( ) : (Technocolor)...

Size: px
Start display at page:

Download "( ) : (Technocolor)..."

Transcription

1 ( ) : (Technocolor) =

2 4 = BPS ( ) 26 6 U(N C ), N F /2 BPS 31 8 Conclusion 36 2

3 1 1.1 GeV SU(3) SU(2) U(1): W ±, Z 1. ( ) 2. W ±, Z 0 (1983), W, Z 1983 CERN 3

4 SLAC, BNL SLAC FNAL FNAL 3 Z 3 CP B Cabibbo LHC 1. 4

5 2. ( ) : ( ) ( )

6 2. + Kamiokande, SuperKamiokande, Kamland, 1. ( ) ( + + ) ( ) ( ) ( ) 2. 6

7 ( ) ( ) 3. ( ) LHC=Large Hadron Collider 2007 CERN 7TeV 7TeV ( 7 ) : Atlas, CMS, LHCb, Allice, 7

8 : : ( ) M GUT c GeV (1.1) 2. 8

9 ( ) M W c GeV (1.2) M GUT c GeV M 2 W /M 2 GUT (1.3) V (r) = G N m 1 m 2 r (1.4) G N M P c 2 c c 2 = GeV (1.5) G N ( ) ( ) M 2 W /M 2 P (1.6) 9

10 M W = 1. 1/2 2. ( ) (, ) 10

11 2 2.1 (Technocolor) TeV 11

12 L. Susskind,Phys. Rev.D20 (1979) 2619; S. Weinberg, Phys. Rev.D19 (1979) 1277; D13 (1976) 974; S. Dimopoulos, and L. Susskind,Nucl. Phys. B155 (1979) 237; 2.2 ( ) 0 : m B m B = m F 1 2 : m F m F = 0 S.Dimopoulos, H.Georgi, Nucl.Phys.B193 (1981) 150; N.Sakai, Z.f.Phys.C11 (1981) 153; E.Witten, Nucl.Phys.B188 (1981) 513; 0 12

13 ( ) (MSSM) MSSM 2.3 = 4 (4 + n) ( ) n 2πR 1 M 1 M 2 V 4+n (r) = (M (4+n) ) 2+n r 1 M 1 M 2, for r R 1+n (M (4+n) ) 2+n R n r M 2 P = (M (n+4)) 2+n R 1 R n ( c ) n M (4+n) M P GeV P.Horava and E.Witten, Nucl.Phys.B475, 94 (1996); N.Arkani-Hamed, SDimopoulos, G.Dvali, Phys.Lett.B429 (1998) 263 ; I.Antoniadis, N.Arkani-Hamed, S.Dimopoulos, G.Dvali, 13

14 3 Phys.Lett.B436 (1998) 257; Randall, Sundrum, Phys.Rev.Lett.83 (1999) 3370; 4690; 1. H 1, H 2 ( ) (a) 4 3 = 1 ( 2 H 3 W ±, Z ) h (b) 8 3 = 5 (H 1, H 2 3 W ±, Z ) (h, H, A) (H +, H ) 2. Lightest Supersymmetric Particle R R R 14

15 LSP 3. fine tuning (a) (b) 4. 15

16 1 U(1), SU(2), SU(3) α i = gi 2 /4π, (i = 1, 2, 3) 1: ( ) ( ) α i = gi 2 /4π, (i = 1, 2, 3) U(1), SU(2), SU(3) 16

17 5. 150GeV 4 m h m Z K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Prog. Theor. Phys. 67 (1982) GeV Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. 85 (1991) 1; H. E. Haber and R. Hempfling, Phys. Rev. Lett. 66 (1991) 1815; J. R. Ellis, G. Ridolfi and F. Zwirner, Phys. 17 Lett. B257 (1991) 83.

18 : (sequestering) 4 = 4.1 N.Arkani-Hamed, SDimopoulos, G.Dvali, Phys.Lett.B429 (1998) 263 ; Kehagias,Sfetsos, Phys.Lett.B472 (2000) 39; 4 M c V (4) (r) G N M 1 (4.1) r c 1.61 c cm, GeV/c 2. (4.2) G N GN r 200µm (4.3) 18

19 4 V (4) (r) = G N M 1 r = M c 1 (M (4) ) 2 r. (4.4) 4 + n V (4+n) (r) = G 4+n M 1 (4.5) r n n n R V (4+n) (r) G 4+n M 1 m 1,,m n [r 2 + n i=1 (2πR (4.6) im i ) 2 ] 1+n 2 M (4+n) ( ) 1 n G n+4 = (M (4+n) ) 2+n c (4.7) c 4 + n ( ) V (4+n) 1 n (r) M (M (4+n) ) 2+n r 1+n c, r R i. (4.8) c 19

