Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき,
|
|
|
- きよたつ かたづ
- 6 years ago
- Views:
Transcription
1 図形と計量 直角三角形と三角比 P 木の先端を P, 根元を Q とする 地点の目の位置 ' から 木の先端への仰角が 0, から 7m 離れた Q=90 と なる 地点の目の位置 ' から木の先端への仰角が であ るとき, 木の高さを求めよ ただし, 目の高さを.m とし, Q' を右の図のように定める ' 0 Q' '.m Q 7m 要点 PQ PQ PQ' =x とおき,' Q',' Q' を x を用いて表し, =tan0 =, =tan = を利用します Q Q ' Q' ' において, 三平方の定理を用いて x を求めます PQ' =x とおく P' Q' =0 より PQ =tan0,tan0 = であるので ' Q' = x Q P' Q' = より PQ =tan,tan = であるので ' Q' =x Q ' Q' ' は直角三角形なので, 三平方の定理により ( x) +x =7 x 9 = x x x>0 より x= 7 =. 7 したがって, 木の高さは.+.=m 90 -θ,80 -θの三角比 () 次の三角比を より小さい角の三角比で表せ sin70 cos tan0 () 0 <θ<90 のとき,sin(90 +θ),cos(90 +θ),tan(90 +θ) を,θの三角比で表せ
2 要 点 sin(90-θ= ) cosθ cos(90-θ= ) sinθ tan(90-θ= ) tanθ θ r x 90 θ y θ r 90 θ y x sin(80 -θ= ) sinθ cos( 80 -θ=- ) cosθ tan(80 -θ=- ) tanθ y 80 θ - -x θ x () 90-0 =70 であるから sin70 =sin(90-0 )=cos0 =80 - であるから cos =cos(80 - )=-cos 0 =80-0 であり,0 =90-0 であるから tan0 =tan(80-0 )=-tan0 =-tan(90-0 )=- tan 0 () 0 <θ<90 のとき,90 +θ は鈍角になるから 80 -(90 +θ) を考える 80 -(90 +θ)=90 -θ であるから sin(90 +θ)=sin{80 -(90 +θ)}=sin(90 -θ)=cosθ cos(90 +θ)=-cos{80 -(90 +θ)}=-cos(90 -θ)=-sinθ tan(90 +θ)=-tan{80 -(90 +θ)}=-tan(90 -θ)=- tan θ 三角比の相互関係 () 0 θ 90 とする cosθ= 7 のとき,sinθ と tanθ の値を求めよ () 0 θ 80 とする sinθ= のとき,cosθ と tanθ の値を求めよ () 0 θ 80 とする tanθ=- のとき,sinθ と cosθ の値を求めよ 要 点 次の三角比の相互関係を用います 0 θ 80 とする ただし,tanθ では θ 90 とする sin θ+cos sinθ θ= tanθ= cos θ +tan θ= cos θ
3 () sin θ+cos θ= から sin θ=-cos θ=- 7 sinθ また tanθ= = cos θ 7 = 7 = 9 sinθ>0 であるから sinθ= 7 () sin θ+cos θ= から cos θ=-sin 8 θ=- = 9 (ⅰ) cosθ>0 のとき 8 cosθ= = 9 (ⅱ) cosθ<0 のとき 8 cosθ=- =- 9 (ⅰ),(ⅱ) から (cosθ,tanθ)= () +tan θ= cos θ から sinθ また tanθ= = cos θ = = sinθ また tanθ= = cos θ - =- =-,, -,- =+(-) = cos θ= cos θ 0 θ 80,tanθ=-<0 であるから 90 <θ<80 よって cosθ<0 したがって cosθ= - = - また sinθ=tanθ cosθ=(-) - = 三角方程式 三角不等式 0 θ 80 のとき, 次の問いに答えよ () 等式 sinθ= を満たす θを求めよ () 不等式 sinθ> を満たす θの範囲を求めよ 要点角 θの三角比の値から, 角 θ(0 θ 80 ) を求めることができます sinθ=s を満たすθ cosθ=c を満たすθ tanθ=t を満たすθ s 80 -θ y=s t - θ - θ θ c - 0 s< なら θ,80 -θ - c t 0 のとき,θ はただ つ s= なら θ=90 θ はただ つ t=0 なら θ=0,80
4 () sinθ= から sinθ= 半径 の円周上で,y 座標が となる Q P 点は, 右の図の 点 P,Q である 求める θ は, OP と OQ である から θ=0,0 () sinθ> から sinθ> () より,sinθ= を満たす θ は θ=0,0 よって, 右の図から sinθ> を 満たす θ の範囲は 0 <θ<0-0 0 三角比の対称式の値 0 θ 80,sinθ+cosθ= のとき, 次の値を求めよ () sinθcosθ () sinθ-cosθ () tanθ 要 点 () sinθ+cosθ= の両辺を 乗します () まず,(sinθ-cosθ) の値を求めます () sinθ+cosθ= と () から,sinθ,cosθ を求めます () sinθ+cosθ= の両辺を 乗すると sin θ+sinθcosθ+cos θ= sin θ+cos θ= から +sinθcosθ= よって,sinθcosθ=- から sinθcosθ=- 8
