されている今後 3GPP, ITU-R にて 評価条件とともに具体的な要求条件を決定 容量 /km 2 1000 倍 大容量化 高速通信 ユーザ体感スループット 100 倍 ( ピークデータレート 10Gbps 以上 ) 5G 低遅延化 無線区間の遅延

More information

インターリーブADCでのタイミングスキュー影響のデジタル補正技術

インターリーブADCでのタイミングスキュー影響のデジタル補正技術 1 インターリーブADCでのタイミングスキュー影響のデジタル補正技術 浅見幸司 黒沢烈士 立岩武徳 宮島広行 小林春夫 ( 株 ) アドバンテスト 群馬大学 2 目次 1. 研究背景 目的 2. インターリーブADCの原理 3. チャネル間ミスマッチの影響 3.1. オフセットミスマッチの影響 3.2. ゲインミスマッチの影響 3.3. タイミングスキューの影響 4. 提案手法 4.1. インターリーブタイミングミスマッチ補正フィルタ

More information

format

format MIMO 復調法 信号の検出方法について 2012 年 5 月 10 日 -1- Multiple-Input Multiple-Output MIMO 同一時刻 同一周波数で信号を複数のアンテナから多重送信. 複数のアンテナから受信し信号処理を行うことで情報を復元するシステム. 使用する帯域幅が狭く, 多くの情報を送ることができる. 情報 A 信号分割 送信機 送信信号 x 1 x 2 x X h

More information

main.dvi

main.dvi FDTD S A Study on FDTD Analysis based on S-Parameter 18 2 7 04GD168 FDTD FDTD S S FDTD S S S S FDTD FDTD i 1 1 1.1 FDTD.................................... 1 1.2 FDTD..................... 3 2 S 5 2.1 FDTD

More information

LTE V2X a) Huan WANG LTE V2X for Realization of Connected Car Services Riichi KUDO a), Shinpei YASUKAWA, Tomoki MARUKO, Huan WANG, Satoshi NAGATA, and

LTE V2X a) Huan WANG LTE V2X for Realization of Connected Car Services Riichi KUDO a), Shinpei YASUKAWA, Tomoki MARUKO, Huan WANG, Satoshi NAGATA, and LTE V2X a) Huan WANG LTE V2X for Realization of Connected Car Services Riichi KUDO a), Shinpei YASUKAWA, Tomoki MARUKO, Huan WANG, Satoshi NAGATA, and Takehiro NAKAMURA ITS: Intelligent Transport Systems

More information

untitled

untitled 4 1 4.1................................................. 1 4.1.1........................................ 1-1 4 17 11 30 4.1 2001 49% 2,400 47% 6,000 2001 390 8% 2005 3000 1000 IT 1 ADSL(Asymmetric Digital

More information

( )

( ) NAIST-IS-MT0851137 2010 2 4 ( ) 1 OFDM(Orthogonal Frequency Division Multiplexing) (Single Frequency Network:SFN) 1, NAIST-IS- MT0851137, 2010 2 4. i 2 ISDB-T,,,, ii A Strdy on Improvement of Reception

More information

Microsoft PowerPoint - ①無線通信システム概要140409

Microsoft PowerPoint - ①無線通信システム概要140409 年 前 期 無 線 通 信 システム 第 回 無 線 通 信 システムの 概 要 IEEE8.a 無 線 LANを 例 に 荒 木 純 道 年 月 9 日 講 義 スケジュール( 前 半 ) 日 付 教 科 書 内 容 第 回 月 9 日 7 無 線 通 信 システムの 概 要 IEEE8.WLANを 例 に 第 回 月 6 日 他 無 線 通 信 システムのモデルとフェージング

More information

& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us

& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us 1,a) 1 1 1 1 2 2 2011 8 10, 2011 12 2 1 Bluetooth 36 2 3 10 70 34 A Health Management Service by Cell Phones and Its Usability Evaluation Naofumi Yoshida 1,a) Daigo Matsubara 1 Naoki Ishibashi 1 Nobuo