20 1 V (4+n) (r) M (M (4+n) ) 2+n = M 1 1 (M (4+n) ) 2+n R 1 R n r n vol(s n ) ( d n 1 m [r 2 + n i=1 (2πR c im i ) 2 ] 1+n 2 c vol(s n ( ) ) n c G N M 1 2 c r 1+n 2π 2 vol(s n ) = Γ( 1+n 2 ) (4.9) 4 G N = G 4+nvol(S n ) 2Π n i=1 (2πR i) G 4+n R 1 R n (4.10) M 2 P = (M (n+4)) 2+n R 1 R n ( c ) n (4.11) ) n 20

21 :, m e mr G 4+n M (4+n) TeV ( ) 2 (n 2) D = 6 TeV 21

22 4 TeV LHC 4.2 Randall, Sundrum, Phys.Rev.Lett.83 (1999) 3370; 4690; y 2πr c : y = y + 2πr c : y y ( ) y = πr c = ( ) (1 + d, d = 4) S = S bulk + S brane (4.12) S bulk = 1 d d+1 x G [ 12 ] κ R Λ (4.13) 2 d+1 22

23 S brane = 1 κ 2 d+1 d d+1 x G [ V 1 δ(y) V 2 δ(y πr c )] (4.14) R MN 1 2 G MNR = ΛG MN + g mn δ m M δn N [V 1δ(y) + V 2 δ(y πr c )] : (Warped metric) Randall-Sundrum ds 2 = e 2k y η µν dx µ dx ν + (dy) 2 (4.15) 2Λ 3Λ k = 6, V 1 = V 2 = (4.16) ( ) Randall-Sundrum 1. y = 0 y = πr c 23

24 2. y = 0 3. y = 0 1/r Randall-Sundrum ( ) 24

25 4.3 BPS = :,,... ( ) Landau-Ginzburg : U(1) φ L = 1 4e 2F µνf µν + D µ φ(d µ φ) λ ( φφ v 2) 2 (4.17) 4 : ( ) k = 1 d 2 x F 12 (4.18) 2π : = U(1) :, : λ < e 2 : (, ) 25

26 λ > e 2 : λ = e 2 : BPS BPS (SUSY) 5 ( ) ( ) : ( ) π 0 (M) 26

27 φ (λ > 0) L = µ φ µ φ λ(φ 2 v 2 ) 2 (5.1) : φ + v, φ v y = x 2 E = ( y φ) 2 + λ(φ 2 v 2 ) 2 = ( y φ + λ(φ 2 v 2 )) 2 + y [2 )] λ (v 2 φ φ3 3 [ dye 2 )] λ (v 2 φ φ3 3 Bogomol nyi-prasad-sommerfield (BPS) (5.2) Bogomol nyi, Sov.J.Nucl.Phys. 24 (1976) 449; Prasad and Sommerfield, Phys.Rev.Lett. 35 (1975) 760. BPS y φ + λ(φ 2 v 2 ) = 0 (5.3) 27

28 : φ = v tanh( λvy) (5.4) (a) BPS (b) dφ cl λv 2 dy = ( ) cosh 2 λvy References 28

29 y: 6 U(N C ), N F L = 1 2g 2Tr(F MN(W )F MN (W )) + 1 g 2Tr(DM ΣD M Σ) +Tr [ D M H(D M H) ] V (6.1) V = g2 [ (HH 4 Tr ) 2 ] c1 NC + Tr [ (ΣH HM)(ΣH HM) ] D M H i = ( M + iw M )H i, D M Σ = M Σ + i[w M, Σ] F MN (W ) = M W N N W M + i[w M, W N ] W M, Σ (N C N C ) U(N C ) g 29

30 : H ra H ra (N C N F matrix) (i = 1, 2 ; r = 1,, N C ; A = 1,, N F ), (M) A B m A δ A B : m A > m A+1 : U(1) N F 1 F : Σ 5 M, N, = 0, 1, 2, 3, 4 (8 SUSY) : A 1 A 2 A NC HH = c1 NC, ΣH HM = 0 (6.2) H ra = c δ A r A, Σ = diag(m A1,, m ANC ) (6.3) N : F! (N F N C )!N C! en F log(x x (1 x) (1 x)), x N C /N F : ( ),,, 30

