(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 (

Size: px
Start display at page:

Download "(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 ("

Transcription

1 (Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 ( ) 19 6 Conclusion 23

2 1 1.1 GeV SU(3) SU(2) U(1): W ±, Z 1. ( ) 2. W ±, Z 0 (1983), 3. LHC (2008 ) 2

3 トンネル周長 27km ( 参考 : 東京 JR 山手線の周長 34.5km) 4

4 ( ) 1. ( ) M GUT c GeV (1.1) 2. 3

5 ( ) M W c GeV M GUT c GeV ( ) M P c GeV M W 1. (Technocolor) TeV L. Susskind,Phys. Rev.D20 (1979) 2619; S. Weinberg, Phys. Rev.D19 (1979) 1277; D13 (1976) 974; S. Dimopoulos, and L. Susskind,Nucl. Phys. B155 (1979) 237; 4

6 2. 0 : m B m B = m F 1 2 : m F m F = 0 S.Dimopoulos, H.Georgi, Nucl.Phys.B193 (1981) 150; N.Sakai, Z.f.Phys.C11 (1981) 153; E.Witten, Nucl.Phys.B188 (1981) 513; (a) Lightest Supersymmetric Particle R (b) ( 1) (c) (h, H, A) (H +, H ) ( h ) (d) 150GeV 5

7 1: ( ) ( ) α i = gi 2 /4π, (i = 1, 2, 3) U(1), SU(2), SU(3) : (sequestering) 3. (Brane World)= 4 ( ) 6

8 y: 4 n 2πR V 4+n (r) = 1 m 1 m 2 M 2+n r 1 m 1 m 2 (n) 1+n M 2+n, for r R (1.2) (n) Rn r M 2+n (n) Rn = M P M (n) M P GeV P.Horava and E.Witten, Nucl.Phys.B475, 94 (1996); N.Arkani-Hamed, SDimopoulos, G.Dvali, Phys.Lett.B429 (1998) 263 ; I.Antoniadis, N.Arkani-Hamed, S.Dimopoulos, G.Dvali, Phys.Lett.B436 (1998) 257; Randall, Sundrum, Phys.Rev.Lett.83 (1999) 3370; 4690; = :,,... 7

9 LHC ( ) Landau-Ginzburg : U(1) φ L = 1 4e 2F µνf µν + D µ φ(d µ φ) λ ( φφ v 2) 2 (1.3) 4 : ( ) k = 1 d 2 x F 12 (1.4) 2π : = U(1) :, : λ < e 2 : (, ) λ > e 2 : 8

10 λ = e 2 : BPS BPS (SUSY) 2 ( ) ( ) : ( ) π 0 (M) φ (λ > 0) L = µ φ µ φ λ(φ 2 v 2 ) 2 (2.1) 9

11 : φ + v, φ v y = x 2 E = ( y φ) 2 + λ(φ 2 v 2 ) 2 = ( y φ + λ(φ 2 v 2 )) 2 + y [2 )] λ (v 2 φ φ3 3 [ dye 2 )] λ (v 2 φ φ3 3 Bogomol nyi-prasad-sommerfield (BPS) (2.2) Bogomol nyi, Sov.J.Nucl.Phys. 24 (1976) 449; Prasad and Sommerfield, Phys.Rev.Lett. 35 (1975) 760. BPS y φ + λ(φ 2 v 2 ) = 0 (2.3) : φ = v tanh( λvy) (2.4) References 10

12 3 U(N C ), N F L = 1 2g 2Tr(F MN(W )F MN (W )) + 1 g 2Tr(DM ΣD M Σ) +Tr [ D M H(D M H) ] V (3.1) V = g2 [ (HH 4 Tr ) 2 ] c1 NC + Tr [ (ΣH HM)(ΣH HM) ] D M H i = ( M + iw M )H i, D M Σ = M Σ + i[w M, Σ] F MN (W ) = M W N N W M + i[w M, W N ] W M, Σ (N C N C ) U(N C ) g : H ra H ra (N C N F matrix) (i = 1, 2 ; r = 1,, N C ; A = 1,, N F ), (M) A B m A δ A B : m A > m A+1 : U(1) N F 1 F : Σ 11

