スライド 1

Size: px
Start display at page:

Download "スライド 1"

Transcription

1 (8) 電気通信大学大学院情報理工学研究科末廣尚士

2 9. ロボットアームの逆運動学 ( 幾何 学的 ( 解析的 ) 解法 ) 何をしたいか 手首, 手先, ツールの 3 次元空間での位置や姿勢から, それを実現する関節角度を計算する. アームソリューション, アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合, 物の位置 姿勢は 3 次元空間で表現されることが普通である. したがってそれに必要な手首, 手先, ツールの位置や姿勢アームの位置や姿勢も 3 次元空間の位置 姿勢で与えられる. 2

3 例題 9-1: 3 自由度アームの関節角を [pi/6, pi/4, pi/2] としたときのベースから見たハンドの位置 >>> arm=create_arm() >>> arm.set_joints([pi/6,pi/4,pi/2]) >>> arm.hand.where(arm.base).xyzabc() [ , , , , , ] >>> では, 手先を v:[0.5, 0.3, 0.1] にするには関節角はいくつにしたらよいか? 3

4 - 3 自由度アームの逆運動学 手先の位置が θ 2,θ 3 を求める. base x wrist base y wrist base z wrist のとき, 関節角度 θ 1, 4

5 - 幾何学的 ( 解析的 ) 解法 まずは順運動学 base z wrist = bh + l1h + l2h cos θ 2 + l3h cos θ 2 + θ 3 base x wrist = L1 x hand cos θ 1 = l2h sin θ 2 + l3hsin θ 2 + θ 3 cos θ 1 base y wrist = L1 x hand sin θ 1 = l2h sin θ 2 + l3hsin θ 2 + θ 3 sin θ 1 where L1 x wrist = l2h sin θ 2 + l3h sin θ 2 + θ 3 5

6 - θ 1 の計算 base x wrist = L1 x wrist cos θ 1 base y wrist = L1 x wrist sin θ 1 よって,tan θ 1 = base y wrist base x wrist θ 1 = tan 1 base y wrist base x wrist π x < 0, y < 0 πτ2 x = 0, y < 0 tan 1 base y wrist base x wrist x > 0 πτ2 x = 0, y > 0 tan 1 base y wrist base x wrist + π x < 0, y 0 unknown x = 0, y = 0 もしくは,θ 1 = atan2 base y wrist, base x wrist 6

7 - θ 3 の計算 base z wrist = bh + l1h + l2h cos θ 2 + l3h cos θ 2 + θ 3 L1 x wrist = l2h sin θ 2 + l3h sin θ 2 + θ 3 ここで, X = L1 x wrist Z = base z wrist bh l1h (X 2 = base 2 x wrist とすると, X = l2h sin θ 2 + l3h sin θ 2 + θ 3 + base 2 y wrist ) Z = l2h cos θ 2 + l3h cos θ 2 + θ 3 両辺を 2 乗して加える, X 2 = l2h 2 sin 2 θ 2 + 2l2hl3h sin θ 2 sin θ 2 + θ 3 + l3h 2 sin 2 θ 2 + θ 3 Z 2 = l2h 2 cos 2 θ 2 + 2l2hl3h cos θ 2 cos θ 2 + θ 3 + l3h 2 cos 2 θ 2 + θ 3 X 2 + Z 2 = l2h 2 + l3h 2 + 2l2hl3h cos θ 2 cos θ 2 + θ 3 + sin θ 2 sin θ 2 + θ 3 7

8 - θ 3 の計算 ( つづき ) X 2 + Z 2 = l2h 2 + l3h 2 + 2l2hl3h cos θ 2 cos θ 2 + θ 3 + sin θ 2 sin θ 2 + θ 3 ここで cos α β = cos α cos β + sin α sin β を思い出して, α = θ 2 + θ 3,β = θ 2 とすると, X 2 + Z 2 = l2h 2 + l3h 2 + 2l2hl3h cos θ 3 ( 余弦定理の変種 ) cos θ 3 = X2 +Z 2 l2h 2 l3h 2 2l2hl3h よって, θ 3 = ± cos 1 X2 +Z 2 l2h 2 l3h 2 2l2hl3h 8

