Hi-C解析(2017NGSハンズオン講習会-2017年9月1日)

Size: px
Start display at page:

Download "Hi-C解析(2017NGSハンズオン講習会-2017年9月1日)"

Transcription

1 29 NGS Hi-C

2 n Hi-C l Chromosome Conformation Capture l Hi-C n Hi-C l Hi-C l l l l TAD l 3D 2

3 n Fastq Hi-C 3 n python python.py Hi-C 3

4 Bio-Linux-8.0.7_hm_kh.ova ~/HiC 1_mapping_read_to_genome 2_filtering_reads 3_normalization 4_convert_Juice 5_detect_TADs 6_modeling_3D python Results data fastq Index Bowtie2 ref fasta src 4

5 Hi-C ex. Hi-C 5

6 NGS n n l l l Reseq l RNA-seq l ChIP-seq l ATAC-seq l Hi-C l irep 6

7 Chromosome Conformation Capture (3C) Dekker, Job, et al. "Capturing chromosome conformation." Science (2002): C-based method DNA 7

8 3C-based technologies de Wit, Elzo, and Wouter de Laat. "A decade of 3C technologies: insights into nuclear organization." Genes & development 26.1 (2012):

9 4C: Chromosome conformation capture-on-chip viewpoint PCR NGS 4C-seq de Wit, Elzo, and Wouter de Laat. "A decade of 3C technologies: insights into nuclear organization." Genes & development 26.1 (2012):

10 4C: Chromosome conformation capture-on-chip 4C-seq Hi-C validation Ke, Yuwen, et al. "3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis." Cell (2017):

11 Hi-C Lieberman-Aiden, Erez, et al. "Comprehensive mapping of long-range interactions reveals folding principles of the human genome." Science (2009): vs. Forward, Reverse 11

12 Hi-C i j (i, j) Rao, Suhas SP, et al. "A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping Cell (2014):

13 Rao, Suhas SP, et al. "A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping Cell (2014):

14 L2 Rao, Suhas SP, et al. "A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping Cell (2014): L1 L3 14

15 Topologically Associated Domains (TADs) TAD Akdemir, Kadir Caner, and Lynda Chin. "HiCPlotter integrates genomic data with interaction matrices." Genome biology 16.1 (2015):

16 Topologically Associated Domains (TADs) Ke, Yuwen, et al. "3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis." Cell (2017):

17 Topologically Associated Domains (TADs) Rao, Suhas SP, et al. "A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping Cell (2014): Fudenberg, Geoffrey, et al. "Formation of chromosomal domains by loop extrusion. Cell reports 15.9 (2016):

18 Nagano, Takashi, et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547 (2017):

19 Hi-C meta3c Marbouty, Martial, et al. "Metagenomic chromosome conformation capture (meta3c) unveils the diversity of chromosome organization in microorganisms. Elife 3 (2014): e

20 Hi-C n l Bin

21 Hi-C n excl. single cell Hi-C l 3 O'sullivan, Justin M., et al. "The statistical-mechanics of chromosome conformation capture. Nucleus 4.5 (2013):

22 Hi-C n excl. single cell Hi-C l Rao, Suhas SP, et al. "A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping Cell (2014):

23 Hi-C n 3C 1 1 l l Genome Architecture Mapping Beagrie, Robert A., et al. "Complex multi-enhancer contacts captured by genome architecture mapping. Nature (2017):

24 n Hi-C l Chromosome Conformation Capture l Hi-C n Hi-C l Hi-C l l l l TAD l 3D 24

25 Hi-C Trimmomatic, cutadapt, fastqc Bowtie2, BWA, Juicer, hiclib, HiCUP, HIPPIE Juicer, hiclib, HiCUP, HIPPIE, HOMER Juicer, hiclib, HIPPIE, HOMER TAD 3 Fit-Hi-C, GOTHiC, HOMER, HIPPIE, HiCCUPS HiCseg, TADbit, Arrowhead, TADtree, Armatus ChromSDE, ShRec3D, PASTIS 25