5 () (sinθ-cosθ) =sin θ-sinθcosθ+cos θ sin θ+cos θ=,() から sinθcosθ=- であるから (sinθ-cosθ) =- - = 8 8 ここで,0 θ 80 のとき sinθ 0 であることと,sinθcosθ=- <0 から cosθ<0 8 よって,sinθ-cosθ>0 である したがって sinθ-cosθ= = () 条件と () から sinθ+cosθ= sinθ-cosθ= + - これを解くと sinθ=,cosθ= sinθ よって tanθ= = cos θ + - = ( ( + ) - )( + 8+ = =-- ) - 三角比の 次関数の最大 最小 0 θ 80 のとき,y=cos θ+sinθ の最大値, 最小値を求めよ また, そのときの θ の値を求めよ 要点 sin θ+cos θ= を利用して, 関数を つの三角比で表します sinθ=t( または cosθ=t ) とおき, 変域に注意して 次関数のグラフをかきます cos θ=-sin θより y=cos θ+sinθ=-sin θ+sinθ=-sin θ+sinθ+ sinθ=t とおくと,0 θ 80 のとき 0 sinθ であるから 0 t y を t を用いて表すと y=-t +t+=-(t -t)+= - - t - += - - t + += - - t + t= で最大値,t=0, で最小値 をとる t= すなわち sinθ= を満たす θ は θ=0,0 t=0 すなわち sinθ=0 を満たす θ は θ=0,80 t= すなわち sinθ= を満たす θ は θ=90 よって,θ=0,0 のとき最大値,θ=0,90,80 のとき最小値
6 7 正弦定理 余弦定理 において, 辺,, の長さをそれぞれ a,,c,,, の大きさをそれぞれ,, で表すことにする () において, 次のものを求めよ =0,=,a= のとき, および外接円の半径 R a=,=0,c= のとき c a () において,=,=,c= のとき,a,, を求めよ 要 正弦定理 点 a sin = sin c = =R sin c R 余弦定理 a = +c -ccos, =c +a -cacos,c =a + -acos a () 正弦定理により, = sin 0 から sin = よって = = = = また, 正弦定理により R= から R= sin 0 0 よって R= = = = 余弦定理により = + - cos0 =+9- = >0 から = 0
7 () 正弦定理により sin = から sin = sin よって sin= したがって =0,0 は右の図のように 通りある 余弦定理により = = = ( ) = +a - a cos =9+a -a 整理すると a - a+=0 0 0 解の公式により a= (- ) - = また,=0 のとき =7,=0 のとき = 以上から (a,,)= +, 7, 0, -,, 0 8 三角形の形状 において,sin=cossin が成り立っているとき, この三角形はどのような三角形か 要 点 正弦定理, 余弦定理を用いて, 与えられた等式を辺だけの関係式に直します a 与えられた式に sin=,cos= a +c - R ac c,sin= R をそれぞれ代入すると a R = a +c - ac c R 両辺に ar を掛けると a =a +c - これから =c >0,c>0 より =c よって, は = の二等辺三角形である 9 三角形の面積次の の面積を求めよ () =,=,=0 () =,=,=7 7
8 要点 の面積を S とすると S= csin= acsin= asin c a () S= sin0 = = () 余弦定理により cos= + -7 = sin +cos =,0 <<80 のとき,sin>0 から よって S= csin= 別解ヘロンの公式を用いる = a++c s= = =9 であるから sin= - = S= s( s-a)( s-)( s-c) = 9(9-7)(9- )(9- ) = 0 三角形の内角の二等分線の長さ において,=,=, =0 とする の二等分線と辺 の交点を D とするとき, 線分 D の長さを求めよ 要点三角形の面積を利用します D= D, = D+ D であり, = sin D= D sin D D= D sin D であることから D を求めることができます D 8
9 = D+ D であるので, それぞれ面積の公式から sin = D sin D+ D sin D よって sin0 = D sin0 + D sin0 すなわち = D + D したがって D= 8 内接円の半径 について, 次の問いに答えよ () a=7,=9,c=0 のとき, の面積 S と内接円の半径 r を求めよ () a=,=8, =0 のとき, の内接円の半径 r を求めよ 要点 の内接円の中心, すなわち, 内心を I, 面積を S, 内接円の半径を r とすると S= I+ I+ I = ar+ r+ cr r I r = r(a++c) 内接円の半径は, 辺の長さと面積から求めることができます r a++c () s= = = であるから, ヘロンの公式により S= s( s-a)( s-)( s-c) = = また,S= r(a++c) にそれぞれの値を代入すると = r(7+9+0) これを解いて r= 9