More information

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig Mover Design and Performance Analysis of Linear Synchronous Reluctance Motor with Multi-flux Barrier Masayuki Sanada, Member, Mitsutoshi Asano, Student Member, Shigeo Morimoto, Member, Yoji Takeda, Member

More information

Microsoft PowerPoint 情報通信工学8章.ppt [互換モード]

Microsoft PowerPoint 情報通信工学8章.ppt [互換モード] 情報通信工学 第 8 章 多元接続方式電話回線セルラー移動体通信衛星通信など 担当松藤 多元接続複数ユーザが通信を行う FDMA (Frequency Division Multiple Access) CSMA (Carrier Sense Multiple Access) 送信 1 受信 1 送信 2 受信 2 : 有線 無線 通信路雑音 +フェージング送信 n 受信 m TDMA (Time

More information

5989_0871JA.qxd

5989_0871JA.qxd Agilent 89650S Technical Overview 89650S 4080 MHz75 db3 Hz 26.5 GHzRF/ 89650SAgilentPSA 89601A E4440A PSA PSA Agilent PSAIF 10 MHz FFT 3 E4443A 20 MHz6.7 GHz E4445A 20 MHz13.2 GHz E4440A 20 MHz26.5 GHz

More information

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of IEEE802.11 [1]Bluetooth [2] 1 1 (1) [6] Ack (Ack) BEC FEC (BEC) BEC FEC 100 20 BEC FEC 6.19% 14.1% High Throughput and Highly Reliable Transmission in MANET Masaaki Kosugi 1 and Hiroaki Higaki 1 1. LAN

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp) ADC121S625 ADC121S625 12-Bit, 50 ksps to 200 ksps, Differential Input, Micro Power Sampling A/D Converter Literature Number: JAJSAB8 ADC121S625 12 50kSPS 200kSPS A/D ADC121S625 50kSPS 200kSPS 12 A/D 500mV

More information

Run-Based Trieから構成される 決定木の枝刈り法

Run-Based Trieから構成される  決定木の枝刈り法 Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network

More information

it-ken_open.key

it-ken_open.key 深層学習技術の進展 ImageNet Classification 画像認識 音声認識 自然言語処理 機械翻訳 深層学習技術は これらの分野において 特に圧倒的な強みを見せている Figure (Left) Eight ILSVRC-2010 test Deep images and the cited4: from: ``ImageNet Classification with Networks et

More information

Vol.53 No (July 2012) EV ITS 1,a) , EV 1 EV ITS EV ITS EV EV EV Development and Evaluation of ITS Information Commu

Vol.53 No (July 2012) EV ITS 1,a) , EV 1 EV ITS EV ITS EV EV EV Development and Evaluation of ITS Information Commu EVITS 1,a) 2 2 2011 10 21, 2012 4 2 EV 1 EV ITS EV ITS EV EV EV Development and Evaluation of ITS Information Communication System for Electric Vehicle Yuriko Hattori 1,a) Tomokazu Shimoda 2 Masayoshi

More information

Time and Frequency Division Multiplexing の設定

Time and Frequency Division Multiplexing の設定 Time and Frequency Division Multiplexing の設 定 このドキュメントでは DOCSIS 3.1 アップストリーム チャネルの Time and Frequency Division Multiplexing TaFDM 機能に関する Cisco cbr-8 シリーズ ルータのサポートについて説明しま す TaFDM サポートについて, 1 ページ TaFDM

More information

WMN Wi-Fi MBCR i

WMN Wi-Fi MBCR i 27 WMN Proposal of routing method that improves transmission capability in WMN 1185081 2016 2 26 WMN Wi-Fi MBCR i Abstract Proposal of routing method that improves transmission capability in WMN KOBAYASHI

More information

橡011207_IW2001_携帯電話基礎

橡011207_IW2001_携帯電話基礎 Internet Week2001 2001/12/7/Page 2 1 2001, by Hideo Okinaka, KDDI 1 2001/12/7/Page 3 PHS POI POI NTT POI POI POI POI 2001/12/7/Page 4 2 2001, by Hideo Okinaka, KDDI 0 A B C D E F G H J K 2001/12/7/Page