26 Bio-Linux-8.0.7_hm_kh.ova ~/HiC 1_mapping_read_to_genome 2_filtering_reads 3_normalization 4_convert_Juice 5_detect_TADs 6_modeling_3D python Results data fastq Index Bowtie2 ref fasta src 26

27 Results mv 27

28 In situ Hi-C Kilobase Hi-C 100 fastq 100GB Rao, Suhas SP, et al. "A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping Cell (2014):

29 ~/HiC/data Rao, et al Human B-Lymphocyte: GM $cd ~/HiC/data $ls l R1, R2 fastq 29

30 ~/HiC/Ref hg19 FASTA 30

31 ~/HiC/Index ~/HiC/Ref hg19 bowtie2-build Bowtie2 31

32 Hi-C Trimmomatic TAD 3 32

33 Hi-C $cd ~/HiC/1_mapping_read_to_genome TAD 3 33

34 Illumina 34

35 Hi-C Lieberman-Aiden, Erez, et al. "Comprehensive mapping of long-range interactions reveals folding principles of the human genome." Science (2009):

36 Hi-C R1, R2 R1 R2 36

37 Hi-C => R1, R2 Imakaev, Maxim, et al. "Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nature methods 9.10 (2012):

38 1. R1, R2 R1, R2 3 I. R1, R2 II. a. LocusA, LocusB LocusB Locus A B b. III. 2. Iterative alignment method 38

39 Iterative alignment method Imakaev, Maxim, et al. "Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nature methods 9.10 (2012):

40 $less mapping.py R1 R2 40

41 bp 35bp 41

42 $python mapping.py Bowtie2 Bowtie2 42

43 $ls l../data 43

44 $less parse_results.py HDF5 Biopython Restriction 44

45 $python parse_results.py $ls -l HDF5 HDFView python HDF5 45

46 Hi-C $cd ~/HiC/2_filtering_reads TAD 3 46

47 R1, R2 Hi-C Imakaev, Maxim, et al. "Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nature methods 9.10 (2012):

48 $less filtering.py maximummoleculelength 400bp HDF5 48

49 $less filtering.py filterrsitestart(): DNA filterduplicates(): PCR duplicate filterlarge(): 10^5bp filterextreme(): 0.5% 49

50 $less filtering.py 1Mbp Bin raw read count 1Mbp 3,000 3,000 Bin 90% 80%

51 $python filtering.py $ls -l 51

52 $less./statistics.txt 52

53 Hi-C $cd ~/HiC/3_normalization TAD 3 53

54 1. 2. Hi-C I. Ligation II. GC III. Mappability. ChIP-seq: INPUT RNA-seq: 1 Hi-C 54

55 Hi-C 1. Explicit GC Yaffe and Tanay 2011 HiCNorm 2. Implicit Vanilla coverage, ICE, Knight and Ruiz

56 Raw heatmap Normalized heatmap Raw coverage Corrected coverage 56

57 k l! A #$ #! A #& # 57

58 k l 1 A #& # k l 1 A #$ # 58

59 1 # A #$ # A #* 1 # A #$ # A #+ k = Vanilla coverage normalization 1 # A #$ # A #& l! A #$ # 59

60 Vanilla coverage normalization i j i j GC implicit bias Explicit Imakaev, Maxim, et al. "Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nature methods 9.10 (2012): Explicit Implicit 60

61 Iterative correction (ICE method) Vanilla coverage normalization Þ Vanilla coverage normalization matrix balancing ICE matrix balancing Knight and Ruiz

62 $less normalize.py Raw read count Bin ICE 62

63 $python normalize.py heatmap.pdf 63

64 TAD 3D 19 $python submatrix.py $less norm_mat.txt 64

65 JuiceBox JuiceBox JuiceBox $cd ~/4_convert_Juice $less convert_to_juicetext.py $python convert_to_juicetext.py $less./forjuice.txt $./convert_to_juicehic.sh test.hic Juice 65

66 JuiceBox $./execute_juicebox.sh File => Open => Local test.hic Chromosomes Annotations ENCODE 66

67 Hi-C TAD 3 67

68 L2 L1 L3 Rao, Suhas SP, et al. "A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping Cell (2014):

69 Forcato, Mattia, et al. "Comparison of computational methods for Hi-C data analysis." Nature methods 14.7 (2017):

70 Fit-Hi-C (Global background) Ay, Ferhat, Timothy L. Bailey, and William Stafford Noble. "Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome research 24.6 (2014): ICE p-value 70

