(C) Kazutaka Takahashi 2018

Size: px
Start display at page:

Download "(C) Kazutaka Takahashi 2018"

Transcription

1

2 (C) Kazutaka Takahashi 2018

3 i

4 I 11 2 Coulomb Coulomb [ ] Gauss Gauss Gauss Gauss Gauss Gauss [ ] ii

5 Stokes * Poisson * [ ] Poisson ** [ ] ** Cavendish ** II Ohm Ohm Ohm Ampère Ampère iii

6 Biot Savart Lorentz Lorentz Gauss Ampère * * ** Coulomb III Maxwell Maxwell iv

7 12.4 ** ** A (1) 155 B (2) 156 C (3) 157 D (4) 158 v

8

9 Einstein Newton Newton

10 GPS Galilei Newton 6 R. P. Feynman Feynman Global Positioning System Feynman 1965 Nobel J. S. Schwinger 8 III

11 J. Kepler G. Galilei R. Descartes I. Newton Kepler T. Brahe Galilei Descartes Newton Aristotélēs M. Faraday J. C. Maxwell N. L. S. Carnot W. Thomson R. J. E. Clausius 19 Newton Newton

12 Newton 1687 Kepler A. Einstein Hilbert Kepler 16 Kepler Newton 2 4

13 Newton Newton ma = F (1.1) m a F F 2 Kepler Newton (1.1) Kepler Newton (1.1) 17 Newton (1.1) Newton Coulomb 2 electric charge Coulomb 2 18 Newton

14 19 Maxwell 4 E(r, t) = 1 ϵ 0 ρ(r, t) (1.2) B(r, t) = 0 (1.3) E(r, t) + B(r, t) = 0 t (1.4) B(r, t) ϵ 0 µ 0 t E(r, t) = µ 0j(r, t) (1.5) Maxwell Maxwell

15 5 6 9 Maxwell [1] 2000 [2] I 5 7

16 [3] [ ] [2] [4] I II [5] pdf Feynman Jackson 1992 ( )( ) : [1] * 24 **

17 1 I 2 Coulomb Coulomb 3 Gauss II 7 Ohm 8 Ampère Biot Savart Lorentz 9 10 III 11 Faraday 12 Maxwell [ ] 9

18

19 I

20

21 2 Coulomb Coulomb Coulomb Coulomb 2.1 Coulomb Newton Newton universal gravitation 2 r 1 r 2 2 F 12 = G m 1m 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) 2 mass (2.1) m 1 m G gravitational constant G ( ) ( ) 2 ( ) 2 ma = F ( ) ( ) ( ) 2 G ( ) 3 ( ) 1 ( ) 2 gravitational mass ma = F inertial mass 1 1kg 1m/s 2 1N G N m 2 /kg 2 Newton 1 Newton 13

22 base unit ( ) ( ) 1 dimension 3 (x, y, z) l l = 1.0 cm = 0.01 m l cm ( ) = ( ) ( ) ( ) = ( ) 2 2 r 1 r 2 2 r 1 r Coulomb 0 (2.1) 1 2 r 1 r 2 r 1 r F 21 = G m 1m 2 r 2 r 1 2 r 2 r 1 r 2 r 1 (2.2)

23 2.1: m 1 F 12 m 2 F 21 = F : m F m 1 F 1 m 2 F 2 action-reaction law F 12 = F 21 (2.3) point mass 4 (2.1) superposition principle 2.2 F (r) = i r r i Gmm i r r i 3 (2.4) m r m i r i

24 2 5 vector r = (x, y, z) (2.5) E E = (E x, E y, E z ) (2.6) E x E x E x E x 1 3 ar 1 + br 2 = a(x 1, y 1, z 1 ) + b(x 2, y 2, z 2 ) = (ax 1 + bx 2, ay 1 + by 2, az 1 + bz 2 ) (2.7) a b 2.2 r 1 r 2 = x 1 x 2 + y 1 y 2 + z 1 z 2 (2.8) 1 scalar r = r 2 = x 2 + y 2 + z 2 (2.9) r 2 = r r 1/r r 3 r 2 r equation of motion m d2 r(t) dt 2 = F (r(t)) (2.10)

25 r 2 r(t) t 0 r(t 0 ) t=t0 dr(t) dt Newton Coulomb W. Gilbert Gilbert electricity 17 Newton Coulomb Newton Coulomb Coulomb force q 1 q 2 r 1 r 2 F 12 = k r 1 r 2 2 r 1 r 2 (2.11) Coulomb Coulomb s law 2 2 (2.1) Gm 1 m 2 G q Coulomb (2.11)

26 7 k 8 k ( ) ( ) 2 ( ) 2 = ( ) ( ) 3 ( ) 2 ( ) 2 ma = F m m m k C.-A. de Coulomb [C] 8 k k N m 2 C 2 (2.12) 1C 1kg Coulomb 1C 1C 1kg C kg Coulomb 12 r i i = 1, 2,... q i r q F (r) = kq i q i r r i r r i 3 (2.13) 7 8 k = 1 ϵ 4πϵ (2.1) (2.11)

27 q q 0 ( r r1 F (r) = kqq r r 1 3 r r ) ( 2 r r r 2 3 kqq r 3 r ) r 3 = 0 (2.14) 13 q r 1 q r 2 r Q r r 1 r r q q 1 x 1km y x y x y (2.11) point charge 1 1 Coulomb 1 r 3 V (r) q(r) q(r) = ρ(r) V (r) P.-S. Laplace I Coulomb 19

28 r charge density ρ(r) = lim V (r) 0 q(r) V (r) (2.15) Dirac 17 r q ρ(r) F (r) = kq lim { V (r i)} 0 = kq i ρ(r i ) V (r i ) r r i r r i 3 (2.16a) d 3 r ρ(r ) r r r r 3 (2.16b) r i ρ(r i ) V (r i ) 0 2 volume integral 18 (2.16) 2 r r r q F (r) r q r r F (r) = kq dv (r ) ρ(r ) r r r r 3 = kq dv ρ(r ) r r r r 3 (2.17) d 3 r dv (r ) dv dv r r r d 3 r f(r) = dv f(r) = dx dy dz f(r) (2.18) (2.13) (2.16)

29 Coulomb 2 2 q Coulomb F = qe (2.19) E electric field 19 r E(r) = k d 3 r ρ(r ) r r r r 3 (2.20) field E(r) r E r E : r + = (a, 0, 0) r = ( a, 0, 0) q r = (x, y, z) E(r) = ( r r+ kq r r r r ) r r 3 = x a kq [(x a) 2 + y 2 + z 2 ] 3/2 y z + kq [(x + a) 2 + y 2 + z 2 ] 3/2 x + a y z (2.21a) (2.21b)

30 2.3: z = 0 x y xy z = x = 0 z = 0 y = 0 z = 0 E(x, 0, 0) = E(0, y, 0) = kq x a 3 kq (a 2 + y 2 ) 3/2 x a y 0 kq x + a 3 (2.22) x + a 0 0 (2.23) r + = (a, 0, 0) q r = ( a, 0, 0) q r = (x, y, z) r E(r) = ( r r+ kq r r + 3 r r ) r r 3 = x a kq [(x a) 2 + y 2 + z 2 ] 3/2 y z kq [(x + a) 2 + y 2 + z 2 ] 3/2 x + a y z (2.24a) (2.24b) x = 0 z = 0 kq E(0, y, 0) = (a 2 + y 2 ) 3/2 2a 0 0 (2.25) 21 Gauss 22

31 2.4: x y = 0 z = 0 y x = 0 z = 0 y = 0 z = 0 E(x, 0, 0) = kq x a 3 x a 0 0 kq x + a 3 x + a 0 0 (2.26) xy 2.3 q q x > a x y : 2.5 x x = na n q x y r r = (0, r, 0) na kq E(0, r, 0) = (r 2 + n 2 a 2 ) 3/2 r = n= 0 n= kqr (r 2 + n 2 a 2 ) 3/ (2.27) λ = q/a a 0 q 0 λ linear density (2.15) [2 3] 23 23