9 - θ 2 の計算 θ 3 が, + の場合 - の場合 ψ = sin 1 Z X 2 + Z 2 アームの姿勢が変わっても実は式は同じ. ここの符号が変わるだけ. ψ = sin 1 Z X 2 + Z 2 φ = sin 1 l3h sin θ 3 X 2 + Z 2 θ 2 = Τ π 2 ψ φ φ = sin 1 l3h sin θ 3 X 2 + Z 2 θ 2 = Τ π 2 ψ φ 9

10 - 結果のグラフィックス表示 1 ψ = sin 1 Z X 2 +Z 2 φ = sin 1 l3h sin θ 3 X 2 +Z 2 θ 2 = πτ2 ψ φ 10

11 - 結果のグラフィックス表示 2 ψ = sin 1 Z X 2 +Z 2 φ = sin 1 l3h sin θ 3 X 2 +Z 2 θ 2 = πτ2 ψ φ 11

12 - 実はまだ他に解がある θ 1 を裏に回して,θ 2 と θ 3 を反対に曲げる. θ 1 = atan2 base y wrist, base x wrist 12

13 例題 9-1: 解答例 表裏が分かるようにマークを付ける 目標は ( 一応 )FRAME で与える >>> arm.mark() >>> a=arm.solve(frame(vec=vector(0.5,0.3,0.1))) >>> a [[ , , ], [ , , ], [ , , ], [ , , ]] >>> arm.set_joints(a[0]) >>> arm.wrist.where(arm.base).xyzabc() [0.5, , , , , ] >>> for pp in a :... arm.set_joints(pp)... sleep(2)... 13

14 例題 9-2 手首を直線的に動かす 3 自由度アームを [pi/6,pi/4,pi/2] から [-pi/6,pi/8,2*pi/3] へ手首が直線的に移動するように動かす 14

15 例題 9-2 解答方針 まず順運動学. 関節角が [pi/6,pi/4,pi/2],[-pi/6,pi/8,2*pi/3] のときの手首の 3 次元位置を求める ( 順運動学 ). 上記二つの三次元位置を結ぶ線分上に多数の分割点を生成する. そして逆運動学. それぞれの分割点における関節角度を求める. 得られた関節角度をロボットアームに順次指令する 15

16 手首位置を刻む関数 def mk_pos_seq(arm,th1,th2,n) : arm.set_joints(th1) pos1=arm.wrist.where(arm.base).vec arm.set_joints(th2) pos2=arm.wrist.where(arm.base).vec posd=(1.0/n)*(pos2-pos1) pos=pos1 pos_seq=[pos] for j in range(n) : pos = pos+posd pos_seq.append(pos) return pos_seq 16

17 逆運動学 刻んだ手首位置でアームを動かす def mv_arm_seq(arm,pos_seq): for pos in pos_seq : ths=arm.solve(frame(vec=pos)) arm.set_joints(ths[0]) visual.rate(10) return ths[0] 刻んだ手首位置の関節角度を求める def mk_ik_seq(arm,pos_seq) : return [arm.solve(frame(vec=pos))[0] for pos in pos_seq] 17

18 例題 9-2 解答例 まずは手首位置を刻んで動かしてみる arm=create_arm() nn= 100 th1=[pi/6,pi/4,pi/2] th2=[-pi/6,pi/8,2*pi/3] pos_seq= mk_pos_seq(arm,th1,th2,nn) arm.set_joints(th1) raw_input("ok?") mv_arm_seq(arm,pos_seq) raw_input("ok?") 18

19 手首位置をプロット tt= [1.0*i/nn for i in range(nn+1)] plt.plot(tt,pos_seq) plt.xlabel("div") plt.ylabel("xyz") plt.legend(["x","y","z"]) plt.show() 19

20 手首位置をプロット 手首位置は刻んだ通り直線的に変化している 20

21 関節角をプロット th_seq= mk_ik_seq(arm,pos_seq) plt.plot(tt,th_seq) plt.xlabel("div") plt.ylabel("theta") plt.legend(["th1","th2","th3"]) plt.show() 21

22 関節角をプロット 関節角は曲線を描く 22

23 手首位置を三次元プロットする 参考 : from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.gca(projection='3d') xx=[p[0] for p in pos_seq] yy=[p[1] for p in pos_seq] zz=[p[2] for p in pos_seq] ax.plot(xx,yy,zz) ax.legend(["xyz"]) plt.show() 23