71 HiCCUPS (Local background) Rao, Suhas SP, et al. "A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping Cell (2014): K&R p-value 71

72 Hi-C TAD $cd ~/HiC/5_detect_TADs 3 72

73 Topologically Associated Domains (TADs) Forcato, Mattia, et al. "Comparison of computational methods for Hi-C data analysis." Nature methods 14.7 (2017): 679. TAD TAD 73

74 TADtree Caleb Weinreb, Benjamin J. Raphael; Identification of hierarchical chromatin domains, Bioinformatics, Volume 32, Issue 11, 1 June 2016, Pages TAD, sub-tad Python 74

75 TADtree Caleb Weinreb, Benjamin J. Raphael; Identification of hierarchical chromatin domains, Bioinformatics, Volume 32, Issue 11, 1 June 2016, Pages TAD TAD TAD 75

76 $less./control_file.txt TAD Bin TAD TAD TAD 76

77 TADtree $python TADtree.py./control_file.txt./output/chr19 N TAD proportion_duplicates.txt TAD BED Bin 77

78 TAD TAD DNA TAD TAD Forcato, Mattia, et al. "Comparison of computational methods for Hi-C data analysis. Nature methods 14.7 (2017): 679. Ke, Yuwen, et al. "3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis." Cell (2017):

79 Hi-C TAD 3 $cd ~/HiC/6_modeling_3D 79

80 3D Hi-C Serra, et al a. b. 80

81 3D

82 82

83 D #,. = 1 A #,. 1 α=1 Ai,j = 0 Di,j => Þ Shortest-path reconstruction ShRec3D Lesne, et al MATLAB 83

84 Shortest-path reconstruction Bin 84

85 Shortest-path reconstruction Floyd-Warshall 85

86 $less./convert_contact_to_distance.py Python NetworkX $python./convert_contact_to_distance.py../3_normalization/norm_mat.txt dist.npy 86

87 3 Multi-dimensional scaling; MDS 16S PCoA MDS 16S MDS OK 3 87

88 3 $less./modeling_3d.py dist.npy MDS $python modeling_3d.py 88

89 Dekker, Job, et al. "Capturing chromosome conformation." science (2002): de Wit, Elzo, and Wouter de Laat. "A decade of 3C technologies: insights into nuclear organization." Genes & development 26.1 (2012): Ke, Yuwen, et al. "3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis." Cell (2017): Lieberman-Aiden, Erez, et al. "Comprehensive mapping of long-range interactions reveals folding principles of the human genome." science (2009): Rao, Suhas SP, et al. "A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping."cell (2014): Akdemir, Kadir Caner, and Lynda Chin. "HiCPlotter integrates genomic data with interaction matrices." Genome biology 16.1 (2015): 198. Fudenberg, Geoffrey, et al. "Formation of chromosomal domains by loop extrusion." Cell reports 15.9 (2016): Nagano, Takashi, et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547 (2017): Marbouty, Martial, et al. "Metagenomic chromosome conformation capture (meta3c) unveils the diversity of chromosome organization in microorganisms." Elife 3 (2014): e O'sullivan, Justin M., et al. "The statistical-mechanics of chromosome conformation capture." Nucleus 4.5 (2013): Beagrie, Robert A., et al. "Complex multi-enhancer contacts captured by genome architecture mapping." Nature (2017):

90 Imakaev, Maxim, et al. "Iterative correction of Hi-C data reveals hallmarks of chromosome organization." Nature methods 9.10 (2012): Yaffe, Eitan, and Amos Tanay. "Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture." Nature genetics (2011): Hu, Ming, et al. "HiCNorm: removing biases in Hi-C data via Poisson regression." Bioinformatics (2012): Knight, Philip A., and Daniel Ruiz. "A fast algorithm for matrix balancing." IMA Journal of Numerical Analysis 33.3 (2013): Forcato, Mattia, et al. "Comparison of computational methods for Hi-C data analysis." Nature methods 14.7 (2017): 679. Ay, Ferhat, Timothy L. Bailey, and William Stafford Noble. "Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts." Genome research 24.6 (2014): Caleb Weinreb, Benjamin J. Raphael; Identification of hierarchical chromatin domains, Bioinformatics, Volume 32, Issue 11, 1 June 2016, Pages Serra, François, et al. "Restraint-based three-dimensional modeling of genomes and genomic domains." FEBS letters PartA (2015): Lesne, Annick, et al. "3D genome reconstruction from chromosomal contacts." Nature methods (2014):