32 2.5: 2 2 x x lim af(na) = dx f(x) (2.28) a 0 n= f(x) f a (2.16) V (r i ) 24 r = (0, r, 0) [2 3] E(0, r, 0) = kλ dx r (x 2 + r 2 ) 3/ = 2kλ r (2.29) 2 1 Coulomb 2 3: a 2.6 z = 0 xy 2.7 z z z r = (0, 0, z) z Q λ = Q 2πa 2πa xy x θ 25 adθ 2.8 E z (0, 0, z) = k 2π λadθ 0 2π 1 z a 2 + z 2 (2.30a) (a 2 + z 2 ) 1/2 z (a 2 + z 2 ) 3/2 (2.30b) = k Q dθ 2π 0 z = kq (2.30c) (z 2 + a 2 ) 3/2 2π z a a E z (0, 0, z) kq z 2 (2.31)

33 2.6: 2 3 a 2.7: (a) (b) (c) Q 2 4: 2 xy xy z z z r = (x, y, z) E(r) = 0 0 zf( z ) (2.32) 25

34 2.8: a θ θ + dθ adθ dθ 26 f σ xy 2.9 a a+da da 2 3 Q = 2πσada z de z (r) = 2πkσada (2.33) (z 2 + a 2 ) 3/2 a [ za z E z (r) = 2πkσ da = 2πkσ (z 2 + a 2 ) 3/2 (z 2 + a 2 ) 1/2 0 ] 0 = 2πkσ z z (2.34) z z/ z 2 5: a σ = Q Q 4πa 2 (2.35) 26 z = z 2 f z 2 26

35 2.9: : 2 5 r = (0, 0, r) xy 2.10 z θ dq = Q 4πa 2 2πa sin θadθ = Q sin θdθ (2.36) 2 a sin θ adθ r = (0, 0, r) r a cos θ r = (0, 0, r) z E z (0, 0, r) = kq 2 π 0 r a cos θ dθ sin θ [(r a cos θ) 2 + a 2 sin 2 (2.37) θ] 3/2 [2 6] E z (0, 0, r) = { kq r 2 r a 0 r < a (2.38) r = (0, 0, r) z r = (x, y, z) E(r) = { kq r r 2 r r a 0 r < a (2.39) Q r a

36 symmetry 2 4 z z + z 0 z z z 2.4 [ ] Cartesian coordinate r = x y z (2.40) 3 29 x y z 2.11 polar coordinate x = r sin θ cos φ (2.41) y = r sin θ sin φ (2.42) z = r cos θ (2.43) r = x 2 + y 2 + z 2 (2.44) 28 René Descartes Renatus Cartesius Cartesian 29 28

37 2.11: 3 r (x, y, z) (r, θ, φ) x2 + y tan θ = 2 z tan φ = y x (2.45) (2.46) r θ z φ xy x x y z 30 0 r < (2.47) 0 θ π (2.48) 0 φ < 2π (2.49) 1 e x = 0 0 r = xe x + ye y + ze z (2.50), e y = , e z = (2.51) e x e x = e y e y = e z e z = 1 (2.52) e x e y = e y e x = e y e z = e z e y = e z e x = e x e z = 0 (2.53) e µ e ν = δ µν (µ, ν = x, y, z) (2.54) 30 θ 2π π θ φ φ π

38 µ ν x y z Kronecker Kronecker delta 1 0 δ µν = { 1 µ = ν 0 µ ν (2.55) 1 x y z 3 1 e x e y e z e r e θ e φ e r e r (r) = r e r sin θ cos φ sin θ sin φ cos θ (2.56) r = re r (2.57) [2 11] cos θ cos φ sin φ e θ (r) = cos θ sin φ, e φ(r) = cos φ (2.58) sin θ 0 r = (x, y, z) r = (r, θ, φ) (2.50) (2.57) r = re r + θe θ + φe φ 32 r = (r, θ, φ) f(r) = f(x, y, z) π 2π dv f(r) = dx dy dz f(r) = dr dθ dφ J(r, θ, φ)f(r) (2.59) J(r, θ, φ) = (x, y, z) (r, θ, φ) = r2 sin θ (2.60) 33 f(r) r r dω f(θ, φ) = π 0 dθ 2π 0 dφ sin θ f(θ, φ) (2.61) f θ φ dω 2 Ω

39 2.5 Coulomb Coulomb ρ(r)d 3 r r ρ(r) (2.20) 2 (2.20) (2.32) Coulomb Coulomb k k 31

40 E q F = qe E(r) (2.20) Newton Newton 35 electrostatic field Coulomb 35 32

41 Coulomb [2 1] ( a, 0, 0) q 1 (0, 0, 0) q 2 (2a, 0, 0) q 3 a > 0 (a). (b). 0 (c). (b) [2 2] 2.3 xy f(x, y) dy = f(x, y) (2 2.1) dx [2 3] 2 2 (2.29) 2 2 r = (0, r, 0) [2 4]

42 2.12: [2 8] [2 5] xy a Q z [2 6] (2.37) [2 7] a Q [2 8] 2.12 (a) (b) z = 0 [2 9] (2.8) r 1 r 2 = r 1 r 2 cos θ (2 9.1) θ [2 10] (r, θ, φ) e r e θ e φ (2.58) 34

43 [2 11] cylindrical coordinate (x, y, z) z x y 2 x = ρ cos φ (2 11.1) y = ρ sin φ (2 11.2) (ρ, φ, z) 3 35

44 3 Gauss Gauss Gauss Gauss E(r) r line of electric force [2 2] 33 1 q R E = kq/r 2 2 4πR 2 E = 4πkq (3.1) 4πR 2 R Gauss (3.1) (3.1) (3.1) 1 2 q E E 36

45 3.1: 0 3.2: ds = dsn ds n xy z n 2 E ds = E nds E ds 0 7 S Φ = ds E(r) (3.2) S

46 surface integral ds ds(r) 9 Φ = ds E(r) (3.3) S 10 q S R (3.1) Φ flux of electric force ( ) flux Gauss Gauss Gauss Gauss s law ( S ) = 4πk ( S ) (3.4) S= V ds E(r) = 4πk dv ρ(r) (3.5) V Gauss 12 S V S ds S V S = V 13 V Gauss solid angle 10cm 1cm 2 100m 1cm 2 8 ds Φ ϕ φ π 3 r3 r 4πr 2 38

47 3.3: 1 θ θ r rθ 3.4: r 2 Ω r radian 2 1 1m 1cm 3.3 θ θ r θ rθ θ 0 2π 2π 2πr r θ Ω Ω steradian 14 r Ω r 2 Ω Ω 0 4π 4πr Gauss q V Gauss (3.5) V (3.5) Φ Gauss 14 sr 39

48 3.5 Φ ds ds ds ds ds E(r) = kq ds r 2 (3.6) ds E(r ) = kq ds r 2 (3.7) 0 15 ( ) ds dφ = kq r 2 ds r 2 0 dω = ds r 2 (3.8) = ds r 2 (3.9) Gauss ds r 2 Coulomb 1/r 2 2 Coulomb 3.3 Gauss Gauss Coulomb Gauss 3 1: Gauss a Q 2 5 r E(r) r Gauss 15 Gauss 40

49 3.5: ds r ds r r r ds ds ds 3.6: 3 2 Gauss (3.5) S ds E(r) = 4πr 2 E(r) (3.10) 4πr 2 r a Q 0 { 4πkQ r a 4πk dv ρ(r) = V 0 r < a (3.11) E(r) = { kq r 2 r a 0 r < a (3.12) :

50 2 a πa 2 E(z) πa 2 E( z) = 4πk πa 2 σ (3.13) z E(z) E(z) 2 3 E(z) = 2πkσ z z z ± (3.14) πa 2 E(z + ) πa 2 E(z ) = 0 (3.15) E(z + ) = E(z ) Gauss Coulomb Gauss [1] 3 1 E(r) = E( r ) r r 3 2 (2.32) 25 [2] V S = V [3] Gauss (3.5) [4] [5] V [1] [2] Gauss Gauss [1] 42

51 3.7: r = (x, y, z) dxdydz 3.4 Gauss Gauss (3.5) 1 Gauss 3.7 r 1 dx dy dz (x, y, z) (x + dx, y, z)... (x + dx, y + dy, z + dz) a ā 16 dydz ( ds E(r) dydz E x x + dx, y + dy 2, z + dz ) ( dydz E x x, y + dy 2 2, z + dz ) (3.16a) 2 a,ā dxdydz E x(x, y, z) x (3.16b) 2 E (x, y, z) 1 ( Ex (x, y, z) ds E(r) dxdydz + E y(x, y, z) + E ) z(x, y, z) x y z (3.17) 4πk dv ρ(r) 4πkdxdydz ρ(r) (3.18) 16 43