13 5 M, N, = 0, 1, 2, 3, 4 (8 SUSY) : A 1 A 2 A NC HH = c1 NC, ΣH HM = 0 (3.2) H ra = c δ A r A, Σ = diag(m A1,, m ANC ) (3.3) N : F! (N F N C )!N C! en F log(x x (1 x) (1 x)), x N C /N F : ( ),,, 4 1/2 BPS ( ) 1/2 BPS y x 4, 4 D W M y = 0 12

14 2: A 1 A 2 A NC B 1 B 2 B NC. E [ E = Tr D y H ra 2] + Tr [ ΣH HM 2] + 1 ( g 2Tr (D y Σ) 2) + g2 [ (HH 4 Tr ) 2 ] c1 NC = Tr D y H + ΣH HM ( g 2Tr D y Σ g2 ( c1nc HH )) 2 + c y TrΣ (4.1) 2 1/2 BPS : γ 4 ε i = i(σ 3 ) i jε j D y H = ΣH + HM, D y Σ = g 2 ( c1 NC HH ) /2 (4.2) 13

15 labeled by A 1 A 2 A NC B 1 B 2 B NC BPS + [ ] + Edy c Tr(Σ) = c N C m Ak k=1 N C k=1 m Bk (4.3) BPS Σ + iw y S 1 (y) y S(y) S(y) GL(N C, C) BPS : H(y) = S 1 (y)h 0 e My H 0 N C N F BPS : Ω SS ( y Ω 1 y Ω ) = g 2 c ( ) 1 C Ω 1 Ω 0, Ω0 c 1 H 0 e 2My H 0 H 0 Ω(y) S(y) Σ, W y, H 1 y = ±, U(1) H 0 14

16 V - : (S NC 2 ) (S, H 0 ) (S, H 0 ) H = S 1 H 0 e My (Σ, W y ) S S = V S, H 0 H 0 = V H 0, V GL(N C, C) 3: A B C ( ) A,B ( ) BPS : M = {H 0 H 0 V H 0, V GL(N C, C)} G NF,N C SU(N F ) SU(N C ) SU(N F N C ) U(1) (4.4) 15

17 ( ) N C Ñ C N C (N F N C ) : 1,, N C Ñ C + 1,, N F dim R M 1,,N C Ñ C +1,,N F N F,N C = 2N wall = 2N C Ñ C (4.5) M = M 1/1 + M 1/2 = M 0 M 1 M N CÑC (4.6) H 0 : y 4:. U(1) : H 0 = (e r 1, e r 2,, e r N F ), H = S 1 H 0 e My = S 1 (e r 1+m 1 y,, e r N F +m NF y ) (4.7) i i + 1 Rer i + m i y Rer i+1 + m i+1 y Im(r i r i+1 ) : 16

18 U(N C ) : BPS Ñ C N F N C (T w : ) L = T w + d 4 θk(φ, φ ) + (4.8) [ K(φ, φ ) = dy c log detω + ctr ( Ω 0 Ω 1) + 1 ( 2g 2Tr Ω 1 y Ω ) ] 2 K (g ) : g 2 c/ m 1: Ω = Ω 0 c 1 H 0 e 2My H 0 (4.9) g 2 : (NLSM) 1/2 BPS N F = N C = N [ L 6 = Tr 1 2g 2F MNF MN + D M H(D M H) ] g2 4 Tr[( ) HH 2 ] c1 NC 17 Ω=Ω sol

19 BPS BPS 0 = D 1 H + id 2 H, 0 = F 12 + g2 2 (c1 N HH ) (4.10) H = S 1 H 0 (z), W 1 + iw 2 = i2s 1 z S, z x 1 + ix 2 (4.11) z (Ω 1 z Ω) = g2 4 (c1 N Ω 1 H 0 H 0 ) (4.12) k Z 0, (det(h 0 ) z k, z ) T c d 2 x TrF 12 = 2πck = i c dz log(deth 0 ) + c.c. 2 V - : H 0 V H 0, S V S, V = V (z) GL(N, C), det V = const. 0 : dim(m N,k ) = 2kN ( ) 1 N 1 R(z) k H 0 =, P (z) = (z z i ) (4.13) 0 P (z) i=1 18