AJACS18_ ppt

AJACS18_ ppt 1, 1, 1, 1, 1, 1,2, 1,2, 1 1 DDBJ 2 AJACS3 2010 6 414:20-15:20 2231 DDBJ DDBJ DDBJ DDBJ NCBI (GenBank) DDBJ EBI (EMBL-Bank) GEO DDBJ Omics ARchive(DOR) ArrayExpress DTA (DDBJ Trace Archive) DRA (DDBJ

More information

CpG (Whole genome bisulfite sequencing; WGBS) MeDip-Seq 1 DNA CpG-rich 1. SureSelect Reduced representation bisulfite sequencing (RRBS) DNA CpG PCR DN

CpG (Whole genome bisulfite sequencing; WGBS) MeDip-Seq 1 DNA CpG-rich 1. SureSelect Reduced representation bisulfite sequencing (RRBS) DNA CpG PCR DN Agilent SureSelect XT Human Methyl-Seq 1 DNA Agilent SureSelect XT Human Methyl-Seq 1 SureSelect DNA Agilent SureSelect XT Human Methyl-Seq 370 CpG Human Methyl- Seq CpG shore shelf CpG 4000 CpG 2kb CpG

More information

PowerPoint Presentation

PowerPoint Presentation エピジェノミクス解析編 2016/08/10 Filgen ChIP-seq (Transfactor & Histone), Bisulfite webex seminar 株式会社キアゲンアプライドアドバンストゲノミクス宮本真理, PhD 1 アジェンダ ChIP-seq 解析 Transcription Factor ChIP-seq Histone ChIP-seq Bisulfite-seq

More information

Agilent Microarray Total Solution 5 5 RNA-Seq 60 mer DNA in situ DNA 5 2 QC 4200 TapeStation 2100 / mirna CGHCGH+SNP ChIP-on-chip 2 mirna QC

Agilent Microarray Total Solution 5 5 RNA-Seq 60 mer DNA in situ DNA 5 2 QC 4200 TapeStation 2100 / mirna CGHCGH+SNP ChIP-on-chip 2 mirna QC Microarray Agilent Microarray Total Solution Agilent Microarray Total Solution 5 5 RNA-Seq 60 mer DNA in situ DNA 5 2 QC 4200 TapeStation 2100 / mirna CGHCGH+SNP ChIP-on-chip 2 mirna QC RNA / mirna total

More information

Maser RNA-seq Genome Resequencing De novo Genome Sequencing Metagenome ChIP-seq CAGE BS-seq

Maser RNA-seq Genome Resequencing De novo Genome Sequencing Metagenome ChIP-seq CAGE BS-seq NGS Maser 2013/10/17 Maser RNA-seq Genome Resequencing De novo Genome Sequencing Metagenome ChIP-seq CAGE BS-seq Maser RNA-seq Genome Resequencing De novo Genome Sequencing Metagenome ChIP-seq CAGE BS-seq

More information

Infinium BeadChip COGS BeadChip 4 * iselect 3 SNP 25 1 SNP NGS Sequencing by Synthesis SBS HiSeq MiSeq WGS 1 RNA-Seq ChIP-Seq 1 1 * icogs BCAC OCAC PR

Infinium BeadChip COGS BeadChip 4 * iselect 3 SNP 25 1 SNP NGS Sequencing by Synthesis SBS HiSeq MiSeq WGS 1 RNA-Seq ChIP-Seq 1 1 * icogs BCAC OCAC PR Infinium BeadChip COGS BeadChip 4 * iselect 3 SNP 25 1 SNP NGS Sequencing by SynthesisSBSHiSeq MiSeq WGS 1 RNA-Seq ChIP-Seq 1 1 * icogs BCACOCAC PRACTICALBRCA1/2 CIMBA www.illuminakk.co.jp DNA CE DNA DNA