24 手首位置を三次元プロットする 24

25 例題 9-3 hand を目標位置に動かす では, ハンドの位置を v:[0.5, 0.3, 0.1] にするには関節角はいくつにしたらよいか? 25

26 例題 9-3 解答例 ( 失敗 ) ( 案 1) hand から wrist へ座標変換でもどしてやる hand から wrist へどうやってもどす? とりあえず wrist で解いて,z 方向に戻してみる >>> zz=arm.wrist.where(arm.base).mat.col(2) >>> hh=frame(vec=vector(0.5,0.3,0.1)-0.1*zz) >>> b=arm.solve(hh) >>> arm.set_joints(b[0]) >>> arm.wrist.where(arm.base).xyzabc() [ , , , , , ] >>> arm.hand.where(arm.base).xyzabc() [ , , , , , ] 失敗! 微妙に違う 26

27 - 失敗の理由 3 自由度アームの場合, 位置を変えると姿勢も変わってしまう. arm_sol のプログラムの中身を変更しなくてはならない. th3=acos((xx_2+zz_2-self.l2h**2-self.l3h**2)/2.0/self.l2h/self.l3h) psi=asin(zz/sqrt(xx_2+zz_2)) phi=asin(self.l3h*sin(th3)/sqrt(xx_2+zz_2)) ツール位置が z 方向のシフトだけならこれでよいが, 位置や姿勢がかかわると汎用的に処理するのは幾何的解法では結構難しい. 後で数値解法で解決する. 27

28 例題 9-4: 6 関節アームの逆運動学 手首座標系が目標座標系 target に一致するように関節角を求めよ (arm6dof.py) 28

29 - 6 自由度アームの解の求め方の例 6 自由度アームの場合, ハンドの位置だけでなく姿勢も目標に合わせることができるので目標の座標系にハンド座標が一致しているとして逆変換で手首座標系の目標座標系を設定することができる 29

30 - 6 関節アームの逆運動学 (1) (1)joint 5 の位置を求める 手首座標の z 軸方向 lh5+lh6(-0.15) の位置 def arm_sol(self,target) : self.solutions=[] pos=target.vec z_axis=target.mat.col(2) pos=pos-((self.l5h+self.l6h)*z_axis).. 30

31 - 6 関節アームの逆運動学 (2) (2)1,2,3 は 前の l3h =l3h+l4h(0.4) としたときの 3 関節と同様に解くことが出来る def arm_sol_pos(self,pos) :... 31

32 - 6 関節アームの逆運動学 (3) (3)joint 5 の回転軸 (y) は 手首 z 軸と link3z 軸に垂直 回転角はそれらの間の角度 (2 方向あることに注意 ) def arm_sol_ori(self,target,th123) : T123=self.fk123(th123) zt=target.mat.col(2) z3=t123.mat.col(2).. 32

33 - 6 関節アームの逆運動学 (4) (4)joint 4 の回転角は link5y と link3y の成す角 def arm_sol_ori(self,target,th123) : T123=self.fk123(th123) zt=target.mat.col(2) z3=t123.mat.col(2).. 33

34 - 6 関節アームの逆運動学 (5) (5)joint 6 の回転角は link5y と wrist(=target) y の成す角 def arm_sol_ori(self,target,th123) : T123=self.fk123(th123) zt=target.mat.col(2) z3=t123.mat.col(2).. 34

35 例題 9-4: 解答例のまとめ (1)joint 5 の位置を求める 手首座標の z 軸方向 の位置 (2)1-3 は l3h=l3+l4=0.4 としたときの 3 関節と同様に解くことが出来る (3)joint 5 の回転軸 (y) は 手首 z 軸と link3z 軸に垂直 回転角はそれらの間の角度 (2 方向あることに注意 ) 35

36 例題 9-4: 解答例のまとめ (4)joint 4 の回転角は link5y と link3y の成す角 (5)joint 6 の回転角は link5y と wrist y の成す角 36

37 - 次回の予告 逆運動学の数値解法 ニュートン法 ヤコビアン 37

スライド 1

スライド 1 (10) 2016.6.22 電気通信大学大学院情報理工学研究科末廣尚士 14. ロボットアームの逆運動学 ( 幾何 学的 ( 解析的 ) 解法 ) 何をしたいか 手首, 手先, ツールの 3 次元空間での位置や姿勢から, それを実現する関節角度を計算する. アームソリューション, アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合, 物の位置 姿勢は 3 次元空間で表現されることが普通である.