52 E(r) = 4πkρ(r) (3.19) E(r) divergence E(r) = E x x + E y y + E z z nabla ( = x, y, ) z (3.20) (3.21) (3.19) Gauss r = x 2 + y 2 + z 2 a r > a E(r) = kqr/r 3 ( x E(r) = kq x r 3 + y y r 3 + ) z z r 3 (3.22a) [ ( 3 = kq r 3 + x r x + y r y + z r ) ] 1 z r r 3 (3.22b) [ ( ) ] 3 x 2 = kq r 3 + r + y2 r + z2 3 r r 4 (3.22c) = 0 (3.22d) r < a 0 17 [2 7] 34 [3 5]

53 grad div rot = ( x, y, ) z (3.23) = r = r r ϕ(r) gradient ( ϕ(r) grad ϕ(r) = ϕ(r) = x, ϕ(r) y, ϕ(r) ) z (3.24) (3.25) ϕ(r) E(r) div E(r) = E(r) = E x(r) x + E y(r) y + E z(r) z E(r) rotation ( Ez (r) rot E(r) = E(r) = E y(r), E x(r) E z(r) y z z x, E y(r) E ) x(r) x y (3.26) (3.27) ϕ(r) (x, y, z) (r, θ, φ) 2.4 e r e θ e φ ϕ(r) = ϕ r e r + 1 ϕ r θ e θ + 1 E(r) = 1 r 2 r (r2 E r ) + 1 r sin θ r sin θ ( 1 E(r) = e r r sin θ θ (E φ sin θ) 1 +e φ ( 1 r r (re θ) 1 r ϕ φ e φ (3.28) θ (E θ sin θ) + 1 θ E r r sin θ ) φ E θ r sin θ φ E φ (3.29) ) ( 1 + e θ r sin θ φ E r 1 ) r r (re φ) (3.30) E(r) = E r e r + E θ e θ + E φ e φ 45

54 3.5 Gauss Gauss Gauss Gauss s theorem 18 Gauss S= V ds E(r) = V dv E(r) (3.31) E(r) S S V Gauss divergence theorem Gauss Gauss (3.5) dv E(r) = 4πk V V dv ρ(r) (3.32) V Gauss (3.19) Gauss 0 [3 7] 3.6 [ ] 3 A = A 1 A 2 A 3 = A 1e x + A 2 e y + A 3 e z (3.33) A B inner product scalar product A B = A 1 B 1 + A 2 B 2 + A 3 B 3 (3.34) 19 A B = A B cos θ AB (3.35) [2 9] A A A = A A2 2 + A2 3 θ AB A B A B 0 18 J. C. F. Gauss 1813 M. B. Ostrogradsky dot product 46

55 outer product vector product A 2 B 3 A 3 B 2 A B = A 3 B 1 A 1 B 3 (3.36) A 1 B 2 A 2 B 1 20 A B = A B sin θ AB (3.37) A B A x B y A B z 21 0 A B A B = B A (3.38) A = B A A = 0 (3.39) 0 22 (2.51) 29 e x e y = e z (3.40) e y e z = e x (3.41) e z e x = e y (3.42) x y z x A (B C) = B (C A) = C (A B) (3.43) A (B C) = B(A C) C(A B) (3.44) ( A) = ( A) 2 A (3.45) A B A B C A (B C) (A B) C A (B C) (A B) C 20 cross product

56 3.8: Gauss Φ = ds E(r) S= V q = dv ρ(r) 0 V 3.7 Gauss Gauss Gauss 3.8 Gauss III Gauss

57 II Gauss Gauss Coulomb Coulomb Coulomb Coulomb Gauss Gauss Gauss (3.31) f(x + ) f(x ) = x+ x dx df(x) dx (3.46) Gauss (3.31) 24 Gauss Gauss 2526 Gauss 0 Coulomb 2 2 Coulomb 2 Gauss 24 win win Gauss 5 49

58 3.9: [3 1] r dω Gauss 3.8 [3 1] a Q r E(r) = kq 4πa 2 ds(r 1 r r ) S r r 2 r r (3 1.1) ds r 3.9 r A B dω A B [3 2] Gauss Gauss [3 3] a Gauss σ 50

59 3.10: [3 2] q [3 4] 2 z = a σ z = a σ [3 5] [2 7] 34 Gauss [3 6] a Q ρ(r) E(r) [3 7] Gauss Gauss (3.31) 3.7 [3 8] (a). (A B) = B ( A) A ( B) (3 8.1) (b). (a) (A B) (3 8.2) 51

60 4 Gauss (3.5) 38 (3.19) 44 Coulomb 4.1 work F s W = F s ( ) ( ) = ( ) ( ) 2 ( ) 2 energy 1 2 Coulomb E(r) q C W = dr F (r) = q dr E(r) (4.1) C F (r) = qe(r) 3 line integral C N N C dr E(r) = lim N i=1 C N r i E(r i ) (4.2) q q q q ϕ = dr E(r) (4.3) C

61 [4 1] [4 1] Q 4.1 N r i r i θ i r i l i ϕ = lim = lim N N i=1 N N i=1 rb = dr kq r A r 2 = kq r B kq r A l i kq r 2 i r i kq r 2 i cos θ i (4.4a) (4.4b) (4.4c) (4.4d) l i r i r i = l i cos θ i r A r B r ϕ(r) r A r B ϕ = dr E(r) = ϕ(r B ) ϕ(r A ) (4.5) A B ϕ(r) electric potential electrostatic potential 0 C dr E(r) = 0 (4.6) C 0 0 ϕ(r) 53

62 4.1: Q q A B C C dr E(r) (4.7) C r = r(s) s 0 1 r r(0) r(1) s 1 dr E(r) = ds dr(s) E(r(s)) (4.8) ds dr(s) ds C 0 s (4.7) r = r(s, t) S ds E(r) = 1 0 ds 1 0 dt r(s, t) s r(s, t) t E(r(s, t)) (4.9) 4.2 q E(r) E = kq r r 3 = kq r (4.10) 54

63 1 r = 1 r r = r r 1 r r = r r 1 r 2 = r r 3 (4.11) r r = x 2 + y 2 + z 2 4 E(r) = ϕ(r) (4.12) ϕ(r) = kq r + const. (4.13) 2 r ρ(r) ϕ(r) = k d 3 r ρ(r ) r r + const. (4.14) (4.12) C dr E(r) = dr ϕ(r) (4.15) C 0 s 1 s r(s) dr E(r) = C = ds dr(s) ds ds d ds ϕ(r(s)) ϕ(r(s)) (4.16a) (4.16b) = ϕ(r(1)) ϕ(r(0)) (4.16c) (4.5) r(0) = r(1) (4.6) conservation force q

64 4 1: r + r q (4.14) ( ) 1 ϕ(r) = kq r r (4.17) r r 0 0 r + q r q ( ) 1 ϕ(r) = kq r r + 1 r r (4.18) [4 3] 4 2: a Q E(r) = { kq r r r a 3 0 r < a (4.19) r = r r a ϕ(r) = kq r + C 0 (4.20) C 0 0 C 0 = 0 r < a 0 ϕ(r) = C 1 (4.21) C 1 r = a δ r = a δ r = a + δ ϕ(r) = { kq r r a kq a r < a (4.22) 4 3: xy σ z E z (z) = 2πkσ z z (4.23) ϕ(r) = 2πkσ z + const. (4.24) 0 z = 0 z = const. 56

65 r r (4.5) E(r) r = ϕ(r + r) ϕ(r) = 0 (4.25) r [4 2] (4.6)

66 Coulomb Coulomb Laplace Poisson Poisson Laplace Poisson Coulomb [4 1] Q q 4.2 (a). (r, 0, 0) (r, 0, 0) (b). (r, 0, 0) ( r, 0, 0) (c). (r, 0, 0) ( r, 0, 0) [4 2] (4.6) (4.6) 9 III II 58

67 4.2: [4 1] Q xy (r, 0) q (a). x (b). (c). x y (b) [4 3] 4 1 r + = (a, 0, 0) r = ( a, 0, 0) xy ϕ dy = g(x, y) (4 3.1) dx g [2 2] 33 [4 4] a σ z E(r) ϕ(r) [4 5] 2 (a). x = a y = 0 λ x = a y = 0 λ 0 (b). ϕ xy 59