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション バイオインフォマティクス 講習会 V 事前準備 が完了されている方は コンテナの起動 ファイルのコピー (Windows) まで 進めておいてください メニュー 1. 環境構築の確認 2. 基本的なLinuxコマンド 3. ツールのインストール 4. NGSデータの基礎知識と前処理 5. トランスクリプトのアッセンブル 6. RNA-seqのリファレンスcDNAマッピングとFPKM 算出 7. RNA-seqのリファレンスゲノムマッピングとFPKM

More information

プレゼンテーション2.ppt

プレゼンテーション2.ppt [email protected] BLAST Genome browser InterProScan PSORT DBTSS Seqlogo JASPAR Melina II Panther Babelomics +@ >cdna_test CCCCTGCCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGATTCCAC ACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTG

More information

GWB

GWB NGS データ解析入門 Web セミナー : De Novo シークエンス解析編 1 NGS 新規ゲノム配列解析の手順 シークエンス 遺伝子領域の検出 アセンブル データベース検索 2 解析ワークフローと使用ソフトウェア シークエンスデータのインポート クオリティチェック 前処理 コンティグ配列の作成 CLC Genomics Workbench 遺伝子領域の検出 Blast2GO PRO データベース検索

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション V1 次世代シークエンサ実習 II 本講義にあたって 代表的な解析の流れを紹介します 論文でよく使用されているツールを使用します コマンドを沢山実行します スペルミスが心配な方は コマンド例がありますのでコピーして実行してください /home/admin1409/amelieff/ngs/reseq_command.txt マークのコマンドは実行してください 実行が遅れてもあせらずに 応用や課題の間に追い付いてください

More information

17-05 THUNDERBIRD SYBR qpcr Mix (Code No. QPS-201, QPS-201T) TOYOBO CO., LTD. Life Science Department OSAKA JAPAN A4196K

17-05 THUNDERBIRD SYBR qpcr Mix (Code No. QPS-201, QPS-201T) TOYOBO CO., LTD. Life Science Department OSAKA JAPAN A4196K 17-05 THUNDERBIRD SYBR qpcr Mix (Code No. QPS-201, QPS-201T) TOYOBO CO., LTD. Life Science Department OSAKA JAPAN A4196K - 18 - [1] 1 [2] 2 [3] 3 [4] 5 [5] : RNA cdna 13 [6] 14 [7] 17 LightCycler TM Idaho

More information

シーケンサー利用技術講習会 第10回 サンプルQC、RNAseqライブラリー作製/データ解析実習講習会

シーケンサー利用技術講習会 第10回 サンプルQC、RNAseqライブラリー作製/データ解析実習講習会 シーケンサー利用技術講習会 第 10 回サンプル QC RNAseq ライブ ラリー作製 / データ解析実習講習会 理化学研究所ライフサイエンス技術基盤研究センターゲノムネットワーク解析支援施設田上道平 次世代シーケンサー Sequencer File Format Output(Max) Read length Illumina Hiseq2500 Fastq 600 Gb 100 bp Life

More information

100 SDAM SDAM Windows2000/XP 4) SDAM TIN ESDA K G G GWR SDAM GUI

100 SDAM SDAM Windows2000/XP 4) SDAM TIN ESDA K G G GWR SDAM GUI 30 99 112 2006 SDAM SDAM SDAM SDAM 1950 1960 1970 SPSS SAS Microsoft Excel ArcView GIS 2002 ArcExplorer 1) MANDARA 2) GIS 2000 TNTLite 3) GIS 100 SDAM SDAM Windows2000/XP 4) SDAM TIN ESDA K G G GWR SDAM

More information

機能ゲノム学(第6回)

機能ゲノム学(第6回) トランスクリプトーム解析の今昔 なぜマイクロアレイ? なぜRNA-Seq? 東京大学大学院農学生命科学研究科アグリバイオインフォマティクス教育研究ユニット門田幸二 ( かどたこうじ ) http://www.iu.a.u-tokyo.ac.jp/~kadota/ [email protected] 1 Contents トランスクリプトーム解析の概要 各手法の長所 短所 マイクロアレイ