More information

PowerPoint Presentation

PowerPoint Presentation 知能システム論 1 (9) 201365 情報システム学研究科情報メディアシステム学専攻知能システム学講座末廣尚士 12 ロボットアームの逆運動学 ( 幾何学的 ( 解析的 ) 解法 ) 何をしたいか 手首 手先 ツールの3 次元空間での位置や姿勢から それを実現する関節角度を計算する アームソリューション アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合 物の位置 姿勢は3

More information

PowerPoint Presentation

PowerPoint Presentation 知能システム論 1 (11) 2012.6.20 情報システム学研究科情報メディアシステム学専攻知能システム学講座末廣尚士 13. ロボットアームの逆運動学 ( 幾何的解法 ) 何をしたいか 手首 手先 ツールの3 次元空間での位置や姿勢から それを実現する関節角度を計算する アームソリューション アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合 物の位置 姿勢は3 次元空間で表現されることが普通である

More information

PowerPoint Presentation

PowerPoint Presentation 知能システム論 1 (9) 2015.6.17 情報システム学研究科情報メディアシステム学専攻知能システム学講座末廣尚士 13. アームモデルの Python による表現 理想ロボット :ArmWithHand 構造は関係なし move: 手先や持った物を動かす ハンド :Hand open, close, width アームのリンクの計算 :Link set_jparam シリアルリンクアーム :LinkedArm

More information

スライド 1

スライド 1 (11-2) 2019.6.26 電気通信大学大学院情報理工学研究科末廣尚士 - 手先の軌道生成 ( 再掲 ) その都度, 逆運動学計算をするとは少し手間がかかる. 本当に必要か? 分割が小さければ, ニュートン ラフソン法で 収束 させる必要はないかもしれない. 2 - 直線軌道で分割する ( 再掲 ) 3 - 関節角の微少量をもとめる ( 再掲 ) 4 - 分解運動 ( 速度 ) 制御 ( 再掲

More information

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード]

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード] ロボットの運動学 順運動学とは 座標系の回転と並進 同次座標変換行列 Denavit-Hartenberg の表記法 多関節ロボットの順運動学 レポート課題 & 中間試験について 逆運動学とは ヤコビアン行列 運動方程式 ( 微分方程式 ) ロボットの運動学 動力学 Equation of motion f ( ( t), ( t), ( t)) τ( t) 姿勢 ( 関節角の組合せ ) Posture

More information

Microsoft PowerPoint - Robotics_13_review_1short.pptx

Microsoft PowerPoint - Robotics_13_review_1short.pptx 東北文化学園大学 科学技術学部知能情報システム学科 費 仙鳳 ロボットの概要 数学的基礎 座標変換 同次変換 オイラー角 ロールピッチヨウ角 座標系設定 リンクパラメータ 腕型ロボットの構造 腕型ロボットの順運動学 腕型ロボットの逆運動学 腕型ロボットのヤコビアン 速度 特異姿勢 1 2 3 4 1 三角関数 ベクトルと行列 並進変換と回転変換 同次変換行列の導入 オイラー角 (Z-Y-Z) ロール

More information

スライド 1

スライド 1 機構学 Part6: ロボットの運動学 金子真 きんにく筋肉 筋紡錘 : 筋肉の長さを測るセンサ モータ センサ ロボットの運動学 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 ワイヤ駆動式ロボット ワイヤ駆動式ロボット ワイヤプーリ機構の場合

More information

PowerPoint Presentation

PowerPoint Presentation 知能システム論 1 (12) 2013.6.26 情報システム学研究科情報メディアシステム学専攻知能システム学講座末廣尚士 - 自由な構造のシリアルアームを作る larm_w_hand_arm_sol.py arm6dof のうち以下の関数は関節数が 6 以上ならいくつでも使えるので larm_w_hand_arm_sol.py に移す solve() ready(), park() move()

More information

スライド 1

スライド 1 (5-2) 2017.5.17 電気通信大学大学院情報理工学研究科末廣尚士 6. 座標系の連鎖 何をしたいか 座標系を使って対象物の位置 姿勢を管理する 対象物の属性 アプローチ点 把持点など 形状 質量 慣性モーメント 物と物との関係 何のために 作業プログラムの記述 オフラインプログラミング 複数腕での作業 カメラ 移動台車などとの連携 2 - 座標系を用いた表現 table 上の place_a