20 z i C, R(z) k (Cosmic string) 5 ( ) : Tong, Phys.Rev.D (2004); Auzzi-Bolognesi-Evslin-Konishi, Nucl.Phys.B (2004); Shifman-Yung, Phys.Rev.D (2004); Auzzi-Bolognesi-Evslin, JHEP 0502 (2005) 046; 1/2 γ 123 ε i = ε i x 3 1/2SUSY : γ 12 (iσ 3 ) i jε j = ε i ( + ): 1/4 SUSY γ 3 (iσ 3 ) i jε j = ε i x 3 1/4 BPS D 3 Σ = g 2 ( c1 NC H 1 H 1 ) /2+F 12, D 3 H 1 = ΣH 1 + HM, 0 = D 1 H 1 + id 2 H 1, 0 = F 23 D 1 Σ, 0 = F 31 D 2 Σ 19

21 5: ( ) ( ) BPS E t w + t v + t m + m J m t w, t v, t m t w = c 3 Tr(Σ), t v = ctr(f 12 ), t m = 2 g 2 mtr( 1 2 ϵmnl F nl Σ) : [D 1 + id 2, D 3 + Σ] = 0 ( ) S(x m ) GL(N C, C) (D 3 + Σ)S 1 = 0 Σ + iw 3 S 1 3 S (5.1) (D 1 + id 2 )S 1 = 0 W 1 + iw 2 2iS 1 S (5.2) z x 1 + ix 2, and / z. BPS H 1 = S 1 (z, z, x 3 )H 0 (z)e Mx3 20

22 H 0 (z): z N C N F Ω SS (Ω 0 H 0 e 2My H 0 ) 4 (Ω 1 Ω) + 3 (Ω 1 3 Ω) = g 2 ( c Ω 1 Ω 0 ) (5.3) x x x 1 0 x x 3 a) x 3 0 b) : (t w + t v = 0.5c) a) : H 0 (z)e Mx3 = c(e x3, ze 4, e x3 ). z b) : H 0 (z)e Mx3 = c((z 4 2i)(z i)e 3/2x3, (z + 8 i)(z 7 + 6i)e 1/2x3 +15/2, z 2 e 1/2x3 +15/2, (z 6 5i)(z + 6 7i)e 3/2x3 ). (g 2 ) : U(1) (N C = 1) 21

23 H 0 (z) = c ( f 1 (z),..., f N F(z) ) : Ω = N F A=1 f A (z) 2 e 2m Ax 3 A x 3 A (z) = log f A+1(z) log f A (z) m A m A+1 f A (z) : f A (z) (z z A α )ka α : A z = z A α k A α x y 7: /4BPS 1/4BPS 22

24 6 Conclusion ( )U(N C ) N F BPS 3. ( ) H 0 M NF,N C {H 0 H 0 V H 0, V GL(N C, C)} SU(N F ) G NF,N C SU(N C ) SU(Ñ C ) U(1) (6.1) 4. (g 2 ) ( ) 5. BPS 6. 1/4 BPS ( ) 7. 1/2, 1/4 BPS 23

25 References of Solitons in 8 SUSY Theories Tokyo Tech Collaboration 1. Review Solitons in the Higgs Phase: Moduli matrix approach, hep-th/ , J. Phys. A 39 (2006) R , 2. Domain Walls in 5D Supersymmetric Theories Moduli space of BPS walls in supersymmetric gauge theories, hep-th/ , Commun. Math. Phys. 267 (2006) Global structure of moduli space for BPS walls, hep-th/ , Phys.Rev.D71 (2005) , D-brane Construction for Non-Abelian Walls, hep-th/ , Phys.Rev.D71, (2005), Non-Abelian Walls in Supersymmetric Gauge Theories, hep-th/ , Phys.Rev.D70 (2004) , Construction of Non-Abelian Walls and Their Complete Moduli Space, hep-th/ , Phys.Rev.Lett.93 (2004) , Exact Wall Solutions in 5-Dimensional SUSY QED, 24