More information

untitled

untitled January 2009 Rotor-Gene Q Sample & Assay Technologies 1 1-1 1.1 1-1 1.2 Rotor-Gene Q 1-1 1.3 Rotor-Gene Q 1-1 1.4 1-1 2 2-1 2.1 Run File 2-1 2.2 2-2 2.3 2-2 2.4 PCR 2-3 2.5 2-3 2.6 2-4 2.7 2-4 2.8 2-5

More information

計算機生命科学の基礎II_

計算機生命科学の基礎II_ Ⅱ 1.4 [email protected] 812-8582 3-1-1 8 806 http://www.cell-innovator.com BioGPS Connectivity Map The Cancer Genome Atlas (TCGA); cbioportal GO DAVID, GSEA WCGNA BioGPS http://biogps.org/

More information

第 10 回シーケンス講習会 RNA-seq library 調製法の特徴と選び方 理化学研究所 (RIKEN) ライフサイエンス技術基盤研究センター (CLST) 機能性ゲノム解析部門 (DGT) ゲノムネットワーク解析支援施設 (GeNAS) 野間将平

第 10 回シーケンス講習会 RNA-seq library 調製法の特徴と選び方 理化学研究所 (RIKEN) ライフサイエンス技術基盤研究センター (CLST) 機能性ゲノム解析部門 (DGT) ゲノムネットワーク解析支援施設 (GeNAS) 野間将平 第 10 回シーケンス講習会 RNA-seq library 調製法の特徴と選び方 理化学研究所 (RIKEN) ライフサイエンス技術基盤研究センター (CLST) 機能性ゲノム解析部門 (DGT) ゲノムネットワーク解析支援施設 (GeNAS) 野間将平 l シーケンスをする目的は? 概略 l よいシーケンスライブラリーとは? RNA-seq ライブラリーのムリ ムダ ムラ l いろいろな RNA-seq

More information

PowerPoint Presentation

PowerPoint Presentation CLC Microbial Genomics Module 株式会社キアゲングローバルインフォマティクスソリューションズ & サポートアプライドアドバンストゲノミクス宮本真理 Ph.D. Filgen WebEx seminar, 2015/07/16 (2015/07/30) 1 Agenda メタゲノミクス解析 製品概要 機能紹介 デモ Filgen WebEx seminar, 2015/07/16

More information

141025mishima

141025mishima NGS (RNAseq) »NGS Now Generation Sequencer»NGS»» 4 NGS(Next Generation Sequencer) Now Generation Sequencer http://www.youtube.com/watch?v=womkfikwlxm http://www.youtube.com/watch?v=mxkya9xcvbq http://www.youtube.com/watch?v=nhcj8ptycfc

More information

バクテリアゲノム解析

バクテリアゲノム解析 GCCGTAGCTACCTTTACAATA GCCGTAGCT AGCTACC GCTACCTTT CCTTTAC CTTTACAATA GCCG CCGT CGTA GTAG TAGC AGCT AGCT GCTA CTAC TACC GCTA CTAC TACC ACCT CCTT CTTT CCTT CTTT TTTA TTAC CTTT TTTA TTAC TACA ACAA CAAT AATA

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

IonTorrentPGM_appnote_0319.indd

IonTorrentPGM_appnote_0319.indd Ion PGM Heterogeneity * 1 * 1 * 2 * 2 * 2 * 2 * 2 * 1 *1 * 2 DNA DNA DNA ArcturusXT LCM Laser Capture Microdissection LCM A Workflow for Cancer Profiling Applied Biosystems ViiA7 PCR qpcr QC Assay Ion

More information

untitled

untitled 2010 58 1 39 59 c 2010 20 2009 11 30 2010 6 24 6 25 1 1953 12 2008 III 1. 5, 1961, 1970, 1975, 1982, 1992 12 2008 2008 226 0015 32 40 58 1 2010 III 2., 2009 3 #3.xx #3.1 #3.2 1 1953 2 1958 12 2008 1 2