More information

機構学 平面機構の運動学

機構学 平面機構の運動学 問題 1 静止座標系 - 平面上を運動する節 b 上に2 定点,Bを考える. いま,2 点の座標は(0,0),B(50,0) である. 2 点間の距離は 50 mm, 点の速度が a 150 mm/s, 点 Bの速度の向きが150 である. 以下の問いに答えよ. (1) 点 Bの速度を求めよ. (2) 瞬間中心を求めよ. 節 b a (0,0) b 150 B(50,0) 問題 1(1) 解答 b

More information

断面の諸量

断面の諸量 断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G

More information

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63> 土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である

More information

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき,

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき, 図形と計量 直角三角形と三角比 P 木の先端を P, 根元を Q とする 地点の目の位置 ' から 木の先端への仰角が 0, から 7m 離れた Q=90 と なる 地点の目の位置 ' から木の先端への仰角が であ るとき, 木の高さを求めよ ただし, 目の高さを.m とし, Q' を右の図のように定める ' 0 Q' '.m Q 7m 要点 PQ PQ PQ' =x とおき,' Q',' Q' を

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1 代数 幾何 < ベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル :, 空間ベクトル : z,, z 成分での計算ができるようにすること ベクトルの内積 : os 平面ベクトル :,, 空間ベクトル :,,,, z z zz 4 ベクトルの大きさ 平面上 : 空間上 : z は 良く用いられる 5 m: に分ける点 : m m 図形への応用

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

PowerPoint Presentation

PowerPoint Presentation 知能システム論 1 (13) 2014.7.2 情報システム学研究科情報メディアシステム学専攻知能システム学講座末廣尚士 16 物体の位置 姿勢計測 ロボットでのハンドリングに不可欠 物差しで測るステレオカメラで測る depthカメラ ( たとえばkinect) で測る depthカメラのデータは座標変換で議論できるイメージカメラの場合は透視投影変換を考える必要がある 物体の位置 姿勢計測は座標系の決定やキャリブレーションの基本でもある

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e Wavefront Sensor 法による三角共振器のミスアラインメント検出 齊藤高大 新潟大学大学院自然科学研究科電気情報工学専攻博士後期課程 2 年 214 年 8 月 6 日 1 はじめに Input Mode Cleaner(IMC) は Fig.1 に示すような三角共振器である 懸架鏡の共振などにより IMC を構成する各ミラーが角度変化を起こすと 入射光軸と共振器軸との間にずれが生じる

More information

測量試補 重要事項

測量試補 重要事項 用地測量面積計算 < 試験合格へのポイント > 座標法による面積計算に関する問題は その出題回数からも定番問題と言えるが 計算自体はさほど難しいものではなく 計算表を作成しその中に数値を当てはめていくことで答えを導くことができる 過去問をしっかりとこなし 計算手順を覚えれば点の取りやすい問題と言える 士補試験に出題される問題は過去の例を見ても 座標が簡単な数値に置き換えることができるようになっている

More information

Microsoft Word - kogi10ex_main.docx

Microsoft Word - kogi10ex_main.docx 機能創造理工学 Ⅱ 期末試験 追試験問題 ( 病欠等による ) 途中の計算を必ず書こう 答えのみでは採点できない 問. 二次元面内を運動する調和振動子のラグランジアン L ( ) ( ) を 極座標, に変換し 極座標でのオイラーラグランジュ方程式を書こう ( 解く必要はない ) 但し, は定数であり また 極座標の定義は cos, sin である 問. 前問において極座標, に共役な一般化運動量,

More information

2013年度 九州大・理系数学

2013年度 九州大・理系数学 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ a> とし, つの曲線 y= ( ), y= a ( > ) を順にC, C とする また, C とC の交点 P におけるC の接線をl とする 以下 の問いに答えよ () 曲線 C とy 軸および直線 l で囲まれた部分の面積をa を用いて表せ () 点 P におけるC の接線と直線 l のなす角を ( a) とき, limasin θ(

More information

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと 567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