10 () の面積を S とすると S= asin = 8 sin0 = 8 = また c =a + -acos = +8-8 cos0 =+- 8 = c>0 から c= S= r(a++c) にそれぞれの値を代入すると = r(+8+ ) =(7+ )r から r= 7+ = (7- ) (7- = (7+ )(7- ) ) = (7- ) 研究 円に内接する四角形の面積円に内接する四角形 D において,=,=8,D=,D= のとき, 対角線 の長さ, 四角形 D の面積 S をそれぞれ求めよ 要 点 円に内接する四角形において, 向かい合う角の和は 80 であることを利用します において, 余弦定理により = +8-8 cos =00-9cos D において, 余弦定理により = + - cos D =-0cos(80 - ) =+0cos,から 00-9cos =+0cos 8 これを解いて cos = に代入すると =00-9 =7 D >0 から = 9 また sin = - = 9 S= + D= 8 + = sin D=sin(80 - )=sin より 0
11 研究 正四面体の体積 辺の長さが の正四面体 D の体積を求めよ 要点頂点 から底面 D に垂線 H を引くと, 直角三角形の斜辺と他の 辺が等しいから H H DH よって,H=H=DH であるから, 点 H は D の外心であることを利用します H D 頂点 から底面 D に垂線 H を引くと H H DH これから,H=H=DH であるので, 点 H は D の外心である よって,H は D の外接円の半径であるから =H これから H= sin 0 H は直角三角形であるから, 三平方の定理により H= -H = - = また D= sin0 = 以上から, 正四面体の体積は D H= =
12 研究 の三角比 =,==7,= の があり, の二等分線と の交点を D とする D であることを利用して, cos を求めてみよう 7 D = D=, = D より D また, D, D は二等辺三角形であるから,=D=D= である :=:D であるから,=x とおくと D=x- より x:=:(x-) よって x(x-)= x -x-=0 これを解いて x= + x>0 より x= x - において, 余弦定理により =x +x - x x cos これから cos = x x + = + + = = であるから (+ )(- ) cos = = = = + + (+ )(- ) + =
STEP 数学 Ⅰ を解いてみた から直線 に下ろした垂線の足を H とすると, H in( 80 ) in より, S H in H 同様にして, S in, S in も成り立つ よって, S in 三角形の面積 ヘロンの公式 in in 辺の長
STEP 数学 Ⅰ を解いてみた http://toitemit.ku.ne.jp 図形と計量 三角形の面積 三角形の面積 の面積を S とすると, S in in in 解説 から直線 に下ろした垂線の足を H とすると, H in より, S H in H STEP 数学 Ⅰ を解いてみた http://toitemit.ku.ne.jp から直線 に下ろした垂線の足を H とすると, H in(
20~22.prt
[ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点
< D8C6082CC90AB8EBF816989A B A>
数 Ⅰ 図形の性質 ( 黄色チャート ) () () () 点 は辺 を : に外分するから :=: :=: であるから :=: == () 点 は辺 を : に内分するから :=:=: = + %= また, 点 は辺 を : に外分するから :=:=: == =+=+= 直線 は の二等分線であるから :=: 直線 は の二等分線であるから :=: 一方, であるから, から, から :=: :=:
Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc
(1) 数と式 学習指導要領 都立町田高校 学力スタンダード ア 数と集合 ( ア ) 実数 根号を含む式の計算 数を実数まで拡張する意義を理解し 簡単な 循環小数を表す記号を用いて, 分数を循環小数で表 無理数の四則計算をすること すことができる 今まで学習してきた数の体系について整理し, 考察 しようとする 絶対値の意味と記号表示を理解している 根号を含む式の加法, 減法, 乗法の計算ができる
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している
高ゼミサポSelectⅢ数学Ⅰ_解答.indd
数と式 ⑴ 氏点00 次の式を展開せよ ( 各 6 点 ) ⑴ (a-)(a -a+) ⑵ (x+y+)(x+y-5) 次の式を因数分解せよ (⑴⑵ 各 6 点, ⑶⑷ 各 8 点 ) ⑴ x y+x -x-6y ⑵ x -x - ⑶ a +5b ⑷ (x+y+z+)(x+)+yz 数と式 ⑵ 氏点00 次の問いに答えよ ( 各 6 点 ) ⑴ 次の循環小数を分数で表せ. a-5 = ⑵ 次の等式を満たす実数
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)
数学 Ⅲ 無限等比級数の問題解答 問 1 次の無限級数の和を求めよ (1) (5) (2) (6) (7) (3) ( 解 )(1) 初項 < 公比 < の無限等比級数より収束し (4) (2) (3) その和は ( 答 ) であるから 初項 < 公比 となっている よって 収束し その和は よって
問 1 次の無限級数の和を求めよ (1) (5) (2) (6) (7) (3) ( 解 )(1) 初項 < 公比 < の無限等比級数より収束し (4) (2) (3) その和は であるから 初項 < 公比 となっている よって 収束し その和は よって 収束し その和は < の無限等比級数 であるから 初項 < 公比
Microsoft Word - 201hyouka-tangen-1.doc
数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見
2018年度 筑波大・理系数学
筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(
T Xclub E 三角関数 が よくわからないときに開く本 例題で式の計算がよくわかる! 改訂版 内容 三角比三角関数正弦定理余弦定理加法定理弧度法 高知工科大学 KOCHI UNIVERSITY OF T ECHNOLOGY 井上昌昭山﨑和雄著 Copyright(C) Masaaki Inou
Kochi University of Technology Aca Title 三角関数 がよくわからないときに開く本改訂版 Author(s) 井上, 昌昭, 山﨑, 和雄 Citation 大学数学への道基礎数学シリーズ, Date of 007 issue URL http://hdl.handle.net/1017/661 Rights http://www.core.kochi-tech.ac.jp/
Microsoft Word - スーパーナビ 第6回 数学.docx
1 ⑴ 与式 =- 5 35 +14 35 =9 35 1 ⑵ 与式 =9-(-5)=9+5=14 1 ⑶ 与式 = 4(a-b)-3(5a-3b) = 8a-4b-15a+9b = -7a+5b 1 1 1 1 ⑷ 与式 =(²+ 1+1²)-{²+(-3+)+(-3) } 1 ⑷ 与式 =(²++1)-(²--6)=²++1-²++6=3+7 1 ⑸ 与式 = - ² + 16 = - +16
2017年度 千葉大・理系数学
017 千葉大学 ( 理系 ) 前期日程問題 1 解答解説のページへ n を 4 以上の整数とする 座標平面上で正 n 角形 A1A A n は点 O を中心とする半径 1 の円に内接している a = OA 1, b = OA, c = OA 3, d = OA4 とし, k = cos とおく そして, 線分 A1A3 と線分 AA4 との交点 P は線分 A1A3 を n :1に内分するとする
2016年度 筑波大・理系数学
06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,
2015年度 京都大・理系数学
05 京都大学 ( 理系 ) 前期日程問題 解答解説のページへ つの関数 y= si( x+ ) と y = six のグラフの 0 x の部分で囲まれる領域 を, x 軸のまわりに 回転させてできる立体の体積を求めよ ただし, x = 0 と x = は領域を囲む線とは考えない -- 05 京都大学 ( 理系 ) 前期日程問題 解答解説のページへ次の つの条件を同時に満たす四角形のうち面積が最小のものの面積を求めよ
< 中 3 分野例題付き公式集 > (1)2 の倍数の判定法は 1 の位が 0 又は偶数 ( 例題 )1~5 までの 5 つの数字を使って 3 ケタの数をつくるとき 2 の倍数は何通りできるか (2)5 の倍数の判定法は 1 の位が 0 又は 5 ( 例題 )1~9 までの 9 個の数字を使って 3
() の倍数の判定法は の位が 0 又は偶数 ~ までの つの数字を使って ケタの数をつくるとき の倍数は何通りできるか () の倍数の判定法は の位が 0 又は ~9 までの 9 個の数字を使って ケタの数をつくるとき の倍数は何通りできるか () の倍数の判定法は 下 ケタが 00 又は の倍数 ケタの数 8 が の倍数となるときの 最小の ケタの数は ( 解 ) 一の位の数は の 通り 十の位は一の位の数以外の
<8D828D5A838A817C A77425F91E6318FCD2E6D6364>
4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,
2017年度 長崎大・医系数学
07 長崎大学 ( 医系 ) 前期日程問題 解答解説のページへ 以下の問いに答えよ () 0 のとき, si + cos の最大値と最小値, およびそのときの の値 をそれぞれ求めよ () e を自然対数の底とする > eの範囲において, 関数 y を考える この両 辺の対数を について微分することにより, y は減少関数であることを示せ また, e< < bのとき, () 数列 { } b の一般項が,
2019年度 千葉大・理系数学
9 千葉大学 ( 理系 ) 前期日程問題 解答解説のページへ a, a とし, のとき, a+ a + a - として数列 { a } () のとき a+ a a a - が成り立つことを証明せよ () åai aaa + が成り立つような自然数 を求めよ i を定める -- 9 千葉大学 ( 理系 ) 前期日程問題 解答解説のページへ 三角形 ABC は AB+ AC BCを満たしている また,
2013年度 九州大・理系数学
九州大学 ( 理系 ) 前期日程問題 解答解説のページへ a> とし, つの曲線 y= ( ), y= a ( > ) を順にC, C とする また, C とC の交点 P におけるC の接線をl とする 以下 の問いに答えよ () 曲線 C とy 軸および直線 l で囲まれた部分の面積をa を用いて表せ () 点 P におけるC の接線と直線 l のなす角を ( a) とき, limasin θ(
(Microsoft Word - \213\363\212\324\220}\214`_\220\263\216l\226\312\221\314_.doc)
立体図形によるによる空間空間の彩り 球 立方体 正四面体の佇まいについて 札幌旭丘高校中村文則 はじめに正三角形 平面上では円とともに図形の代表に位置し, 図形の中に潜む種々の性質は大きな関心をもち扱われる. その正三角形を四面として構成される正四面体もまた煌びやかであり, 空間内では立体図形の主格であり, 正三角形の性質を継承しつつ, 独自に, 球面や他の立体図形との関わりを演出している. それらの佇まいについて調べてみよう.