More information

Microsoft Word - Meta70_Preferences.doc

Microsoft Word - Meta70_Preferences.doc Image Windows Preferences Edit, Preferences MetaMorph, MetaVue Image Windows Preferences Edit, Preferences Image Windows Preferences 1. Windows Image Placement: Acquire Overlay at Top Left Corner: 1 Acquire

More information

2007 3DCG : M DCG 3DCG 3DCG 3D (huristic method) C++

2007 3DCG : M DCG 3DCG 3DCG 3D (huristic method) C++ 2007 3DCG M0104402 2007 3DCG : M0104402 3DCG 3DCG 3DCG 3D (huristic method) C++ 1 1 1.1............................ 1 1.2.............................. 3 2 4 2.1......................... 4 2.2....................

More information

5 I The Current Situation and Future Prospects of the North Korean Economy presented at the 2014 Korea Dialogue Conference on Strengthenin

5 I The Current Situation and Future Prospects of the North Korean Economy presented at the 2014 Korea Dialogue Conference on Strengthenin 5 I. 3 1 1990 2 The Current Situation and Future Prospects of the North Korean Economy presented at the 2014 Korea Dialogue Conference on Strengthening North Pacific Cooperation organized by the East-West

More information

untitled

untitled 48 B 17 4 Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 48 B, 2005 (CO 2 ) (2003) Sim-CYCLE(Ito and Oikawa, 2000) CO 2 CO 2 Figure 1 CO 2 0 (Denning et al., 1995) CO 2 (2004) Sim-CYCLE CO 2 CO 2

More information

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,

More information

日本組織適合性学会誌第23巻2号

日本組織適合性学会誌第23巻2号 Major Histocompatibility Complex 2016; 23 (2): 115 122 HLA 1 1) 1) HLA MHC 1900 HLA HLA キーワード : HLA HLA HLA HLA 2 HLA HLA HLA 3 1 1 HLA HLA 図 1 2016 6 30 2016 8 2 105 0013 1 10 14 3 5 TEL: 03 5776 0048

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail [email protected]

More information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z + 3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows

More information

GWB_RNA-Seq_

GWB_RNA-Seq_ CLC Genomics Workbench ウェブトレーニングセミナー : RNA-Seq 編 フィルジェン株式会社バイオサイエンス部 ([email protected]) 1 Advanced RNA-Seq プラグイン CLC Genomics Workbench 9.0 / Biomedical Genomics Workbench 3.0 以降で使用可能な無償プラグイン RNA-Seq

More information

SEISMIC HAZARD ESTIMATION BASED ON ACTIVE FAULT DATA AND HISTORICAL EARTHQUAKE DATA By Hiroyuki KAMEDA and Toshihiko OKUMURA A method is presented for using historical earthquake data and active fault

More information

ChIP-seq

ChIP-seq ChIP-seq 1 ChIP-seq 解析原理 ChIP サンプルのフラグメントでは タンパク質結合部位付近にそれぞれ Forward と Reverse のリードがマップされることが予想される ChIP のサンプルでは Forward と Reverse のリードを 3 側へシフトさせ ChIP のピークを算出する コントロールサンプルでは ChIP のサンプルとは異なり 特定の場所に多くマップされないため

More information

日本における結婚観の変化―JGSS累積データ を用いた分析―

日本における結婚観の変化―JGSS累積データ を用いた分析― JGSS 2000-2010 JGSS Changes in Attitudes toward Marriage in Japan: Analyses Using the JGSS Cumulative Data 2000-2010 Sayaka K. SHINOHARA JGSS Research Center Osaka University of Commerce Using the Japanese

More information

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99 218 6 219 6.11: (EQS) /EQUATIONS V1 = 30*V999 + 1F1 + E1; V2 = 25*V999 +.54*F1 + E2; V3 = 16*V999 + 1.46*F1 + E3; V4 = 10*V999 + 1F2 + E4; V5 = 19*V999 + 1.29*F2 + E5; V6 = 17*V999 + 2.22*F2 + E6; CALIS.