68 dr E(r) = 0 (5.1) C C 0 C dr dr E(r) 1 1 (5.1) Gauss (3.19) Stokes Stokes theorem 1 C= S dr E(r) = S ds E(r) (5.2) Stokes = r E(r) Stokes E(r) Gauss Stokes W. Thomson Kelvin 1850 G. G. Stokes Stokes H. Hankel 60

69 Stokes S S E(r) = 0 (5.3) E(r) = 0 (5.4) 2 E(r) = ϕ(r) (5.5) ϕ(r) (5.4) (5.4) (5.5) ϕ(r) ϕ(r) = 0 (5.6) ϕ 5.2 S= V ds E(r) = 4πk dv ρ(r) E(r) = 4πkρ(r) (5.7) V dr E(r) = 0 E(r) = 0 (5.8) C V C Gauss Coulomb 3 Gauss Gauss 3 1 Gauss (2.20) 21 Gauss

70 (2.20) Gauss Gauss y E(r) E(r) + C x (5.9) 0 C 2 0 Gauss 2 (5.9) 2 xy C > 0 1 y dr x = 2πr2 (5.10) 0 [5 1] r y x 0 = (5.11) C = 0 Gauss 5.3 Stokes * Stokes dr E(r) = ds E(r) (5.12) C= S S S C C S E(r) r 3 S C 1 1 C S Stokes Gauss V S = V

71 5.1: 5.2: Gauss (5.12) dxe x (r) + dye y (r + dxe x ) dxe x (r + dye y ) dye y (r) ( Ey (r) dxdy E ) x(r) (5.13) x y = dxdy ( E(r)) z (5.14) xy Stokes 5.4 Poisson * (5.5) Gauss (5.7) Poisson Poisson equation 2 ϕ(r) = 4πkρ(r) (5.15) 2 = = 2 x y z Laplacian 2 2 (5.5) Gauss Poisson Poisson 0 2 ϕ(r) = 0 (5.16) Laplace Laplace equation S. D. Poisson Poisson 2 Poisson 5.5 Poisson (4.13) 55 Poisson

72 5.5 [ ] Poisson ** ϕ 1 ϕ 2 Poisson 2 ϕ 1 (r) = 4πkρ(r) (5.17) 2 ϕ 2 (r) = 4πkρ(r) (5.18) 2 (ϕ 1 ϕ 2 ) = 0 (5.19) ϕ 1 ϕ 2 Laplace 0 ϕ 1 = ϕ 2 Poisson Gauss (3.31) 46 E = ϕ ϕ 4 ds ϕ(r) ϕ(r) = dv ( ϕ(r)) 2 + dv ϕ(r) 2 ϕ(r) (5.20) S= V V V Green Green s theorem 5 ϕ = ϕ 1 ϕ dv ( ϕ(r)) 2 = ds ϕ(r) ϕ(r) (5.21) V S= V 0 0 ϕ(r) = 0 (5.22) 0 ϕ(r) 0 ϕ 1 (r) = ϕ 2 (r) ϕ 1 (r) = ϕ 2 (r) [ ] ** q r = r 0 ρ(r) = q 4π 2 1 r r 0 (5.23) (4.13) 55 Poisson (5.15) 4 E ϕ Green 5 ϕ ψ E = ϕ ψ ϕ = ψ ψ 64

73 ( r r 0 = x y z 2 ) 1 (x x0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 (5.24) 0 0 r = r 0 regularization 2 1 r r 0 ( ) 2 = lim ϵ 0 x y z 2 (5.25) (x x0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 + ϵ 2 ϵ r = r r r 0 3ϵ 2 = lim ϵ 0 [(x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 + ϵ 2 ] 5/2 (5.26a) = { 0 r r0 (5.26b) 3 lim ϵ 0 ϵ r = r d 3 r 2 1 = lim r r 0 ϵ 0 = lim ϵ 0 0 4π ϵ 0 = lim d 3 3ϵ 2 r [(r r 0 ) 2 + ϵ 2 ] 5/2 (5.27a) dr 4πr 2 3ϵ 2 (r 2 + ϵ 2 ) 5/2 (5.27b) (5.27c) = 4π (5.27d) 6 1 ρ(r) = q 4π 2 1 r r 0 (5.28) r r 0 0 r = r 0 q Dirac δ 3 (r r 0 ) = 1 4π 2 1 r r 0 (5.29) 0 0 r ρ(r) = qδ 3 (r r 0 ) 6 r = ϵ tan θ 7 Kronecker 8 P. A. M. Dirac 65

74 5.7 Gauss Gauss Stokes 9 Poisson Gauss Poisson 10 Coulomb Poisson 2 I Coulomb II 5.8 [5 1] (5.10) 9 Stokes Stokes

75 5.3: [5 4] C x 0 > a [5 2] 0 0 (5.9) [5 3] C dr E(r) = 0 (5 3.1) C E(r) = 0 (5 3.2) Gauss 43 [5 4] q C 5.3 dr E(r) 0 C 67

76 6 6.1 conductor II Coulomb

77 electrostatic induction 6 1: 6.1 E 0 E σ σ 0 0 = E 0 2πkσ 2πkσ (6.1) σ = E 0 4πk (6.2) E 0 + 2πkσ 2πkσ = E 0 (6.3) electric discharge 69

78 6.1: E 0 6.2: 6.3: 6.4: Gauss E (r) = 4πkσ(r) (6.4) E (r) r Coulomb Gauss S 5 Coulomb 70

79 6 2: 0 q S 1 S 2 S 3 Gauss S 1 ds E(r) = 4πkq (6.5) S 2 ds E(r) = 0 (6.6) S 3 ds E(r) = 4πkq (6.7) S 1 S 3 S q 0 q q electric shielding x < 0 0 earth 0 a r = (a, 0, 0) q x = 0 0 q Gauss q r + = (a, 0, 0) r = ( a, 0, 0) r + q r q x = 0 Laplace 71

80 6.5: x 0 ( ) 1 ϕ(r) = kq (x a)2 + y 2 + z 1 2 (x + a)2 + y 2 + z 2 (6.8) x < 0 ϕ(r) = 0 q ( a, 0, 0) 6.5 method of images σ(y, z) = 1 4πk ϕ(r) x = qa x=0 2π 1 (a 2 + y 2 + z 2 ) 3/2 (6.9) σ σ 72

81 6.6: 6.7: z = ±d/2 z ( z d/2 E z (r) = 2πkσ z d/2 z + d/2 ) = z + d/2 0 z > d 2 4πkσ d 2 < z < d 2 0 z < d 2 (6.10) condenser, capacitor 6 z < d 2 ϕ(r) = 4πkσz + const. (6.11) ϕ ± ϕ + ϕ = 4πkσd (6.12) b a a > b Q Q Gauss r E r = kq r 2 (6.13) ϕ = kq r + const. (6.14) 6 capacitor 1745 E. G. von Kleist 1746 P. van Musschenbroek Leiden jar van Musschenbroek 7 73

82 6.8: p 2 ( 1 ϕ b ϕ a = kq b 1 ) a (6.15) ±Q ±Q Q /Q C = Q ϕ + ϕ (6.16) capacitance 2 C = 1 k ab a b (6.17) a b 2 S σ = Q/S C = 1 S 4πk d (6.18) r + = (0, 0, d/2) q r = (0, 0, d/2) q r x kq E(r) = [ x 2 + y 2 + ( ) z d 2 ] 3/2 y 2 z d 2 kq [ x 2 + y 2 + ( z + d 2 ) 2 ] 3/2 x y z + d 2 (6.19) 74

83 0 asymptotic form r = x 2 + y 2 + z 2 d 8 d/r d Taylor d 0 0 d E(r) kq ( d r 3 e z + 3dz ) r 5 r (6.20) r 3 z r + q r q 9 ( E(r) k p r 3 + 3p r ) r 5 r (6.21) p = q(r + r ) (6.22) ±q electric dipole electric dipole moment p r F 0 10 x f(x) = x + e x (6.23) g(x) = x2 + 1 x + 2 h(x) = 1 + ln x + 1 x (6.24) (6.25) f x g h x 1 f(x) e x (6.26) g(x) x (6.27) h(x) ln x (6.28) x