2017年度 千葉大・理系数学

2017年度 千葉大・理系数学 017 千葉大学 ( 理系 ) 前期日程問題 1 解答解説のページへ n を 4 以上の整数とする 座標平面上で正 n 角形 A1A A n は点 O を中心とする半径 1 の円に内接している a = OA 1, b = OA, c = OA 3, d = OA4 とし, k = cos とおく そして, 線分 A1A3 と線分 AA4 との交点 P は線分 A1A3 を n :1に内分するとする

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 . 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

07_dist_01.pdf.pdf

07_dist_01.pdf.pdf cos θ sin θ R(θ) = ( sin θ cos θ ) (xi+1, yi+1) θ (xi, yi) z R x (θ) = 1 0 0 0 cos θ sin θ 0 sin θ cos θ y R y (θ) = cos θ 0 sin θ 0 1 0 sin θ 0 cos θ x R z (θ) = cos θ sin θ 0 sin θ cos θ 0 0 0 1 指数増殖モデルのおさらい

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 行列演算と写像 ( 次変換 3 拡大とスカラー倍 p ' = ( ', ' = ( k, kk p = (, k 倍 k 倍 拡大後 k 倍拡大の関係は スカラー倍を用いて次のように表現できる ' = k ' 拡大前 拡大 4 拡大と行列の積 p ' = ( ', '

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

2011年度 東京工大・数学

2011年度 東京工大・数学 東京工業大学前期日程問題 解答解説のページへ n n を自然数とする 平面上で行列 n( n+ ) n+ の表す 次変換 ( 移動とも いう ) を n とする 次の問いに答えよ () 原点 O(, ) を通る直線で, その直線上のすべての点が n により同じ直線上に移 されるものが 本あることを示し, この 直線の方程式を求めよ () () で得られた 直線と曲線 (3) を求めよ n Sn 6

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

測量士補試験 重要事項 基準点測量「偏心補正計算」

測量士補試験 重要事項 基準点測量「偏心補正計算」 測量士補試験重要事項基準点測量 偏心補正計算 (Vr.0) 偏心補正計算 < 試験合格へのポイント > 偏心補正計算は 偏心補正計算の出題はその計算方法から 正弦定理を用いるものと余弦定理を用いるものに大別されるが 出題は正弦定理を用いる問題が主である 正弦定理を用いる問題は 与えられた数値を単に公式に当てはめればよいため 比較的簡単に解答することができる また ほぼ 100% の確率で問題文に図が示してあるため

More information

Microsoft Word - 201hyouka-tangen-1.doc

Microsoft Word - 201hyouka-tangen-1.doc 数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した . はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと

More information

重力方向に基づくコントローラの向き決定方法

重力方向に基づくコントローラの向き決定方法 ( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro Yamaguchi@bandainamcogames.co.jp 1 M M v 0, v 1, v 2 v 0 v

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

PoincareDisk-3.doc

PoincareDisk-3.doc 3. ポアンカレ円盤上の 次分数変換この節以降では, 単に双曲的直線, 双曲的円などといえば, 全てポアンカレ円盤上の基本図形とします. また, 点 と点 B のポアンカレ円盤上での双曲的距離を,[,B] と表します. 3. 双曲的垂直 等分線 ユークリッドの原論 において 円 双曲的円, 直線 双曲的直線 の置き換えを行うだけで, 双曲的垂直 等分線, 双曲的内心, 双曲的外心などを 機械的に (

More information

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = = arctan arctan arctan arctan 2 2000 π = 3 + 8 = 3.25 ( ) 2 8 650 π = 4 = 3.6049 9 550 π = 3 3 30 π = 3.622 264 π = 3.459 3 + 0 7 = 3.4085 < π < 3 + 7 = 3.4286 380 π = 3 + 77 250 = 3.46 5 3.45926 < π < 3.45927

More information

連続講座 断層映像法の基礎第 29 回 : 篠原広行 他 断層映像法の基礎第 29 回 2 次元ファンビームの投影と画像再構成 篠原広行 II 梶原宏則 II 中世古和真 1 ) 橘篤志 II 橋本雄幸 2) 首都大学東京人間健康科学研究科放射線科学域 21 横浜愈 l 英短期大学情報学科 はじめに