p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと
567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,
2011年度 大阪大・理系数学
0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ
二等辺三角形の性質 (2) 次の図の の大きさを求めなさい () = P=Q P=R Q 68 R P (2) (3) 五角形 は正五角形 = F 50 F (4) = = (5) === = 80 2 二等辺三角形の頂角の外角を 底角を y で表すとき y を の式で表しなさい y 2-5-2
三角形 四角形 二等辺三角形の性質 () 二等辺三角形と正三角形 二等辺三角形 2つの辺が等しい三角形( 定義 ) 二等辺三角形の性質定理 二等辺三角形の底角は等しい 定理 2 二等辺三角形の頂点の二等分線は 底辺を直角に2 等分する 正三角形 3 辺が等しい三角形 ( 定義 ) 次の図で 同じ印をつけた辺や角が等しいとき の大きさを求めなさい () (2) (3) 65 40 25 (4) (5)
平成 25 年度京都数学オリンピック道場 ( 第 1 回 ) H 正三角形 ABC の外接円の,A を含まない弧 BC 上に点 P をとる. このとき, AP = BP + CP となることを示せ. 解説円周角の定理より, 4APC = 4ABC = 60, であるから, 図のよ
1 正三角形 の外接円の, を含まない弧 上に点 をとる. このとき, = + となることを示せ. 解説円周角の定理より, 4 = 4 = 60, であるから, 図のように直線 上に点 を, 三角形 が正三角形となるようにとることができる. 三角形 と三角形 において, =, = であり, 4 = 4 = 60, - 4 であるから, 辺とその間の角がそれぞれ等しく, 三角形 と三角形 は合同である.
2011年度 筑波大・理系数学
0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ
Microsoft Word - 数学Ⅰ
() 数と式 ア数と集合 ( ア ) 実数 数を実数まで拡張する意義を理解し 簡単な 無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい イ 整数 ウ ア 無理数 自然数 整数 有理数 無理数 実数のそれぞれ の集合について 四則演算の可能性について判断 できる ( 例 ) 下の表において,
2014年度 千葉大・医系数学
04 千葉大学 ( 医系 ) 前期日程問題 解答解説のページへ 袋の中に, 赤玉が 3 個, 白玉が 7 個が入っている 袋から玉を無作為に つ取り出し, 色を確認してから, 再び袋に戻すという試行を行う この試行を N 回繰り返したときに, 赤玉を A 回 ( ただし 0 A N) 取り出す確率を p( N, A) とする このとき, 以下の問いに答えよ () 確率 p( N, A) を N と
2015-2017年度 2次数学セレクション(複素数)解答解説
05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点
解答例 ( 河合塾グループ株式会社 KEI アドバンスが作成しました ) 特別奨学生試験 ( 平成 29 年 12 月 17 日実施 ) 数 学 数学 2= 工 経営情報 国際関係 人文 応用生物 生命健康科 現代教育学部 1 整理して (60 分 100 点 ) (2 3+ 2)(
解答例 ( 河合塾グループ株式会社 KEI アドバンスが作成しました ) 特別奨学生試験 ( 平成 9 年 月 7 日実施 ) 数 学 数学 = 工 経営情報 国際関係 人文 応用生物 生命健康科 現代教育学部 整理して (60 分 00 点 ) 3+ ( 3+ )( 6 ) ( 与式 ) = = 6 + + 6 (3 + ) すなわち 5 6 (5 6 )(3+ ) = = 3 9 8 = 4 6
<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F81798D5A97B98CE38F4390B A2E646F63>
07 年度大学入試センター試験解説 数学 Ⅰ A 第 問 9 のとき, 9 アイ 0 より, 0 であるから, 次に, 解答記号ウを含む等式の右辺を a とおくと, a a a 8 a a a 8 a これが 8 と等しいとき,( 部 ) 0 より, a 0 よって, a ウ ( 注 ) このとき, 8 9 (, より ) 7 エ, オカ また,より, これより, 9 であるから, 6 8 8 すなわち,
相加平均 相乗平均 調和平均が表す比 台形 の上底 下底 の長さをそれぞれ, とするとき 各平均により 台形の高さ はどのように比に分けられるだろうか 相乗平均は 相似な つの台形になるから台形の高さ を : の 比に分ける また 相加平均は は : の比に分けます 調和平均は 対角線 と の交点を
台形に潜むいろいろな平均 札幌旭丘高校中村文則 台形に調和平均 相加平均をみる 右図の台形 において = = とする の長さを, を用いて表してみよう = x = y = c とすると であることから : = : より c y = x + y であることから : = : より c x = x + y を辺々加えると x + y c + = より + = x + y c となる ここで = = c =
2016年度 広島大・文系数学
06 広島大学 ( 文系 ) 前期日程問題 解答解説のページへ a を正の定数とし, 座標平面上において, 円 C : x + y, 放物線 C : y ax + C 上の点 P (, ) を考える - におけるC の接線 l は点 Q( s, t) でC に接してい る 次の問いに答えよ () s, t および a を求めよ () C, l および y 軸で囲まれた部分の面積を求めよ () 円 C
2016年度 九州大・理系数学
0 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ 座標平面上の曲線 C, C をそれぞれ C : y logx ( x > 0), C : y ( x-)( x- a) とする ただし, a は実数である を自然数とするとき, 曲線 C, C が 点 P, Q で交わり, P, Q の x 座標はそれぞれ, + となっている また, 曲線 C と直線 PQ で囲まれた領域の面積を S,