26 hep-th/ , JHEP 11 (2003) 060, Massless Localized Vector Field on a Wall in Five Dimensions, hep-th/ , JHEP 11 (2003) 061, Vacua of Massive Hyper-Kähler Sigma Models with Non-Abelian Quotient, hep-th/ , Prog. Theor. Phys. 113 (2005) 657, Manifest Supersymmetry for BPS walls in N = 2 nonlinear sigma models,, hep-th/ , Nucl.Phys.B652 (2003) 35-71, BPS Wall in N = 2 SUSY Nonlinear Sigma Model with Eguchi-Hanson Manifold, hep-th/ , in Garden of Quanta - In honor of Hiroshi Ezawa, pages , 3. Vortex Statistical Mechanics of Vortices from D-branes and T-duality, hep-th/ , Phys.Rev.to appear Non-Abelian Vortices on Cylinder Duality between vortices and walls, hep-th/ , Phys.Rev.D73 (2006) , Moduli Space of Non-Abelian Vortices, hep-th/ , Phys.Rev.Lett.96 (2006) , Effective Theory on Non-Abelian Vortices in Six Dimensions, hep-th/ , Nucl.Phys.B701, 247 (2004), 4. 1/4 BPS states 25

27 Dynamics of Domain Wall Networks, arxiv: [hep-th], Phys.Rev.to appear. Effective Action of Domain Wall Networks, Phys.Rev.D75 (2007) , hepth/ , Non-Abelian Webs of Walls, Phys.Lett. B632 (2006) , hep-th/ , Webs of Domain Walls in Supersymmetric Gauge Theories, hep-th/ , Phys.Rev.D72 (2005) , Monopoles, Vortices, Domain Walls and D-branes: The rules of Interaction, hep-th/ , JHEP 03 (2005) 019, Instantons in the Higgs Phase, hep-th/ , Phys. Rev. D72, (2005), All Exact Solutions of a 1/4 Bogomol nyi-prasad-sommerfield Equation, hep-th/ , Phys.Rev.D71, (2005), Domain Wall Junction in N = 2 Supersymmetric QED in four dimensions, hep-th/ , Phys.Rev.D68 (2003) , BPS Lumps and Their Intersections in N = 2 SUSY Nonlinear Sigma Models, hep-th/ , Grav.Cosmol.8 (2002) , 5. Non-BPS Walls and Supersymmetry Breaking Non-BPS Walls and their stability in 5D Supersymmetric Theory, hep-th/ , Nucl.Phys.B696 (2004) 3-35, 6. Effective Lagrangian 26

28 Manifestly Supersymmetric Effective Lagrangians on BPS Solitons, hep-th/ , Phys.Rev.D73 (2006) , 7. Wall Solution in Supergravity Bogomol nyi-prasad-sommerfield Multiwalls in Five-Dimensional Supergravity, hep-th/ , Phys.Rev.D69 (2004) , Wall solution with weak gravity limit in five-dimensional Supergravity, hep-th/ , Phys.Lett.B556 (2003) , Solitons in 8 SUSY Theories 1. Review D. Tong, TASI lectures on solitons, arxiv:hep-th/ M. Shifman and A. Yung, Supersymmetric Solitons and How They Help Us Understand Non-Abelian Gauge Theories, arxiv:hep-th/ Early works M. Cvetic, F. Quevedo and S. J. Rey, Phys.Rev.Lett.67, 1836 (1991) E. Abraham and P. K. Townsend, Phys.Lett.B 291, 85 (1992) M. Cvetic, S. Griffies and S. J. Rey, Nucl.Phys.B 381, 301 (1992) M. Cvetic, S. Griffies and H. H. Soleng, Phys.Rev.D 48, 2613 (1993) 27