31 2: A 1 A 2 A NC B 1 B 2 B NC. 7 1/2 BPS 1/2 BPS y x 4, 4 D W M y = 0 31

32 E [ E = Tr D y H ra 2] + Tr [ ΣH HM 2] + 1 ( g 2Tr (D y Σ) 2) + g2 [ (HH 4 Tr ) 2 ] c1 NC = Tr D y H + ΣH HM ( g 2Tr D y Σ g2 ( c1nc HH )) 2 + c y TrΣ (7.1) 2 1/2 BPS : γ 4 ε i = i(σ 3 ) i jε j D y H = ΣH + HM, D y Σ = g 2 ( c1 NC HH ) /2 (7.2) labeled by A 1 A 2 A NC B 1 B 2 B NC BPS + [ ] + Edy c Tr(Σ) = c BPS N C m Ak k=1 N C k=1 m Bk (7.3) 32

33 Σ + iw y S 1 (y) y S(y) S(y) GL(N C, C) BPS : H(y) = S 1 (y)h 0 e My H 0 N C N F BPS : Ω SS ( y Ω 1 y Ω ) = g 2 c ( ) 1 C Ω 1 Ω 0, Ω0 c 1 H 0 e 2My H 0 H 0 Ω(y) S(y) Σ, W y, H 1 y = ±, U(1) H 0 V - : (S NC 2 ) (S, H 0 ) (S, H 0 ) H = S 1 H 0 e My (Σ, W y ) S S = V S, H 0 H 0 = V H 0, V GL(N C, C) 33

34 3: A B C ( ) A,B ( ) BPS : M = {H 0 H 0 V H 0, V GL(N C, C)} G NF,N C SU(N F ) SU(N C ) SU(N F N C ) U(1) ( ) N C Ñ C N C (N F N C ) : 1,, N C Ñ C + 1,, N F (7.4) dim R M 1,,N C Ñ C +1,,N F N F,N C = 2N wall = 2N C Ñ C (7.5) M = M 1/1 + M 1/2 = M 0 M 1 M N CÑC (7.6) 34

35 H 0 : y 4:. U(1) : H 0 = (e r 1, e r 2,, e r N F ), H = S 1 H 0 e My = S 1 (e r 1+m 1 y,, e r N F +m NF y ) (7.7) i i + 1 Rer i + m i y Rer i+1 + m i+1 y Im(r i r i+1 ) : U(N C ) : Ñ C N F N C BPS (T w : ) L = T w + d 4 θk(φ, φ ) + (7.8) 35

36 K(φ, φ ) = dy [ c log detω + ctr ( Ω 0 Ω 1) + 1 ( 2g 2Tr Ω 1 y Ω ) ] 2 K (g ) : g 2 c/ m 1: Ω = Ω 0 c 1 H 0 e 2My H 0 (7.9) g 2 : (NLSM) 8 Conclusion Ω=Ω sol 36

37 6. 7. ( ) TeV ( )U(N C ) N F BPS 10. ( ) H 0 M NF,N C {H 0 H 0 V H 0, V GL(N C, C)} SU(N F ) G NF,N C SU(N C ) SU(Ñ C ) U(1) (8.1) 11. (g 2 ) ( ) 12. BPS 37

38 References of Solitons in 8 SUSY Theories Tokyo Tech Collaboration 1. Review Solitons in the Higgs Phase: Moduli matrix approach, hep-th/ , J. Phys. A 39 (2006) R , 2. Domain Walls in 5D Supersymmetric Theories Moduli space of BPS walls in supersymmetric gauge theories, hep-th/ , Com. Math. Phys. Global structure of moduli space for BPS walls, hep-th/ , Phys.Rev.D71 (2005) , D-brane Construction for Non-Abelian Walls, hep-th/ , Phys.Rev.D71, (2005), Non-Abelian Walls in Supersymmetric Gauge Theories, hep-th/ , Phys.Rev.D70 (2004) , Construction of Non-Abelian Walls and Their Complete Moduli Space, hep-th/ , Phys.Rev.Lett.93 (2004) , Exact Wall Solutions in 5-Dimensional SUSY QED, hep-th/ , JHEP 11 (2003) 060, 38