84 6.9: Cavendish a b a > b (i). (ii). (iii). (ii) 6.5 Cavendish ** Coulomb Coulomb 2 J. Priestley H. Cavendish Maxwell Cavendish 2 2 [6 7] u f Coulomb Coulomb 6.9(i) a b a > b Q σ a = Q 4πa (ii) 0 Coulomb σ a σ b [6 7] ( ) ϕ(r) = 2πσ a f(r + a) f( r a ) ar ( ) + 2πσ b f(r + b) f( r b ) br (6.29) 10 Priestley Coulomb 11 Cavendish Coulomb Ohm Cavendish

85 r ϕ(a) = ϕ(b) ϕ 0 ( ) ϕ 0 = 2πσ a a 2 f(2a) f(0) ϕ 0 = 2πσ a ab + 2πσ b ab ) ( f(a + b) f(a b) ( ) f(a + b) f(a b) ( ) + 2πσ b b 2 f(a + b) f(0) (6.30) (6.31) ϕ 0 σ a σ b ( ) ( ) ( ) pa p ab σ a = ϕ 0 1 2π 1 p ab p b σ b (6.32) p a = f(2a) f(0) f(2b) f(0) f(a + b) f(a b) a 2, p b = b 2, p ab = ab (6.33) (6.32) ( σ a σ b ) = ϕ 0 2π = ϕ 0 2π = ϕ 0 2π ( pa p ab p ab 1 p b ) 1 ( 1 1 ) ( pb p ab p a p b p 2 ab p ab p a ( ) 1 pb p ab p a p b p 2 ab p a p ab ) ( 1 1 ) (6.34a) (6.34b) (6.34c) ϕ 0 f 6.9(iii) 0 (6.29) 0 = 2πσ ap a + 2πσ bp ab (6.35) ϕ(b) = 2πσ ap ab + 2πσ bp b (6.36) σ a σ b σ a = p ab p a σ b (6.37) σ a σ b ( ) p a p2 ab σ b ϕ(b) = 2π ( = 1 p ab p a ( = 1 a b p a ) ϕ 0 f(a + b) f(a b) f(2a) f(0) ) ϕ 0 (6.38a) (6.38b) (6.38c) (iii) (ii) ϕ 0 f 77

86 f Coulomb [6 7] Coulomb u(r) = C R (6.39) (4.13) 55 Coulomb (6.38) ϕ(b) = 0 Coulomb u(r) = C R 1+δ (6.40) δ = 0 Coulomb δ (6.38) [ (a ϕ(b) = 1 a ) 1 δ ( ) ] 1 δ + b a b ϕ 0 b 2a 2a (6.41) δ 0 a b Coulomb Coulomb k 13 Cavendish δ < 1 50 Cavendish Maxwell δ < Gauss [6 3] [6 4]

87 +q q II 15 Wikipedia

88 6.7 [6 1] x = 0 (6.9) [6 2] r r = (a, 0, 0) q a > r (a). 0 r = (a, 0, 0) q a q (b). [6 3] a b (a). E(r) ϕ(r) Q (b). C [6 4] a b [6 5] (a). (6.21) (b). (a) p E 0 (c). (b) r [6 6] (a). (6.21) (b). [6 5](b) 80

89 [6 7] a σ a (a). r r = r ϕ(r) = σ a S a dω(r a ) u( r r a ) (6 7.1) r a u(r) (b). f(r) Ru(R) ϕ(r) = 2πσ ( ) a f(r + a) f( r a ) (6 7.2) ar f(r) = dr Ru(R) (6 7.3) 81

90

91 II

92

93 7 Ohm electric current t r ds J(r, t) ds J(r, t) current density S I(t) I(t) = S ds J(r, t) (7.1) ( ) ( ) 1 ( ) ( ) 2 ( ) 1 Gauss J(r, t) ρ(r, t) V S I(t) = S= V ds J(r, t) (7.2) I(t) Q(t) = dv ρ(r, t) (7.3) V 2 I(t) = d Q(t) (7.4) dt 1 I 2 Gauss Gauss 85

94 7.1: J(r, t) S I(t) d dv ρ(r, t) + ds J(r, t) = 0 (7.5) dt V S= V Gauss (3.31) 46 3 V dv ( ) ρ(r, t) + J(r, t) = 0 (7.6) t Gauss ρ(r, t) + J(r, t) = 0 (7.7) t continuity equation (7.5) (7.7) conservation law E r(t) E(r(t)) = E(r(0)) Q(t) Q(t) III 3 3 (7.7) Gauss Stokes 86

95 7.2: S I = ds J(r) S ρ(r, t) J(r, t) II steady state 1 steady current J(r) = 0 (7.8) J = J(r) (7.8) Gauss ds J(r) = 0 (7.9) S S [7 2] I = ds J(r) (7.10) S S J S I = JS (7.11) (7.10) 87

96 0 7.2 Ohm Ohm Ohm Ohm s law 1826 G. S. Ohm G. R. Kirchhoff 4 voltage V I V = RI (7.12) R electrical resistance Ohm Ohm I V 5 R = ρ l S (7.13) l S ρ electrical resistivity 6 7 (7.11) Ohm V = ρlj (7.14) V V = El (7.15) 8 E Ohm 4 Cavendish

97 Ohm E = ρj (7.16) Ohm E(r) = ρj(r) (7.17) J(r) = σe(r) (7.18) σ = 1/ρ electrical conductivity (7.17) (7.18) Ohm Ohm Ohm 10 0 (7.8) 0 = J(r) = σ E(r) (7.19) Gauss 0 J(r) = 0 (7.20) electromotive force J(r) = σ (E(r) + E emf (r)) (7.21) 2 E emf (r) V emf = dr E emf (r) (7.22) C 12 III 9 Ohm Ohm 12 89

98 7.3 Ohm Ohm + I Ohm Coulomb (!?) 90

99 14 Ohm Ohm ρ v J = ρv (7.23) 15 Ohm m dv dt = qe (7.24) 0 16 m dv dt = q ( E nq σ v ) (7.25) nq 2 /σ Ohm n 0 Ohm 0 17 Ohm [7 1]

100 18 Ohm Ohm Ohm Ohm Coulomb Ohm Ohm Ohm 19 Ohm Ohm Ohm 2 Ohm 20 I Ohm 19 Brown Einstein 20 steady state stationary state steady stationary steady state 21 92

101 7.3: [7 3] N 22 II 7.4 [7 1] ρ(r, t) = ρ 0 (r vt) (7 1.1) v ρ 0 (r) (7.23) [7 2] S (7.10) [7 3] Kirchhoff 7.3 N 0 Kirchhoff Kirchhoff s current law N I i = 0 (7 3.1) i=1 (7.10) I i 22 93

102 [7 4] a b b > a σ Ohm J(r) = σe(r) R [7 5] (7.25) v i (t) = dri(t) dt r i (t) t E 94

103 8 Ampère 8.1 Ampère H. C. Ørsted Ørsted F. Arago A.-M. Ampère Ampère 2 I 1 I 2 r f = 2k m I 1 I 2 r (8.1) 2k m Ampère Ampère force Coulomb 1 Cavendish Coulomb 1785 Poisson 1812 Ohm 1826 Ohm 2 2 Coulomb Coulomb 1750 J. Michell 1760 T. Mayer Coulomb 10 3 J.-B. Biot F. Savart 4 2 (8.2) 95

104 8.1: Ampère d 2 F 12 = k m I 1 I 2 dr 1 dr 2 r 1 r 2 r 1 r 2 3 (8.2) 2 dr 2 1 dr 1 r 1 r 2 (8.1) [8 1] dr 1 dr 2 (8.1) [A] I 1C = 1A s Ampère (8.1) 1m 1m N 1A k m = N A 2 = N s 2 C 2 Coulomb k N m 2 C 2 k m m 2 s 2 2 SI m kg s A MKSA C A A C 5 d 2 F

105 A (B C) = (A C)B (A B)C (8.3) (8.2) ( d 2 F 12 = k m I 1 I 2 [dr 1 dr 2 r ) ] 1 r 2 r 1 r 2 r 1 r 2 3 dr 1 r 1 r 2 3 dr 2 2 r 1 0 C dr 1 (8.4) r 1 r 2 r 1 r 2 3 = 1 dr 1 r1 C r 1 r 2 = 0 (8.5) 0 0 Ampère d 2 F 12 = k m I 1 I 2 dr 1 ( dr 2 r ) 1 r 2 r 1 r 2 3 Ampère H. G. Grassmann 1845 Ampère (8.6) magnetic field (8.6) d 2 F 12 = I 1 dr 1 db (8.7) B static magnetic field 7 db = k m I 2 dr 2 r 1 r 2 r 1 r 2 3 (8.8) r 2 r 1 r 1 8 N A 1 m 1 [T] Tesla electrostatic field magnetostatic field Magnetostatics 8 Ampère 9 B B = µ 0 H = 4πk m H H H 10 97