29 G. Dvali and M. Shifman, Phys.Lett.B396, 64 (1997) 3. Wall Solution in 8 SUSY Models J. P. Gauntlett, D. Tong, and P. K. Townsend, Phys.Rev.D63, (2001); J. P. Gauntlett, R. Portugues, D. Tong, P. K. Townsend, Phys.Rev.D63, (2001); J. P. Gauntlett, D. Tong, and P. K. Townsend, Phys.Rev.D64, (2001) R. Portugues, P. K. Townsend, JHEP , (2002) D. Tong, Phys.Rev.D66, (2002) The Moduli Space of BPS Domain Walls M. Shifman and A. Yung, Phys.Rev.D67, (2003) D. Tong, JHEP 0304, 031 (2003) Mirror Mirror on the Wall M. Arai, E. Ivanov and J. Niederle, Nucl.Phys.B680, 23 (2004) M. Shifman and A. Yung, Phys.Rev.D70, (2004) 4. Monopoles in Higgs Phase D. Tong, Phys.Rev.D69, (2004) R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Nucl.Phys.B673, 187 (2003) R. Auzzi, S. Bolognesi, J. Evslin and K. Konishi, Nucl.Phys.B 686, 119 (2004) M. Shifman and A. Yung, Phys.Rev.D 70, (2004) R. Auzzi, M. Shifman and A. Yung, JHEP 0502 (2005)

30 5. Vortex A. Hanany and D. Tong, JHEP 0307, 037 (2003) R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Nucl.Phys.B 673, 187 (2003) M. Shifman and A. Yung, Phys.Rev.D 70, (2004) A. Hanany and D. Tong, JHEP 0404, 066 (2004) A. Hanany and D. Tong, arxiv:hep-th/ ; M. A. C. Kneipp and P. Brockill, Phys.Rev.D 64, (2001) M. A. C. Kneipp, Phys.Rev.D 68, (2003) ; Phys.Rev.D 69, (2004) 6. Brane construction R. Auzzi, S. Bolognesi and J. Evslin, JHEP 0502 (2005) Index theorem K. S. M. Lee, Phys.Rev.D 67, (2003) introduction 29

( ) : (Technocolor)...

( ) : (Technocolor)... ( ) 2007.5.14 1 3 1.1............................. 3 1.2 :........... 5 1.3........................ 7 1.4................. 8 2 11 2.1 (Technocolor)................ 11 2.2............................. 12

More information

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. Tachikawa, D. Tong, M. Yamazaki, and Y. Yang 2008.3.21-26,

More information

Kaluza-Klein(KK) SO(11) KK 1 2 1

Kaluza-Klein(KK) SO(11) KK 1 2 1 Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h

More information

Seiberg Witten 1994 N = 2 SU(2) Yang-Mills 1 1 3 2 5 2.1..................... 5 2.2.............. 8 2.3................................. 9 3 N = 2 Yang-Mills 11 3.1............................... 11 3.2

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

3 exotica

3 exotica ( / ) 2013 2 23 embedding tensors (non)geometric fluxes exotic branes + D U-duality G 0 R-symmetry H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê .. 1 10-11 Nov., 2016 1 email:keiichi.r.ito@gmail.com, ito@kurims.kyoto-u.ac.jp ( ) 10-11 Nov., 2016 1 / 45 Clay Institute.1 Construction of 4D YM Field Theory (Jaffe, Witten) Jaffe, Balaban (1980).2 Solution

More information

Confinement dual Meissener effect dual Meissener effect

Confinement dual Meissener effect dual Meissener effect BASED ON WORK WITH KENICHI KONISHI (UNIV. OF PISA) [0909.3781 TO APPEAR IN NPB] Confinement dual Meissener effect dual Meissener effect 1) Perturbed SU(N) Seiberg WiRen theory : 2) SU(N) with Flavors at

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

余剰次元のモデルとLHC

余剰次元のモデルとLHC 余剰次元のモデルと LHC 松本重貴 ( 東北大学 ) 1.TeraScale の物理と余剰次元のモデル.LHC における ( 各 ) 余剰次元モデル の典型的なシグナルについて TeraScale の物理と余剰次元のモデル Standard Model ほとんどの実験結果を説明可能な模型 でも問題点もある ( Hierarchy problem, neutrino mass, CKM matrix,

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

pptx

pptx Based on N. Nagata, S. Shirai, JHEP 1403 (2014) 049. Ø Ø Y. Okada, M. Yamaguchi, T. Yanagida (1991), H. E. Haber, R. Hempfling (1991) J. R. Ellis, G. Ridolfi, F. Zwirner (1991) Scalar Par cles Gravi no