39 Massless Localized Vector Field on a Wall in Five Dimensions, hep-th/ , JHEP 11 (2003) 061, Vacua of Massive Hyper-Kähler Sigma Models with Non-Abelian Quotient, hep-th/ , Prog. Theor. Phys. 113 (2005) 657, Manifest Supersymmetry for BPS walls in N = 2 nonlinear sigma models,, hep-th/ , Nucl.Phys.B652 (2003) 35-71, BPS Wall in N = 2 SUSY Nonlinear Sigma Model with Eguchi-Hanson Manifold, hep-th/ , in Garden of Quanta - In honor of Hiroshi Ezawa, pages , 3. Vortex Non-Abelian Vortices on Cylinder Duality between vortices and walls, hep-th/ , Phys.Rev.D73 (2006) , Moduli Space of Non-Abelian Vortices, hep-th/ , Phys.Rev.Lett.96 (2006) , Effective Theory on Non-Abelian Vortices in Six Dimensions, hep-th/ , Nucl.Phys.B701, 247 (2004), 4. 1/4 BPS states Effective Action of Domain Wall Networks, hep-th/ , Phys.Rev.D75 (2007) , Non-Abelian Webs of Walls, hep-th/ , Phys.Lett. B632 (2006) , 39

40 Webs of Domain Walls in Supersymmetric Gauge Theories, hep-th/ , Phys.Rev.D72 (2005) , Monopoles, Vortices, Domain Walls and D-branes: The rules of Interaction, hep-th/ , JHEP 03 (2005) 019, Instantons in the Higgs Phase, hep-th/ , Phys. Rev. D72, (2005), All Exact Solutions of a 1/4 Bogomol nyi-prasad-sommerfield Equation, hep-th/ , Phys.Rev.D71, (2005), Domain Wall Junction in N = 2 Supersymmetric QED in four dimensions, hep-th/ , Phys.Rev.D68 (2003) , BPS Lumps and Their Intersections in N = 2 SUSY Nonlinear Sigma Models, hep-th/ , Grav.Cosmol.8 (2002) , 5. Non-BPS Walls and Supersymmetry Breaking Non-BPS Walls and their stability in 5D Supersymmetric Theory, hep-th/ , Nucl.Phys.B696 (2004) 3-35, 6. Effective Lagrangian Manifestly Supersymmetric Effective Lagrangians on BPS Solitons, hep-th/ , Phys.Rev.D73 (2006) , 7. Wall Solution in Supergravity Bogomol nyi-prasad-sommerfield Multiwalls in Five-Dimensional Supergravity, 40

41 hep-th/ , Phys.Rev.D69 (2004) , Wall solution with weak gravity limit in five-dimensional Supergravity, hep-th/ , Phys.Lett.B556 (2003) , Solitons in 8 SUSY Theories 1. Early works M. Cvetic, F. Quevedo and S. J. Rey, Phys.Rev.Lett.67, 1836 (1991) E. Abraham and P. K. Townsend, Phys.Lett.B 291, 85 (1992) M. Cvetic, S. Griffies and S. J. Rey, Nucl.Phys.B 381, 301 (1992) M. Cvetic, S. Griffies and H. H. Soleng, Phys.Rev.D 48, 2613 (1993) G. Dvali and M. Shifman, Phys.Lett.B396, 64 (1997) 2. Wall Solution in 8 SUSY Models J. P. Gauntlett, D. Tong, and P. K. Townsend, Phys.Rev.D63, (2001); J. P. Gauntlett, R. Portugues, D. Tong, P. K. Townsend, Phys.Rev.D63, (2001); J. P. Gauntlett, D. Tong, and P. K. Townsend, Phys.Rev.D64, (2001) R. Portugues, P. K. Townsend, JHEP , (2002) D. Tong, Phys.Rev.D66, (2002) The Moduli Space of BPS Domain Walls 41

42 M. Shifman and A. Yung, Phys.Rev.D67, (2003) D. Tong, JHEP 0304, 031 (2003) Mirror Mirror on the Wall M. Arai, E. Ivanov and J. Niederle, Nucl.Phys.B680, 23 (2004) M. Shifman and A. Yung, Phys.Rev.D70, (2004) 3. Monopoles in Higgs Phase D. Tong, Phys.Rev.D69, (2004) R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Nucl.Phys.B673, 187 (2003) R. Auzzi, S. Bolognesi, J. Evslin and K. Konishi, Nucl.Phys.B 686, 119 (2004) M. Shifman and A. Yung, Phys.Rev.D 70, (2004) R. Auzzi, M. Shifman and A. Yung, JHEP 0502 (2005) Vortex A. Hanany and D. Tong, JHEP 0307, 037 (2003) R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Nucl.Phys.B 673, 187 (2003) M. Shifman and A. Yung, Phys.Rev.D 70, (2004) A. Hanany and D. Tong, JHEP 0404, 066 (2004) A. Hanany and D. Tong, arxiv:hep-th/ ; M. A. C. Kneipp and P. Brockill, Phys.Rev.D 64, (2001) 42