More information

DEIM Forum 2017 H2-2 Android LAN Android 1 Android LAN

DEIM Forum 2017 H2-2 Android LAN Android 1 Android LAN DEIM Forum 2017 H2-2 Android LAN 112-8610 2-1-1 163-8677 1-24-2 E-mail: {ayano,oguchi}@ogl.is.ocha.ac.jp, sane@cc.kogakuin.ac.jp Android 1 Android LAN Ayano KOYANAGI, Saneyasu YAMAGUCHI, and Masato OGUCHI

More information

untitled

untitled + From Tradeoffs of Receive and Transmit Equalization Architectures, ICC006,Bryan Casper, Intel Labs Transmitter Receiver 0 magnitude (db) 0 0 30 40 50 60 0 4 frequency (GHz). Receiver Transmitter FFE

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

(n ) 1. Ungerboe TCM (trellis oded modulation) 3 [4] (i ) (ii) (iii).1 TV [,3]. MPEG PCM 1/10. 3 (B.B.) 1/ B.B. (i ) AC AMI (ii) ( ) (n ) (iii) NRZ (i

(n ) 1. Ungerboe TCM (trellis oded modulation) 3 [4] (i ) (ii) (iii).1 TV [,3]. MPEG PCM 1/10. 3 (B.B.) 1/ B.B. (i ) AC AMI (ii) ( ) (n ) (iii) NRZ (i Fundamentals of Modulation and Demodulation Tehniques ----- Observations in the time and frequeny domains ----- Yoihi Saito Waayama University Abstra: This tutorial paper presents fundamental aspes of

More information

MIMO Throughput-aware Random Clustering Throughput-aware Random Clustering MATLAB MIMO MIMO MIMO MIMO MIMO MIMO [16] MIMO [1

MIMO Throughput-aware Random Clustering Throughput-aware Random Clustering MATLAB MIMO MIMO MIMO MIMO MIMO MIMO [16] MIMO [1 CSI MIMO 1,a) Bryan Ng 2 Winston Seah 2,b) 3,c) 1,d) 1 1 MIMO MIMO MIMO MIMO Throughput-aware Random Clustering Throughput-aware Random Clustering MIMO MATLAB 50 2.5 1.4 1. 2013 1 2014 1 65% 10 100 [1]

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

<4D F736F F F696E74202D2091E FCD91BD8F6489BB82C691BD8F E835A83582E >

<4D F736F F F696E74202D2091E FCD91BD8F6489BB82C691BD8F E835A83582E > 多重伝送と多重アクセス コミュニケーション工学 A 第 4 章 多重伝送と多重アクセス 多重伝送周波数分割多重 (FDM) 時分割多重 (DM) 符号分割多重 (CDM) 多重アクセス 多重伝送 地点から他の地点へ複数チャネルの信号を伝送するときに, チャネル毎に異なる通信路を用いることは不経済である. そこでつの通信路を用いて複数チャネルの信号を伝送するのが多重伝送である. 多重伝送の概念図 チャネル

More information

3 16 2 27 4497 LAN(Local Area Network) OFDM(Orthogonal Frequency Division Multiplexing) 12 3 3 12 3 12 33. F/B 22.7dB 3 F/B i 1 1 2 3 8 2.1................................. 8 2.2.............................

More information

7,, i

7,, i 23 Research of the authentication method on the two dimensional code 1145111 2012 2 13 7,, i Abstract Research of the authentication method on the two dimensional code Karita Koichiro Recently, the two

More information

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR Vol. 51 No. 11 2081 2088 (Nov. 2010) 2 1 1 1 which appended specific characters to the information such as identification to avoid parity check errors, before QR Code encoding with the structured append

More information

15群(○○○)-8編

15群(○○○)-8編 4 群 ( モバイル 無線 )- 1 編 ( 無線通信基礎 ) 3 章ディジタル無線方式の基礎 概要 ディジタル無線方式では, システムに対応して信号のやりとりを行う論理的なチャネルを確立するアクセス方式が重要となる. このため電話音声中心のシステム, パケットデータ中心のコンピュータネットワークシステム, 放送システムなどの各システムでは, ネットワークの構造, トラフィック状況から最適なマルチプルアクセス技術及びデュープレックス技術を採用する必要がある.