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1

Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1 Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1 S KN Λ(1405) Λ(1405) CDD Nc 2 L = q(i/ m)q P L = 1 2 (1 γ 5), P R = 1 2 (1 + γ 5), q L P L q, q

More information

main.dvi

main.dvi Ver. 1.50 2001 ( ) 1 4 2 Effective Theory 5 2.1 Effective theory... 5 2.2 massless 2-flavor QCD... 5 2.3..................... 9 2.4 Standard model... 10 2.5... 11 2.6... 13 3 Supersymmetry 15 3.1 Supersymmetry...

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Introduction 2 / 43

Introduction 2 / 43 Batalin-Vilkoviski ( ) 2016 2 22 at SFT16 based on arxiv:1511.04187 BV Analysis of Tachyon Fluctuation around Multi-brane Solutions in Cubic String Field Theory 1 / 43 Introduction 2 / 43 in Cubic open

More information

橋本研

橋本研 -Goldstone ( ) 2011 4-2012 3 -Goldstone UV IR SSB+ : Chiral Lagrangian :,... -Goldstone Nambu( 60), Goldstone(61), Nambu, Jona-Lasinio( 61), Goldstone, Salam, Weinberg( 62) Lorentz ( ) = NG 2002~2004?

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T Yang-Mills 50 E-mail: kugo@yukawa.kyoto-u.ac.jp 2004 Yang-Mills 50 2004 Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge Theory O Raifeartaigh [1] I, II, III O Raifeartaigh

More information

N=1 N=1 QCD N=1 non-abelian QCD X 0

N=1 N=1 QCD N=1 non-abelian QCD X 0 2 945207 18 9 22 N=1 N=1 QCD N=1 non-abelian QCD X 0 1 3 2 7 2.1..................................... 7 2.2.................................. 8 2.3............ 10 2.4 moduli...............................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

“‡”�„³…u…›…b…N…z†[…‰

“‡”�„³…u…›…b…N…z†[…‰ 2009 8 31 / 4 : : Outline 4 G MN T t g x mu... g µν = G MN X M x µ X N x ν X G MN c.f., : X 5, X 6,... g µν : : g µν, A µ : R µν 1 2 Rg µν = 8πGT µν : G MN : R MN 1 2 RG MN = 0 ( ) Kaluza-Klein G MN =

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

susy.dvi

susy.dvi 1 Chapter 1 Why supper symmetry? 2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

D 2009 A * 1 ( ) *1 ( ) 0 1 1 6 2 32 2.1............................................. 32 2.2.................................. 41 2.3...................................... 47 3 65 3.1..............................................

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

TeV b,c,τ KEK/ ) ICEPP

TeV b,c,τ KEK/ ) ICEPP TeV b,c,τ KEK/ ) ICEPP 2 TeV TeV ~1930 ~1970 ~2010 LHC TeV LHC TeV LHC TeV CKM K FCNC K CP violation c b, τ B-B t B CP violation interplay 6 Super B Factory Super KEKB LoI (hep-ex/0406071) SLAC Super B

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

b.dvi

b.dvi , 0 1 2 1.1 [2, 3] : : : : : : : : : : : : : : : : 3 2, 6 2.1 : : : : : : : : : : : : : : : 7 2.2 : : : : : : : : : : : : : : : : : : : 15 2.3, : : : : 18 3 23 4 31 5 35 6 46 6.1 Borel. : : : : : : : :

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) START: 17th Symp. Auto. Decentr. Sys., Jan. 28, 2005 Symplectic cellular automata as a test-bed for research on the emergence of natural systems 1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) 2 SCA 2.0 CA ( ) E.g.

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

橡超弦理論はブラックホールの謎を解けるか?

橡超弦理論はブラックホールの謎を解けるか? 1999 3 (Can String Theory Solve the Puzzles of Black Holes?) 305-0801 1-1 makoto.natsuume@kek.jp D-brane 1 Schwarzschild 60 80 2 [1] 1 1 1 2 2 [2] 25 2.2 2 2.1 [7,8] Schwarzschild 2GM/c 2 Schwarzschild

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information