106 8.3 Biot Savart I r B B(r) = k m I dr r r r r 3 (8.9) C Biot Savart Biot Savart law Biot Savart Ørsted Ampère 11 J(r) B(r) = k m d 3 r J(r ) r r r r 3 (8.10) Idr J(r )d 3 r 0 (8.10) (8.10) (2.20) : z I z r x B(r, 0, 0) = k m I dz e z re x ze z re x ze z 3 = k mi dz r (r 2 + z 2 ) e 3/2 y = 2k mi e y (8.11) r Ampère (r, 0, 0) y 8.2 e φ (r) 8 2: a I xy z (x, y, z) = (ρ cos φ, ρ sin φ, z) 11 98

107 8.2: 8 1 I B 8.3: 8 2 I B B(0, 0, z) = k m I 2π 0 adφ e φ ze z ae ρ ze z ae ρ 3 = k mi 2π 0 dφ a (z 2 + a 2 ) 3/2 (ze ρ + ae z ) (8.12) e φ = ( sin φ, cos φ, 0) e ρ = (cos φ, sin φ, 0) z 8.3 a 2 B(0, 0, z) = 2πk m I (z 2 + a 2 ) e 3/2 z (8.13) z [8 4] 8.5 Lorentz Lorentz Ampère (2.19) 21 (8.7) J (7.23) 91 Idr Idr B ρvdv B = ρdv v B 12 ρdv q qv B 12 (7.23) 91 99

108 m d2 r(t) dt 2 = qe(r(t)) + q dr(t) dt Lorentz Lorentz force 13 B(r(t)) (8.14) : m q m d2 r(t) dt 2 = qe (8.15) E r 0 t = 0 v 0 t = 0 r(t) = qe 2m t2 + v 0 t + r 0 (8.16) 8 4: m d2 r(t) dt 2 = q dr(t) dt 15 dr(t) dt B (8.17) = q m (r(t) r 0) B + v 0 (8.18) r 0 v z dx(t) = q dt m (y(t) y 0)B + v 0x (8.19) dy(t) = q dt m (x(t) x 0)B + v 0y (8.20) dz(t) = v 0z dt (8.21) 13 H. Lorentz Lorentz

109 z z(t) = v 0z t + z 0 (8.22) x y y x d 2 x(t) dt 2 = qb [ q ] m m (x(t) x 0)B + v 0y = q2 B 2 ( m 2 x(t) x 0 m ) qb v 0y (8.23) x(t) x 0 m ( ) ( ) qb qb qb v 0y = C 1 sin m t + C 2 cos m t (8.24) C 1 C 2 r(t) = r 0 dr(t) dt = v 0 t = 0 t=0 1 t = 0 m qb v 0y = C 2 (8.25) v 0x = qb m C 1 (8.26) C 1 = v 0x ω C 2 = v 0y ω ω = qb m (8.27) (8.28) (8.29) (8.19) y(t) x(t) = v 0x ω sin ωt + v 0y ω (1 cos ωt) + x 0 (8.30) y(t) = v 0y ω sin ωt v 0x ω (1 cos ωt) + y 0 (8.31) xy ω Larmor Larmor frequency z ( ) 2 dr(t) = v0 2 (8.32) dt 101

110 8.6 Ampère Biot Savart Lorentz 16 Biot Savart Coulomb Ampère 10 Grassmann 1845 (8.6) 1876 Clausius Grassmann Grassmann 17 Grassmann J. A. Fleming Stokes Grassmann Grassmann 102

111 k m [8 1] Ampère (8.2) (8.1) [8 2] Ampère (8.6) (8.2) [8 3]

112 8.4: [8 3] I I 0 I 0 [8 4] 8 2 [8 5] a b c z a < b < c I I B(r) [8 6] [8 7] [8 8] (8.30) (8.31) f(x, y) = 0 z [8 9] m d2 r(t) dt 2 = qe + q dr(t) dt B (8 9.1) 104

113 0 0 (a). B = 0, E = 0 (b). B = B 0 0 B, E = E E 0 0, r(0) =, r(0) = ,, dr(t) dt = t=0 dr(t) dt = t=0 v E B v 0 [8 10] 2 xy m q v F = m τ v τ (a). E (b). (a) B = Be z x x (c). E = 0 B = Be z 105

114 9 Coulomb Gauss Poisson 9.1 Biot Savart B(r) = k m d 3 r J(r ) r r r r 3 (9.1) Gauss Gauss line of magnetic force S magnetic flux Φ = ds B(r) (9.2) S [Wb] Weber 1Wb = 1T m 2 S 0 Gauss S ds B(r) = 0 (9.3) Gauss B(r) = 0 (9.4) 106

115 (9.1) B(r) = k m d 3 r J(r ) r r r r 3 (9.5) (3 8.1) 51 B(r) = k m d 3 r J(r ) ( r r ) r r r 3 (9.6) r r r r r 3 = r r 1 r r = 0 (9.7) 1 Gauss Gauss Ampère 0 0 C dr B(r) (9.8) C a Ampère dr B(r) = 2πa 2k mi = 4πk m I (9.9) a C I = ds J(r) S C= S dr B(r) = 4πk m S ds J(r) (9.10) 2 1 r = r

116 0 C S Ampère Ampère s law Stokes ds B(r) = 4πk m ds J(r) (9.11) S S S B(r) = 4πk m J(r) (9.12) Ampère (9.1) [9 2] C= S ds B(r) = 0 B(r) = 0 (9.13) S dr B(r) = 4πk m ds J(r) B(r) = 4πk m J(r) (9.14) S S S S= V ds E(r) = 4πk dv ρ(r) E(r) = 4πkρ(r) (9.15) V dr E(r) = 0 E(r) = 0 (9.16) C 0 / / Gauss 9.2 * * Gauss Poisson 108

117 0 ϕ(r) ϕ(r) = 0 0 Gauss Biot Savart 3 B(r) = k m d 3 r J(r 1 ) r (k r r = m d 3 r J(r ) ) r r (9.17) r r 0 A(r) = 0 Gauss B(r) = A(r) (9.18) Gauss 4 A(r) vector potential 5 Biot Savart A(r) = k m d 3 r J(r ) r r (9.19) 3 3 B = 0 Poisson (3.45) 47 B(r) = ( A(r)) = ( A(r)) 2 A(r) (9.20) (9.14) ( A(r)) 2 A(r) = 4πk m J(r) (9.21) Poisson 1 (9.19) (9.21) 1 A(r) = k m d 3 r J(r ) r r = k m d 3 r J(r 1 ) r r r = k m d 3 r J(r 1 ) r r r = k m d 3 r ( r J(r 1 )) r r k m d 3 r J(r ) r r r (9.22a) (9.22b) (9.22c) (9.22d) 3 A ϕ(r) = Aϕ(r) A 4 A (9.18) B = 0 Helmholtz 5 ϕ(r) scalar potential 109

118 r r 1 (7.8) Gauss (3.31) 46 A(r) = k m ds J(r ) r r (9.23) S 0 2 A(r) = 4πk m J(r) (9.24) 3 Poisson B(r) = A(r) (9.25) 2 A(r) = 4πk m J(r) (9.26) ** (9.26) (9.19) A(r) = 0 6 A(r) A (r) = A(r) + A 0 (r), A 0 (r) = 0 (9.27) 0 ϕ(r) ϕ (r) = ϕ(r) + ϕ 0 (r), ϕ 0 (r) = 0 (9.28) ϕ 0 (r) 0 A 0 A 0 (r) = χ(r) (9.29) χ(r) A(r) A (r) = A(r) + χ(r) (9.30) 6 110

119 gauge transformation ϕ(r) A(r) ϕ (r) A (r) gauge invariance A (r) = 0 χ(r) 2 χ(r) = A(r) (9.31) χ(r) 7 Poisson 8 A (r) (9.26) A(r) = 0 (9.26) A(r) = 0 (9.26) (9.19) A(r) = 0 (9.19) : Gauss : Ampère (9.18) (9.19) 7 gauge fixing 8 Poisson 111

120 III 9.4 [9 1] (9.13) (9.14) Biot Savart (9.1) [9 2] (9.1) (9.12) (5.27) 65 [9 3]

121 [9 4] (7.19)