More information

CLC Genomics Workbench ウェブトレーニングセミナー: 変異解析編

CLC Genomics Workbench ウェブトレーニングセミナー: 変異解析編 CLC Genomics Workbench ウェブトレーニングセミナー : 遺伝子発現解析編 12 th Feb., 2016 フィルジェン株式会社バイオサイエンス部 [email protected] Feb., 2016_V2 1 遺伝子発現解析概要 本日のセミナーにおける解析の流れ及び使用するツール名 ( 図中赤枠部分 ) Case Control インポート インポート インポート

More information

療養病床に勤務する看護職の職務関与の構造分析

療養病床に勤務する看護職の職務関与の構造分析 原著 :. JDS Job Diagnostic SurveyHackman & OldhamStamps, Herzberg Ⅰ. 諸言,, 10.,, 11 Ⅱ. 方法 1. 概念枠組みと質問紙の測定尺度 Hackman & Oldham Hackman & Oldham JDS 内発的動機づけ職務特性 技能多様性 タスク明確性 タスク重要性 自律性 職務からのフィードバック 他者からのフィードバック

More information

橡NO005-PDF用.ec5

橡NO005-PDF用.ec5 (Biotechnology, Cell Biology, Genetics, Immunology, Medicine, Neuroscience, Structural Biology) (Cancer, Genetics, Immunology, Molecular Cell Biology, Neuroscience) InfoPort TEL: 043-290-2262 FAX:

More information

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe

More information

1. 2. 3. 2010-02- 22-24 1.1 1.1.1 1.1.2 1.1.3 F10.7 1.2 1.2.1 1.2.2 1.2.3 14 C 1.2.4 10 Be 1.2.5 14 C 10 Be 1.1 太陽放射とその変動 20100223-24森羅万象学校 1.1.1 (from Encyclopedia of Earth) op1cal depth (Lean et al.,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション V1 次世代シークエンサ実習 II 本講義の内容 Reseq 解析 RNA-seq 解析 公開データ取得 クオリティコントロール マッピング 変異検出 公開データ取得 クオリティコントロール マッピング 発現定量 FPKM を算出します 2 R N A - s e q とは メッセンジャー RNA(mRNA) をキャプチャして次世代シーケンサーでシーケンシングする手法 リファレンスがある生物種の場合

More information

3 1 2

3 1 2 Agilent 4200 TapeStation Agilent 4200 TapeStation 3 1 2 2 3 ScreenTape 3 Agilent 4200 TapeStation QC Agilent 4200 TapeStation Ready-to-use ScreenTape 8 PCR 96-well plate 1 96 1 qrt-pcr DNA RNA DNA / RNA

More information

Furukawa et al. (2004) fms13 Takagi et al. (2001) Tru-17 16 7) PCR 8) 3 DNA 3 9 10 HE 11) PIC 12) 13) ( ) 1 4 PIT 14) 2011 5 1 6 11 DNA mtdna msdna DN

Furukawa et al. (2004) fms13 Takagi et al. (2001) Tru-17 16 7) PCR 8) 3 DNA 3 9 10 HE 11) PIC 12) 13) ( ) 1 4 PIT 14) 2011 5 1 6 11 DNA mtdna msdna DN 1 2 3 4 DNA ms DNA 1) mt DNA 2) 2 DNA DNA 2011 3 5 3 1 DNA ALC 3) 523 820 822 2 DNA 3 4 msdna 5) Kai et al. (2005) 11 6) f61 f100 f60 f112 f86 f1770 f178 f160 f153 f204 f65 Cui et al. (2005) 3 Cst-6 Cst-7

More information

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3

More information

i ii iii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 x = n n x i i= 1 2 s X = s X n ( x x) i 2 2 i= 1 s X = n 1 g 1 n = ( n 1)( n 2) n i= 1 x i x s 3 24 g 2 n n( n + 1) x = ( n 1)( n

More information

untitled

untitled CFD JAXA CFD CFD Navier-Stokes -1- -2-1 CFD CFD Navier-Stokes 1. 2. 2,500,000 CFD Copyright Boeing CFD Boeing B777 HP -3- -4-2 CFD European Transonic Wind tunnel (-163 ) JAXA 2mx2m CFD (Computational Fluid

More information