More information

5-先端研究.ppt

5-先端研究.ppt 0.08.05! Power Supply Overlaid Communication and Common Clock Delivery for Cooperative Motion Control IEEE International Symposium on Power Line Communications and Its Applications, pp.70-75 0 4!!! A Wireless

More information

5b_08.dvi

5b_08.dvi , Circularly Polarized Patch Antennas Combining Different Shaped Linealy Polarized Elements Takanori NORO,, Yasuhiro KAZAMA, Masaharu TAKAHASHI, and Koichi ITO 1. GPS LAN 10% [1] Graduate School of Science

More information

indd

indd 8 デジタルケーブルテレビ関連技術およびサービス動向 宮地悟史 KDDI( 株 ) ケーブルテレビ概要 1953 2 1955 Community Antenna Television Common Antenna Television CATV CATV CATV BS CATV サービス動向 全体概要 2010 9 図 -1 1 4,451 5,336 83% 4,890 91% 2,371 44%

More information

Vol.58 No (Mar. 2017) LAN MAC 1,a) , IoT LAN LAN AP MAC 1 Null Function Data Frame NFDF NFDF LAN NFDF LAN LAN MAC Null

Vol.58 No (Mar. 2017) LAN MAC 1,a) , IoT LAN LAN AP MAC 1 Null Function Data Frame NFDF NFDF LAN NFDF LAN LAN MAC Null LAN MAC 1,a) 1 2016 6 27, 2016 12 1 IoT LAN LAN AP MAC 1 Null Function Data Frame NFDF NFDF LAN NFDF LAN LAN MAC Null Function Data Frame Effectiveness of MAC Layer Information in Communication Quality

More information

IPSJ SIG Technical Report * Wi-Fi Survey of the Internet connectivity using geolocation of smartphones Yoshiaki Kitaguchi * Kenichi Nagami and Yutaka

IPSJ SIG Technical Report * Wi-Fi Survey of the Internet connectivity using geolocation of smartphones Yoshiaki Kitaguchi * Kenichi Nagami and Yutaka * Wi-Fi Survey of the Internet connectivity using geolocation of smartphones Yoshiaki Kitaguchi * Kenichi Nagami and Yutaka Kikuchi With the rapid growth in demand of smartphone use, the development of

More information

M9077A無線LAN a/b/g/n/ac M9391A PXIeベクトル・シグナル・アナライザ用Xシリーズ測定アプリケーション

M9077A無線LAN a/b/g/n/ac M9391A PXIeベクトル・シグナル・アナライザ用Xシリーズ測定アプリケーション M9077A LAN 802.11a/b/g/n/ac M9391A PXIe X Technical Overview IEEE 802.11a/b/g/n/ac LAN 802.11ac 20/40/80/160 MHz 80 80 MHz PCSCPI SCPI 1 M9391A PXIe VSA 4 LAN 802.11a/b/g/n/ac X Agilent M9391A PXIePXI

More information

27 送信電 ISSCC 2017 [5, 6, 7] PC CPU ASIC CPU ASIC AD/DA 1 制御 2: 制御 3: 4: LAN dbm 90 dbm 20 dbm 20 db 0 dbm 40 db AD 40 dbm 50 db

27 送信電 ISSCC 2017 [5, 6, 7] PC CPU ASIC CPU ASIC AD/DA 1 制御 2: 制御 3: 4: LAN dbm 90 dbm 20 dbm 20 db 0 dbm 40 db AD 40 dbm 50 db () 30 4 2 1 2 LAN 1 IEEE 802.11n 6 Mbps IEEE 802.11n 6 Mbps 82 dbm 20 dbm 82 dbm 160 90 dbm 20 dbm 110 db 1: 2 2018 4,,,, Vol.101, No.4, pp.387 393, 2018. [1] It is generally not possible for radios to

More information