連続講座 断層映像法の基礎第 29 回 : 篠原広行 他 断層映像法の基礎第 29 回 2 次元ファンビームの投影と画像再構成 篠原広行 II 梶原宏則 II 中世古和真 1 ) 橘篤志 II 橋本雄幸 2) 首都大学東京人間健康科学研究科放射線科学域 21 横浜愈 l 英短期大学情報学科 はじめに 連続講座 断層映像法の基礎第 29 回 : 篠原広行 他 断層映像法の基礎第 29 回 2 次元ファンビームの投影と画像再構成 篠原広行 II 梶原宏則 II 中世古和真 1 ) 橘篤志 II 橋本雄幸 2) 首都大学東京人間健康科学研究科放射線科学域 21 横浜愈 l 英短期大学情報学科 はじめに第 28 固までで レジストレーションについてその基本から非剛体レジストレーションまで解説してきた 今回から直接

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

応用数学A

応用数学A 応用数学 A 米田 戸倉川月 7 限 1930~2100 西 5-109 V を :x 2 + y 2 + z 2 = 4 で囲まれる内部とする F = ye x xe y + ze z FdV = V e x e y e z F = = 2e z 2e z dv = 2e z 3 23 = 64π 3 e z y x z 4π V n Fd = 1 F nd 2 F nd 法線ベクトル n g x,

More information

Chap3.key

Chap3.key 区分求積法. 面積 ( )/ f () > n + n, S 長方形の和集合で近似 n f (n ) リーマン和 f (n ) 区分求積法 リーマン和 S S n n / n n f ()d リーマン積分 ( + ) + S (, f ( )) 微分の心 Zoom In して局所的な性質を調べる 積分の心 Zoom Ou して大域的な性質を調べる 曲線の長さ 領域の面積や体積 ある領域に含まれる物質の質量

More information

相関係数と偏差ベクトル

相関係数と偏差ベクトル 相関係数と偏差ベクトル 経営統計演習の補足資料 07 年 月 9 日金沢学院大学経営情報学部藤本祥二 相関係数の復習 r = s xy s x s y = = n σ n i= σn i= n σ n i= n σ i= x i xҧ y i തy x i xҧ n σ n i= y i തy x i xҧ x i xҧ y i തy σn i= y i തy 式が長くなるので u, v の文字で偏差を表すことにする

More information

Microsoft PowerPoint - qcomp.ppt [互換モード]

Microsoft PowerPoint - qcomp.ppt [互換モード] 量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??

More information

Microsoft PowerPoint - 応用数学8回目.pptx

Microsoft PowerPoint - 応用数学8回目.pptx 8- 次の 標 : 複素関数 ( 正則関数 ) の積分 8- 実関数 : 定積分 講義内容 名城 学理 学部材料機能 学科岩 素顕 複素関数の積分について学ぶ 複素関数の積分 複素積分の性質 周回積分の解法 コーシーの積分定理 コーシーの積分公式 グルサーの公式 - 定義 複素関数の積分 : 線積分 今後の内容 区分的に滑らかな曲線に沿って複素関数の積分を計算する 複素関数の積分の性質に関して議論する

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

学習指導要領

学習指導要領 (1) 数と式 ア整式 ( ア ) 式の展開と因数分解二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること (ax b)(cx d) acx (ad bc)x bd などの基本的な公式を活用して 二次式の展開や因数分解ができる また 式の置き換えや一文字に着目するなどして 展開 因数分解ができる ( 例 ) 次の問に答えよ (1) (3x a)(4x

More information

1 P2 P P3P4 P5P8 P9P10 P11 P12

1 P2 P P3P4 P5P8 P9P10 P11 P12 1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520

More information

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8 [N/m] m[g] mẍ x (N) x. f[hz] f π ω π m ω πf[rd/s] m ω 4π f [Nm/rd] J[gm ] J θ θ (gm ) θ. f[hz] f π ω π J J ω 4π f /8 θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ

More information

2015年度 金沢大・理系数学

2015年度 金沢大・理系数学 05 金沢大学 ( 理系 ) 前期日程問題 解答解説のページへ四面体 OABC において, 3 つのベクトル OA, OB, OC はどの つも互いに垂直で あり, h > 0 に対して, OA, OB, OC h とする 3 点 O, A, B を通る平面上の点 P は, CP が CA と CB のどちらとも垂直となる点であるとする 次の問いに答えよ () OP OA + OB とするとき, と