S02 1 図において = =とする このとき = であることを証明せよ と において = 1 = 2 辺 は共通 より 3 辺 (3 組の辺 ) がそれぞれ等しい よって 合同な三角形の対応する角の大きさは等しい ゆえに = である
S01 1 図において = =とする このとき であることを証明せよ と において = 1 = 2 辺 は共通 3 1 2 3 より 3 辺 (3 組の辺 ) がそれぞれ等しい よって である S02 1 図において = =とする このとき = であることを証明せよ と において = 1 = 2 辺 は共通 3 1 2 3 より 3 辺 (3 組の辺 ) がそれぞれ等しい よって 合同な三角形の対応する角の大きさは等しい
DEF ABC の外接円に内接する種々の DEF について, の値 ABC 点 P を ABC 内の点とし,AP,BP,CP をそ れぞれ延長し, ABC の外接円との交点をそ れぞれ D,E,F とする また,AD と BC,BE と CA,CF と AB との交点をそれぞれ L,M, DEF N
の外接円に内接する種々の について の値 点 P を 内の点とし PBPP をそ れぞれ延長し の外接円との交点をそ れぞれ DEF とする また D と BBE と F と B との交点をそれぞれ LM N とする 次の種々の点 P に対して の値を 辺 と を用いて表せ ただし (7) については = の使用も 可とする また (0) については さらに ot の使用も可とする ( 二等辺三角形を
中学 1 年生 e ライブラリ数学教材一覧 学校図書 ( 株 ) 中学 1 年 数学 文字式式の計算 項と係数 中学 1 年 数学 次式 中学 1 年 数学 項のまとめ方 中学 1 年 数学 次式の加法 中学 1 年 数学 77
中学 1 年生 e ライブラリ数学教材一覧 学校図書 ( 株 ) 中学 1 年 数学 1 14-20 正の数 負の数正の数 負の数 14- ある基準から考えた量の表現 中学 1 年 数学 14- 正の数 中学 1 年 数学 14- 負の数 中学 1 年 数学 14- 量の基準を表す数 中学 1 年 数学 15- 反対の性質をもつ量の表現 中学 1 年 数学 17- 数直線 中学 1 年 数学 18-19
2011年度 東京工大・数学
東京工業大学前期日程問題 解答解説のページへ n n を自然数とする 平面上で行列 n( n+ ) n+ の表す 次変換 ( 移動とも いう ) を n とする 次の問いに答えよ () 原点 O(, ) を通る直線で, その直線上のすべての点が n により同じ直線上に移 されるものが 本あることを示し, この 直線の方程式を求めよ () () で得られた 直線と曲線 (3) を求めよ n Sn 6
2018試行 共通テスト 数学ⅠA 解答例
第 1 問 共通テスト ( 試行調査 018) 数学 Ⅰ 数学 A 解答例 [1] (1) 1 のみを要素としてもつ集合が集合 A の部分集合 であることは, C = {1} とおくと, CÌ Aと表される () 命題 x Î, y Î ならば, x+ yîである が偽であることを示すための反例は, x Î かつ y Î かつ x+ yï から探すと, ( x, y ) = (3-3, 3-1),
. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三
角の二等分線で開くいろいろな平均 札幌旭丘高校中村文則 0. 数直線上に現れるいろいろな平均下図は 数 (, ) の調和平均 相乗平均 相加平均 二乗平均を数直線上に置いたものである, とし 直径 中心 である円を用いていろいろな平均の大小関係を表現するもっとも美しい配置方法であり その証明も容易である Q D E F < 相加平均 > (0), ( ), ( とすると 線分 ) の中点 の座標はである
二次関数 1 二次関数とは ともなって変化する 2 つの数 ( 変数 ) x, y があります x y つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また,2 つの変数を式に表すと, 2 y x となりま
二次関数 二次関数とは ともなって変化する つの数 ( 変数 ) x, y があります y 0 9 6 5 つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また, つの変数を式に表すと, x となります < 二次関数の例 > x y 0 7 8 75 x ( 表の上の数 ) を 乗して 倍すると, y ( 表の下の数 ) になります x y 0 - -8-8 -
2016年度 京都大・文系数学
06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ xy 平面内の領域の面積を求めよ x + y, x で, 曲線 C : y= x + x -xの上側にある部分 -- 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ ボタンを押すと あたり か はずれ のいずれかが表示される装置がある あたり の表示される確率は毎回同じであるとする この装置のボタンを 0 回押したとき,
2015年度 金沢大・理系数学
05 金沢大学 ( 理系 ) 前期日程問題 解答解説のページへ四面体 OABC において, 3 つのベクトル OA, OB, OC はどの つも互いに垂直で あり, h > 0 に対して, OA, OB, OC h とする 3 点 O, A, B を通る平面上の点 P は, CP が CA と CB のどちらとも垂直となる点であるとする 次の問いに答えよ () OP OA + OB とするとき, と
05 年度センター試験数学 ⅡB () において,cos q 0 であるから,P ( cos q, sin q) より, 直線 OP を表す方程式は y sin q sin q x cos q cos q x すなわち, (sin q) x - (cos q) y 0 ( ) ク 点 O,P,Q が
05 年度大学入試センター試験解説 数学 ⅡB 第 問 []() 点間の距離の公式から, OP ( cos q ) + ( sin q ) ( cos q + sin q ) ア PQ { ( cos q + cos 7q ) - cos q } + { ( sin q + sin 7q ) - sin q } cos q + sin q 7 7 イ である また, OQ ( cos q + cos