122 10 magnet a I B(r) = k m I dr r r r r 3 (10.1) C C r a 0 B(r) A(r) B(r) = A(r) A(r) dr A(r) = k m I C r r (10.2) r = r r = r 1 r r = = 1 (r r ) 2 1 r2 2r r + r 2 (10.3a) (10.3b) = 1 (10.3c) r 1 2 r r r + r 2 2 r 2 1 r ( ) (10.3d) 1 r r r 2 1 (1 + r ) r r r 2 (10.3e) r 2 A(r) k ( mi dr 1 + r ) r r r 2 C (10.4) 1 B(r) = A(r) A(r) (10.2) 114

123 xy cos θ sin θ r = a sin θ, dr = adθ cos θ (10.5) 0 0 sin θ A(r) k mia r = k mia r 2π 0 y x 0 dθ πa r 2 cos θ 0 [ 1 + a ] r 2 (x cos θ + y sin θ ) (10.6a) (10.6b) = k m ISe z r r 3 (10.6c) S = πa 2 m = ISe z = IS (10.7) S 2 (10.6) B(r) = (k m m r ) r 3 = k m m r r 3 k mm r ( r 3 = k m m r 3 + 3m r ) r r 5 (10.8a) (10.8b) (10.8c) (3 8.2) 51 3 (6.21) 75 magnetic dipole moment m magnetic dipole m = I ds (10.9) S S 10.2 Coulomb 2 115

124 10.1: (a) (b) (c) (d) Coulomb p = qd d 0 1 q q 10.1 r 0 r (6.21) 75 dϕ(r) = k p (r r 0) r r 0 3 (10.10) p = qdr 0 r 0 r r 0 ϕ(r) = kq dr 0 r r 0 3 = kq 1 dr 0 r0 r r 0 = kq C C ( ) 1 r r + 1 r r (10.11) 3 Coulomb 0 magnetic charge Coulomb magnetic potential r 0 m = q m dr 0 ( ) r r 0 ϕ m (r) = k m q m dr 0 C r r 0 3 = k 1 mq m r r + 1 r r ( r r+ B(r) = ϕ m (r) = k m q m r r + 3 r r ) r r 3 Coulomb q m 3 C (10.12) (10.13) 116

125 10.2: 10.3: 10.3 N S N S 4 solenoid magnetic moment [8 3]

126 0 magnetic monopole Gauss (9.4) [10 1] (10.9) m = I r dr (10 1.1) 2 C S C [10 2] (10.8) 7 8 spin 118

127 [10 3] n 119

128

129 III

130

131 11 III 11.1 II Lorentz Lorentz B v q B v qv B 1 0 = qe + qv B (11.1) E = v B (11.2) σ Ohm 11.2 J E + v B = 1 σ J (11.3) V emf = dr v B (11.4) C 1 v 2 (11.3) 7 123

132 11.1: 11.2: ab abcd ab 11.3: dr v v dr v dr (11.4) (3.43) 47 V emf = dr v B (11.5) C 11.3 v dr V emf (t) = d ds B (11.6) dt S(t) 11.2 abcd S(t) (9.2) 106 Lorentz Lorentz S(t) 124

133 II Faraday Lorentz Faraday (11.6) 4 V emf (t) = d ds B(r, t) (11.7) dt S S Faraday electromagnetic induction Faraday Faraday s law of induction 5 [11 2] C 3 J. Henry Faraday Henry [H] 4 B(r, t) V emf (t) Faraday Henry 1830 (11.7) F. E. Neumann 1845 (11.7) E. Lenz Lenz 1834 Lenz Neumann Faraday Neumann 125

134 C= S dr E(r, t) = d dt S ds B(r, t) (11.8) S C C Faraday Stokes (5.12) 62 ds ( E(r, t) + t ) B(r, t) = 0 (11.9) S 6 Faraday E(r, t) + B(r, t) = 0 (11.10) t Faraday 7 Faraday 6 7 Faraday Lorentz 126

135 d V emf (t) = k emf ds B(r, t) (11.11) dt S k emf Faraday E(r, t) + k emf B(r, t) = 0 (11.12) t k emf k m k emf Lorentz (8.14) 100 Lorentz (11.6) k emf 1 principle of relativity k emf = 1 Faraday (11.8) Faraday 11.4 [11 1]

136 11.4: [11 2](a) oa oabcde 11.5: [11 2](b) o abcdo [11 2] (a) (b)

137 12 Maxwell Maxwell ds E(r) = 4πk dv ρ(r) E(r) = 4πkρ(r) (12.1) S= V V dr E(r) = 0 E(r) = 0 (12.2) C ds B(r) = 0 B(r) = 0 (12.3) S dr B(r) = 4πk m ds J(r) B(r) = 4πk m J(r) (12.4) C= S Faraday C= S dr E(r, t) = d dt S S ds B(r, t) E(r, t) + B(r, t) = 0 (12.5) t (12.2) 7 ρ(r, t) + J(r, t) = 0 (12.6) t (12.1) (12.4) t E(r, t) = 4πk ρ(r, t) t (12.7) B(r, t) = 4πk m J(r, t) (12.8)

138 0 E(r, t) = 4πkρ(r, t) (12.9) B(r, t) k m k t E(r, t) = 4πk mj(r, t) (12.10) 2 1 ds E(r, t) = 4πk dv ρ(r, t) (12.11) S= V V ( dr B(r, t) = 4πk m ds J(r, t) + 1 ) E(r, t) (12.12) 4πk t C= S S displacement current J d (r, t) = 1 4πk te(r, t) Maxwell (12.3) (12.2) (12.5) (12.5) E(r, t) + B(r, t) = 0 (12.13) t (12.3) ds B(r, t) = 0 B(r, t) = 0 (12.14) S Faraday (12.5) z < 0 z Q(t) = It Gauss (12.9) E(r, t) = kit r r 3 (12.15) 1 130

139 J d (r, t) = 1 4πk I E(r, t) = t 4π (12.12) r r 3 (12.16) B(r, t) = B(ρ, z, t)e φ (12.17) z ρ z e ρ 0 Gauss (12.14) e z 0 2 z ρ k m I S 2πρB(ρ, z, t) = ds 4πk m I + k m I S ds S r r 3 z > 0 r r 3 z < 0 (12.18) r ρ 2π ds r 3 = ρ dρ z dφ (12.19a) (ρ 2 + z 2 ) 3/2 0 ρ 2 0 dρ 2 = πz (12.19b) 0 (ρ 2 + z 2 ) ( 3/2 ) = 2π z z 1 (12.19c) z ρ2 + z 2 B(ρ, z, t) = k mi ρ ( 1 ) z ρ2 + z 2 (12.20) z > 0 z < 0 z = Maxwell ds E(r, t) = 4πk dv ρ(r, t) (12.21) S= V V dr E(r, t) = d ds B(r, t) C= S dt S (12.22) ds B(r, t) = 0 (12.23) S ( dr B(r, t) = 4πk m ds J(r, t) + 1 ) E(r, t) 4πk t (12.24) C= S 2 [12 1] S 131

140 12.1: z < 0 I Q(t) = It E(r, t) = 4πkρ(r, t) (12.25) E(r, t) + B(r, t) = 0 t (12.26) B(r, t) = 0 (12.27) B(r, t) k m k t E(r, t) = 4πk mj(r, t) (12.28) Maxwell Maxwell equation Maxwell (ρ, J, E, B) 2 Maxwell Maxwell Maxwell 4 (12.28) k m k t E(r, t) = 4πk m J(r, t) = 4πk m ρ(r, t) (12.29) t ( ) E(r, t) 4πkρ(r, t) = 0 (12.30) t 132

141 Maxwell 1 (12.25) 0 2 (12.26) B(r, t) = 0 (12.31) t 3 0 Maxwell 1 3 Maxwell Maxwell (3.45) 47 ( E(r, t)) 2 E(r, t) = B(r, t) (12.32) t ( B(r, t)) 2 B(r, t) = k m k Maxwell E(r, t) + k m k 2 B(r, t) + k m k 0 2 t E(r, t) + 4πk m J(r, t) (12.33) t 2 E(r, t) = 4πk ρ(r, t) 4πk m J(r, t) t (12.34) 2 t 2 B(r, t) = 4πk m J(r, t) (12.35) 2 E(r, t) + k m k 2 B(r, t) + k m k 2 E(r, t) = 0 t2 (12.36) 2 B(r, t) = 0 t2 (12.37) wave equation k v = (12.38) k m 3 133