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

CG

CG Grahics with Processig 7-6 座標変換と同次座標 htt://vilab.org 塩澤秀和 6-7 H. SHIOZAWA htt://vilab.org 6. * 座標系 座標系の変換 座標系 目盛りのつけかた 原点の位置 軸と 軸の方向 軸と 軸の目盛りの刻み 論理座標系 描画命令で使う目盛り ( 座標系 ) をつけかえることができる 論理座標系 描画命令で使う 座標 画面座標系

More information

DVIOUT

DVIOUT 第 3 章 フーリエ変換 3.1 フーリエ積分とフーリエ変換 第 章では 周期を持つ関数のフーリエ級数について学びました この章では 最初に 周期を持つ関数のフーリエ級数を拡張し 周期を持たない ( 一般的な ) 関数のフーリエ級数を導きましょう 具体的には 関数 f(x) を区間 L x L で考え この L を限りなく大きくするというアプローチを取ります (L ) なお ここで扱う関数 f(x)

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

学力スタンダード(様式1)

学力スタンダード(様式1) (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 稔ヶ丘高校学力スタンダード 有理数 無理数の定義や実数の分類について理解し ている 絶対値の意味と記号表示を理解している 実数と直線上の点が一対一対応であることを理解 し 実数を数直線上に示すことができる 例 実数 (1) -.5 () π (3) 数直線上の点はどれか答えよ

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 千早高校学力スタンダード 自然数 整数 有理数 無理数の用語の意味を理解す る ( 例 ) 次の数の中から自然数 整数 有理 数 無理数に分類せよ 3 3,, 0.7, 3,,-, 4 (1) 自然数 () 整数 (3) 有理数 (4) 無理数 自然数 整数 有理数 無理数の包含関係など

More information

<4D F736F F D E682568FCD CC82B982F192668BAD9378>

<4D F736F F D E682568FCD CC82B982F192668BAD9378> 7. 組み合わせ応力 7.7. 応力の座標変換載荷 ( 要素 の上方右側にずれている位置での載荷を想定 図 ( この場合正 ( この場合負 応力の座標変換の知識は なぜ必要か? 例 土の二つの基本的せん断変形モード : - 三軸圧縮変形 - 単純せん断変形 一面せん断変形両者でのせん断強度の関連を理解するためには 応力の座標変換を理解する必要がある 例 粘着力のない土 ( 代表例 乾燥した砂 のせん断破壊は

More information

スライド 1

スライド 1 (10-1) 2019.6.19 電気通信大学大学院情報理工学研究科末廣尚士 16. ロボットアーム RTC - 6 自由度ロボットアーム 6 回転関節シリアルリンク 2 - ロボットアーム RTC 入力 目標関節角度 :target_joints TimedDoubleSeq 型 ( 長さ 6), 単位はラジアン ハンドの開き幅 :h_width TimedDouble 型単位はメートル 出力 実際の関節角度

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

数 IB( 植松 ) 2006 年夏学期解答 ( 兼ノート ) (2007 年のは課題プリでやってしまったので ) 1 (a) 補完公式を使う問題です 補完公式とは n+1 個の点を通る n 次の多項式を求める公式のことです 例 n=3 x y y0 y1 y2 y3 このデータを補

数 IB( 植松 ) 2006 年夏学期解答 ( 兼ノート ) (2007 年のは課題プリでやってしまったので ) 1 (a) 補完公式を使う問題です 補完公式とは n+1 個の点を通る n 次の多項式を求める公式のことです 例 n=3 x y y0 y1 y2 y3 このデータを補 数 IB( 植松 ) 26 年夏学期解答 ( 兼ノート ) (27 年のは課題プリでやってしまったので ) (a) 補完公式を使う問題です 補完公式とは n+ 個の点を通る n 次の多項式を求める公式のことです 例 n=3 x 2 3 y y y y2 y3 このデータを補完して得られる多項式を y=ax 3 +Bx 2 +Cx+D と置きます データより y = D y = A + B + C +

More information

2017年度 長崎大・医系数学

2017年度 長崎大・医系数学 07 長崎大学 ( 医系 ) 前期日程問題 解答解説のページへ 以下の問いに答えよ () 0 のとき, si + cos の最大値と最小値, およびそのときの の値 をそれぞれ求めよ () e を自然対数の底とする > eの範囲において, 関数 y を考える この両 辺の対数を について微分することにより, y は減少関数であることを示せ また, e< < bのとき, () 数列 { } b の一般項が,

More information