43 M. A. C. Kneipp, Phys.Rev.D 68, (2003) ; Phys.Rev.D 69, (2004) 5. Brane construction R. Auzzi, S. Bolognesi and J. Evslin, JHEP 0502 (2005) Index theorem K. S. M. Lee, Phys.Rev.D 67, (2003) introduction 43

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 (

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 ( (Tokyo Institute of Technology) Seminar at Ehime University 2007.08.091 1 2 1.1..................... 2 2 ( ) 9 3 U(N C ), N F 11 4 1/2 BPS ( ) 12 5 ( ) 19 6 Conclusion 23 1 1.1 GeV SU(3) SU(2) U(1): W

More information

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. Tachikawa, D. Tong, M. Yamazaki, and Y. Yang 2008.3.21-26,

More information

Seiberg Witten 1994 N = 2 SU(2) Yang-Mills 1 1 3 2 5 2.1..................... 5 2.2.............. 8 2.3................................. 9 3 N = 2 Yang-Mills 11 3.1............................... 11 3.2

More information

pptx

pptx Based on N. Nagata, S. Shirai, JHEP 1403 (2014) 049. Ø Ø Y. Okada, M. Yamaguchi, T. Yanagida (1991), H. E. Haber, R. Hempfling (1991) J. R. Ellis, G. Ridolfi, F. Zwirner (1991) Scalar Par cles Gravi no

More information

Kaluza-Klein(KK) SO(11) KK 1 2 1

Kaluza-Klein(KK) SO(11) KK 1 2 1 Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

TeV b,c,τ KEK/ ) ICEPP

TeV b,c,τ KEK/ ) ICEPP TeV b,c,τ KEK/ ) ICEPP 2 TeV TeV ~1930 ~1970 ~2010 LHC TeV LHC TeV LHC TeV CKM K FCNC K CP violation c b, τ B-B t B CP violation interplay 6 Super B Factory Super KEKB LoI (hep-ex/0406071) SLAC Super B

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

3 exotica

3 exotica ( / ) 2013 2 23 embedding tensors (non)geometric fluxes exotic branes + D U-duality G 0 R-symmetry H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

main.dvi

main.dvi Ver. 1.50 2001 ( ) 1 4 2 Effective Theory 5 2.1 Effective theory... 5 2.2 massless 2-flavor QCD... 5 2.3..................... 9 2.4 Standard model... 10 2.5... 11 2.6... 13 3 Supersymmetry 15 3.1 Supersymmetry...

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê .. 1 10-11 Nov., 2016 1 email:keiichi.r.ito@gmail.com, ito@kurims.kyoto-u.ac.jp ( ) 10-11 Nov., 2016 1 / 45 Clay Institute.1 Construction of 4D YM Field Theory (Jaffe, Witten) Jaffe, Balaban (1980).2 Solution

More information

Confinement dual Meissener effect dual Meissener effect

Confinement dual Meissener effect dual Meissener effect BASED ON WORK WITH KENICHI KONISHI (UNIV. OF PISA) [0909.3781 TO APPEAR IN NPB] Confinement dual Meissener effect dual Meissener effect 1) Perturbed SU(N) Seiberg WiRen theory : 2) SU(N) with Flavors at

More information

ssastro2016_shiromizu

ssastro2016_shiromizu 26 th July 2016 / 1991(M1)-1995(D3), 2005( ) 26 th July 2016 / 1. 2. 3. 4. . ( ) 1960-70 1963 Kerr 1965 BH Penrose 1967 Hawking BH Israel 1971 (Carter)-75(Robinson) BH 1972 BH theorem(,, ) Hawk 1975 Hawking

More information

余剰次元のモデルとLHC

余剰次元のモデルとLHC 余剰次元のモデルと LHC 松本重貴 ( 東北大学 ) 1.TeraScale の物理と余剰次元のモデル.LHC における ( 各 ) 余剰次元モデル の典型的なシグナルについて TeraScale の物理と余剰次元のモデル Standard Model ほとんどの実験結果を説明可能な模型 でも問題点もある ( Hierarchy problem, neutrino mass, CKM matrix,

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T Yang-Mills 50 E-mail: kugo@yukawa.kyoto-u.ac.jp 2004 Yang-Mills 50 2004 Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge Theory O Raifeartaigh [1] I, II, III O Raifeartaigh