2010年度 筑波大・理系数学
00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f( x) x ax とおく ただしa>0 とする () f( ) f() となるa の範囲を求めよ () f(x) の極小値が f ( ) 以下になる a の範囲を求めよ () x における f(x) の最小値をa を用いて表せ -- 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ つの曲線 C : y six ( 0
2018年度 神戸大・理系数学
8 神戸大学 ( 理系 ) 前期日程問題 解答解説のページへ t を < t < を満たす実数とする OABC を 辺の長さが の正四面体とする 辺 OA を -t : tに内分する点を P, 辺 OB を t :-tに内分する点を Q, 辺 BC の中点を R とする また a = OA, b = OB, c = OC とする 以下の問いに答えよ () QP と QR をt, a, b, c を用いて表せ
Microsoft Word - 微分入門.doc
基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,
FdData中間期末数学2年
中学中間 期末試験問題集( 過去問 ): 数学 年 方程式とグラフ [ 二元一次方程式 ax + by = c のグラフ ] [ 問題 ]( 後期中間 ) 二元一次方程式 x + y = 4 のグラフをかけ http://www.fdtext.com/dat/ [ 解答 ] 方程式の解を座標とする点の全体を, その方程式のグラフという 二元一次方程式 x + y = 4 の解は無数にあるが, 例えば,
2014年度 九州大・文系数学
014 九州大学 ( 文系 ) 前期日程問題 1 解答解説のページへ 座標平面上の直線 y =-1 を l 1, 直線 y = 1 を l とし, x 軸上の 点 O(0, 0), A ( a, 0) を考える 点 P( x, y) について, 次の条件を考える d(p, l1 ) PO かつ d(p, l ) PA 1 ただし, d( P, l) は点 P と直線 l の距離である (1) 条件
2014年度 センター試験・数学ⅡB
第 問 解答解説のページへ [] O を原点とする座標平面において, 点 P(, q) を中心とする円 C が, 方程式 y 4 x で表される直線 l に接しているとする () 円 C の半径 r を求めよう 点 P を通り直線 l に垂直な直線の方程式は, y - ア ( x- ) + qなので, P イ から l に引いた垂線と l の交点 Q の座標は ( ( ウ + エ q ), 4 (
2017年度 神戸大・理系数学
7 神戸大学 ( 理系 前期日程問題 解答解説のページへ を自然数とする f ( si + とおく < < 4 であることを用い て, 以下の問いに答えよ ( < < のとき, f ( < であることを示せ ( 方程式 f ( は < < の範囲に解をただ つもつことを示せ ( ( における解を とする lim であることを示し, lim を求めよ 7 神戸大学 ( 理系 前期日程問題 解答解説のページへ
<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F8E6C8D5A>
06 年度大学入試センター試験解説 数学 Ⅱ B 第 問 () 8 より, 5 5 5 6 6 8 ア, イ また, 底の変換公式を用いると, log 7 log log 9 9 log 7 log ウエ, オ (), のグラフは, それぞれ = 89 = 右図のようになり, この つのグラフは 軸に関して対称 ここで, 0, のとき, と log カ のグラフが直線 に関して対称 であることから,
平成 30 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) -3 (-6+4) を計算しなさい 表合計 2 次の (1)~(6) の問
平成 30 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) -3 (-6+4) を計算しなさい 表合計 2 次の (1)~(6) の問いに答えなさい 合計 (1) 関数 y = x 2 において,x の変域が -2 x 3 のとき, y
2014年度 名古屋大・理系数学
04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(
座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に
立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 による立体の断面積を とする 図 1の から までの斜線部分の立体 の体積を とすると, 図 2のように は 底面積 高さ の角柱の体積とみなせる よって 図 2 と表せる ただし とすると,
2011年度 東京大・文系数学
東京大学 ( 文系 ) 前期日程問題 解答解説のページへ x の 次関数 f( x) = x + x + cx+ d が, つの条件 f () =, f ( ) =, ( x + cx+ d) dx= をすべて満たしているとする このような f( x) の中で定積分 I = { f ( x) } dx を最小にするものを求め, そのときの I の値を求めよ ただし, f ( x) は f ( x)
6 発展 3 次式の展開と因数分解補充問題, コラム (0.5) 技 整式を適切な形に整理することによって因数分解や計算ができる 見 レポート 式の展開と因数分解の違い 展開と因数分解の関係に関心をもち考察しようとする 関 第 2 節実数 (5) 4 実数 (1) 有理数と無理数の違い, および実数
< 沖縄県立コザ高等学校 > 数学科授業シラバス 科目名学年単位数使用教科書使用副教材 数学 Ⅰ 1 3 新編数学 Ⅰ( 数研出版 ) 3TRIAL 数学 Ⅰ( 数研出版 ) 1 科目の目標と評価の観点 数と式, 図形と計量,2 次関数及びデータの分析について理解させ, 基礎的な知識の習得と技能の習熟を図り, 目標 事象を数学的に考察する能力を培い, 数学のよさを認識できるようにするとともに, それらを活用する態度を
Taro-1803 平行線と線分の比