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

Muon g-2 vs LHC (and ILC) in Supersymmetric Models

Muon g-2 vs LHC (and ILC) in Supersymmetric Models Muon g-2 vs LHC (and ILC) in Supersymmetric Models Congratulations!!! 2012. July 4 2013. October 8 R. Brout (1928-2011) Congratulations!!! 2012. July 4 2013. October 8 R. Brout (1928-2011) 0.3 0.2 0.1-1.0-0.5

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

“‡”�„³…u…›…b…N…z†[…‰

“‡”�„³…u…›…b…N…z†[…‰ 2009 8 31 / 4 : : Outline 4 G MN T t g x mu... g µν = G MN X M x µ X N x ν X G MN c.f., : X 5, X 6,... g µν : : g µν, A µ : R µν 1 2 Rg µν = 8πGT µν : G MN : R MN 1 2 RG MN = 0 ( ) Kaluza-Klein G MN =

More information

Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1

Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1 Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1 S KN Λ(1405) Λ(1405) CDD Nc 2 L = q(i/ m)q P L = 1 2 (1 γ 5), P R = 1 2 (1 + γ 5), q L P L q, q

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

D 2009 A * 1 ( ) *1 ( ) 0 1 1 6 2 32 2.1............................................. 32 2.2.................................. 41 2.3...................................... 47 3 65 3.1..............................................

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

susy.dvi

susy.dvi 1 Chapter 1 Why supper symmetry? 2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

pptx

pptx Based on J. Hisano, T. Kuwahara, N. Nagata, Phys. Lett. B723 (2013) 324, J. Hisano, D. Kobayashi, T. Kuwahara, N. Nagata, JHEP 1307 (2013) 038, N. Nagata, S. Shirai, JHEP 1403 (2014) 049. 1. Introduc+on

More information

W Z Large Hadron Collider LHC ATLAS LHC ATLAS Higgs 1

W Z Large Hadron Collider LHC ATLAS LHC ATLAS Higgs 1 LHC Higgs B054347 1 10 W Z Large Hadron Collider LHC ATLAS LHC ATLAS Higgs 1 1 4 6.1................... 6.................... 7.3.................. 8.4.......................... 9 3 10 3.1..............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

N=1 N=1 QCD N=1 non-abelian QCD X 0

N=1 N=1 QCD N=1 non-abelian QCD X 0 2 945207 18 9 22 N=1 N=1 QCD N=1 non-abelian QCD X 0 1 3 2 7 2.1..................................... 7 2.2.................................. 8 2.3............ 10 2.4 moduli...............................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第10回

素粒子物理学2 素粒子物理学序論B 2010年度講義第10回 素粒子物理学2 素粒子物理学序論B 2010年度講義第10回 L = ν(i / m ν )ν + l(i / m l )l + 1 2 ( µχ µ χ µ 2 χ 2 ) 1 4 F i µνf iµν + m 2 W W +µ W µ + 1 4 G µνg µν + m2 Z 2 Z µz µ + ea µ ( lγ µ l) g 2 [ W µ + ( νγ µ P L l)+c.c.

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

橋本研

橋本研 -Goldstone ( ) 2011 4-2012 3 -Goldstone UV IR SSB+ : Chiral Lagrangian :,... -Goldstone Nambu( 60), Goldstone(61), Nambu, Jona-Lasinio( 61), Goldstone, Salam, Weinberg( 62) Lorentz ( ) = NG 2002~2004?

More information

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

kougiroku7_26.dvi

kougiroku7_26.dvi 2005 : D-brane tachyon : ( ) 2005 8 7 8 :,,,,,,, 1 2 1.1 Introduction............................... 2 1.2......................... 6 1.3 Second Revolution (1994 )................... 11 2 Type II 26 2.1

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

Introduction 2 / 43

Introduction 2 / 43 Batalin-Vilkoviski ( ) 2016 2 22 at SFT16 based on arxiv:1511.04187 BV Analysis of Tachyon Fluctuation around Multi-brane Solutions in Cubic String Field Theory 1 / 43 Introduction 2 / 43 in Cubic open

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

( ) I( ) TA: ( M2)

( ) I( ) TA: ( M2) ( ) I( ) TA: ( M) 015 7 17 , 7 ( ) I( ).., M. (hatomura@spin.phys.s.u-tokyo.ac.jp).,,.. Keywords: 1. (gas-liquid phase transition). (critical point) 3. (lattice gas model) (Ising model) H = ϕ 0 i,j n i

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information