平行線と線分の比 1 4 平行線と線分の比 ポイント : 平行な直線がある つの三角形の線分の比について考える 証明 右の図で で とする (1) は と相似である これを証明しなさい と において から 平行線の ( ) は等しいから 9c = ( ) 1 = ( ) 1, より ( ) がそれぞれ等しいので 相似な図形になるので相似比を利用して () : の相似比を求めなさい 対応する線分の長さを求めることができる
2018年度 東京大・理系数学
08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母
【】三平方の定理
FdText 数学 3 年 : 中学 塾用教材 http://www.fdtext.com/txt/ 三角形 x を求めよ (3) (4) (5) (6) (3) (4) (5) (6) [ 解答 ] (1) 34 cm (2) 2 2 cm (3) 13cm (4) 2 7 cm (5) 5 3cm (6) 11 cm - 1 - 次の三角形, 台形の高さ (h) を求めよ (3) (4) (3)
1999年度 センター試験・数学ⅡB
99 センター試験数学 Ⅱ 数学 B 問題 第 問 ( 必答問題 ) [] 関数 y cos3x の周期のうち正で最小のものはアイウ 解答解説のページへ 0 x 360 のとき, 関数 y cos3x において, y となる x はエ個, y となる x はオ 個ある また, y sin x と y cos3x のグラフより, 方程式 sin x cos3x は 0 x 360のときカ個の解をもつことがわかる
2017年度 金沢大・理系数学
07 金沢大学 ( 理系 前期日程問題 解答解説のページへ 次の問いに答えよ ( 6 z + 7 = 0 を満たす複素数 z をすべて求め, それらを表す点を複素数平面上に図 示せよ ( ( で求めた複素数 z を偏角が小さい方から順に z, z, とするとき, z, z と 積 zz を表す 点が複素数平面上で一直線上にあることを示せ ただし, 偏角は 0 以上 未満とする -- 07 金沢大学
平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と
平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある
【FdData中間期末過去問題】中学数学1年(比例と反比例の応用/点の移動/速さ)
FdDt 中間期末過去問題 中学数学 1 年 ( 比例と反比例の応用 / 点の移動 / 速さ ) http://www.fdtet.com/dt/ 水そうの問題 [ 問題 ](2 学期期末 ) 水が 200 l 入る水そうに, 毎分 8 l の割合で水を入れていく 水を入れはじめてから 分後の水の量を y l とするとき, 次の各問いに答えよ (1), y の関係を式に表せ (2) の変域を求めよ
4STEP 数学 B( 新課程 ) を解いてみた 平面上のベクトル 6 ベクトルと図形 59 A 2 B 2 = AB 2 - AA æ 1 2 ö = AB1 + AC1 - ç AA1 + AB1 3 3 è 3 3 ø 1
平面上のベクトル 6 ベクトルと図形 A B AB AA AB + AC AA + AB AA AB + AC AB AB + AC + AC AB これと A B ¹, AB ¹ より, A B // AB \A B //AB A C A B A B B C 6 解法 AB b, AC とすると, QR AR AQ b QP AP AQ AB + BC b b + ( b ) b b b QR よって,P,
2014年度 筑波大・理系数学
筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G
形 に余弦定理を用いて が得られる 回も余弦定理を使うことになってしまう < よしお > ただ () と異なっている条件は = 0 が分かっているということ だから とその対辺 の関係で余弦定理を使うことはできる = + cos = とし の 次方程式を解くと余弦定理は 回しか使わない < アリス
補角から眺めた三角比の小手技 いい関係は補い合うことから始まる 札幌旭丘高校中村文則 < まなぶ > 三角形の 1つの内角の二等分線の長さは 内角の大きさが 0, 90, 10 のときは簡単に求められるけど そ うでない場合は結構手間がかかるよね 簡単に求める方法ってないのだろうか < かず子 > 渡りに舟 柳の下のどじょう なんてことはそうそうあるものじゃないでしょ まなぶは 楽は苦の種 苦は楽の種
2015 年度新中学 3 年数学 春休みの課題 3 年組番氏名
015 年度新中学 3 年数学 春休みの課題 3 年組番氏名 正負の数 (1) 6-1 4 3 を計算しなさい () 6-4 ( -3) を計算しなさい (3) 4+5 ( -6) を計算しなさい 正負の数指数を含む計算 (4) 3-3 - 3 1 を計算しなさい 1 1 3 (5) ( 3- ) + - 4 を計算しなさい (6) 9 5 3 1 - - 3 6 を計算しなさい 3 (7) { (
平成 31 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) 3 (-2 2 ) を計算しなさい 表合計 2 次の (1)~(6) の問
平成 1 年度 前期選抜学力検査問題 数学 ( 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 答えは, すべて解答欄に記入しなさい 1 次の ~(7) の問いに答えなさい (- ) を計算しなさい 表合計 次の ~(6) の問いに答えなさい 合計 関数 y = x のグラフについて正しいものを, 次のア ~ エからすべて選んで記号を書きなさい アイウエ グラフは原点を通る
1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)
微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,
2014年度 東京大・文系数学
014 東京大学 ( 文系 ) 前期日程問題 1 解答解説のページへ以下の問いに答えよ (1) t を実数の定数とする 実数全体を定義域とする関数 f ( x ) を f ( x) =- x + 8tx- 1x+ t - 17t + 9t-18 と定める このとき, 関数 f ( x ) の最大値を t を用いて表せ () (1) の 関数 f ( x ) の最大値 を g( t ) とする t が