142 k k m 1/ Maxwell v c m/s 1849 H. Fizeau 1856 R. Kohlrausch W. E. Weber k k m Maxwell v c 4 k k m k = 1 4πϵ 0 (12.39) k m = µ 0 4π ϵ 0 permittivity µ 0 permeability 5 (12.40) ϵ 0 µ 0 = 1 c 2 (12.41) Maxwell 2 Maxwell E(r, t) = 1 ϵ 0 ρ(r, t) (12.42) E(r, t) + B(r, t) = 0 t (12.43) B(r, t) = 0 (12.44) B(r, t) 1 c 2 t E(r, t) = µ 0J(r, t) (12.45) 7 Ohm Maxwell Maxwell t t E(r, t) = 1 ϵ 0 ρ(r, t) (12.46) E(r, t) B(r, t) = 0 t (12.47) B(r, t) = 0 (12.48) B(r, t) + 1 c 2 t E(r, t) = µ 0J(r, t) (12.49) ρ(r, t) = ρ(r, t) (12.50) Faraday 5 134

143 Maxwell J(r, t) = J(r, t) (12.51) E(r, t) = E(r, t) (12.52) B(r, t) = B(r, t) (12.53) 12.3 law of conservation of energy v m q 1 2 mv2 Lorentz 6 v(t) = dr(t) dt ( ) d 1 dt 2 mv2 (t) = mv(t) v(t) (12.54a) = qv(t) (E(r(t), t) + v(t) B(r(t), t)) (12.54b) = qv(t) E(r(t), t) (12.54c) d ( ) 1 dt 2 m ivi 2 (t) = q i v i (t) E(r i (t), t) = dv J(r, t) E(r, t) (12.55) i i (7.23) 91 J(r, t) E(r, t) Maxwell 4 (12.45) ( ) 1 J E = B ϵ 0 µ 0 t E E = ϵ 0 E t E + 1 E B (12.56) µ 0 (3 8.1) 51 E B = B E E B (12.57) 6 Lorentz 135

144 Maxwell 2 (12.43) J E = ϵ 0 E t E + 1 µ 0 B E 1 µ 0 E B = ϵ 0 E t E 1 B µ 0 t B 1 E B µ 0 = ( ϵ0 t 2 E2 + 1 ) B 2 1 E B 2µ 0 µ 0 (12.58a) (12.58b) (12.58c) ( ϵ0 t 2 E2 (r, t) + 1 ) ( ) 1 B 2 (r, t) + E(r, t) B(r, t) = J(r, t) E(r, t) (12.59) 2µ 0 µ 0 (12.55) V ( d ϵ0 dv dt 2 E2 + 1 ) B 2 + dv 1 E B = d 2µ 0 µ 0 dt T (12.60) V T 2 Gauss ( d ϵ0 dv dt 2 E2 + 1 ) B 2 + 1µ0 ds E B = d 2µ 0 dt T (12.61) V 0 E E(t) = dv V V S d (T + E) = 0 (12.62) dt ( ϵ0 2 E2 (r, t) + 1 ) B 2 (r, t) 2µ 0 (12.63) (12.59) E(r, t) + S(r, t) = J(r, t) E(r, t) (12.64) t E(r, t) = ϵ 0 2 E2 (r, t) + 1 2µ 0 B 2 (r, t) (12.65) S(r, t) = 1 µ 0 E(r, t) B(r, t) (12.66) E(r, t) S(r, t) Poynting Poynting vector 7 Poynting (12.64) Poynting J. H. Poynting Pointing 136

145 Poynting (12.64) [12 4] (12 4.1) 12.4 ** I II E(r) = ϕ(r) (12.67) B(r) = A(r) (12.68) ϕ A electromagnetic potential Maxwell (12.44) B(r, t) = A(r, t) (12.69) 2 (12.43) E(r, t) = ϕ(r, t) + Ẽ(r, t) (12.70) 2 Ẽ(r, t) + A(r, t) = 0 (12.71) t Ẽ(r, t) = A(r, t) (12.72) t 137

146 Maxwell 2 3 E(r, t) = ϕ(r, t) A(r, t) t (12.73) B(r, t) = A(r, t) (12.74) ϕ(r) t A(r, t) = 1 ϵ 0 ρ(r, t) (12.75) ( A(r, t)) 2 A(r, t) + 1 c 2 t ϕ(r, t) + 1 c 2 2 t 2 A(r, t) = µ 0J(r, t) (12.76) 2 ϕ(r, t) c 2 t 2 ϕ(r, t) ( 1 t c 2 t 2 A(r, t) + 1 c 2 2 A(r, t) + t2 ) ϕ(r, t) + A(r, t) = 1 ρ(r, t) (12.77) ϵ 0 ( 1 c 2 ϕ(r, t) + A(r, t) t ) = µ 0 J(r, t) (12.78) Maxwell 9 A = 0 1 c 2 ϕ(r, t) + A(r, t) = 0 (12.79) t 8 2 ϕ(r, t) c 2 t 2 ϕ(r, t) = 1 ρ(r, t) ϵ 0 (12.80) 2 A(r, t) c 2 t 2 A(r, t) = µ 0J(r, t) (12.81) (12.74) A(r, t) A (r, t) = A(r, t) + χ(r, t) (12.82) 0 (12.73) ϕ(r, t) ϕ (r, t) = ϕ(r, t) χ(r, t) (12.83) t χ(r, t) (12.79) 12.5 Maxwell 8 Lorenz L. Lorenz Lorentz 138

147 12.2: Maxwell Maxwell Maxwell 12.2 Faraday Faraday Faraday 10 Einstein 139

148 I II Gauss Coulomb Biot Savart Maxwell Maxwell 1 Maxwell 1 2 Newton Newton Maxwell r t 11 0 Maxwell Maxwell

149 12.3: [12 2] V (t) I(t) S 1 S [12 1] e ρ 0 e z [12 2] 12.3 (12.12) S 1 S 2 (6.18) 74 [12 3] Maxwell [12 4] (a). ϵ 0 dv E 2 (r) = 1 dv ρ(r)ϕ(r) (12 4.1) 2 2 V V ϕ(r) (b) V 141

150 ρ = 0 J = 0 Maxwell E(r, t) = 0 (13.1) E(r, t) + B(r, t) = 0 t (13.2) B(r, t) = 0 (13.3) B(r, t) 1 c 2 E(r, t) = 0 t (13.4) 2 E(r, t) + 1 c B(r, t) + 1 c 2 2 E(r, t) = 0 (13.5) t2 B(r, t) = 0 (13.6) t2 Maxwell Maxwell electromagnetic wave 2 Maxwell Maxwell z E(z, t) separation of variables E(z, t) = E 0 Z(z)T (t) (13.7) 142

151 E 0 E 0 ( Z (z)t (t) + 1 ) c 2 Z(z) T (t) = 0 (13.8) Z Z z T T t Z (z) Z(z) + 1 c 2 T (t) T (t) = 0 (13.9) 1 z t 2 t z z t 0 Z (z) Z(z) = C 1 (13.10) 1 T (t) c 2 T (t) = C 1 (13.11) 2 C 1 = k 2 Z (z) = k 2 Z(z) (13.12) T (t) = c 2 k 2 T (t) (13.13) k 2 2 k C 1 < 0 k [13 1] Z(z) = Z 0 sin(kz kz 0 ) (13.14) T (t) = T 0 sin(ckt ckt 0 ) (13.15) 0 4 Z 0 T 0 E 0 E = E 0 sin(k(z z 0 )) sin(ck(t t 0 )) (13.16) 1 k ck c E = 0 ke 0z cos(k(z z 0 )) sin(ck(t t 0 )) = 0 (13.17) z t E 0z = 0 k = 0 E = 0 E 0z = 0 z k k z 1 Fourier 143

152 Maxwell E = E 0x E 0y 0 sin(k(z z 0)) sin(ck(t t 0 )) (13.18) B = 1 c E 0y E 0x 0 cos(k(z z 0)) cos(ck(t t 0 )) (13.19) plain wave z t 2 ξ = z ct η = z + ct ξ η E = 0 (13.20) E(z, t) = E + (ξ) + E (η) = E + (z ct) + E (z + ct) (13.21) E ± 1 E + (z ct) c 2 c E(r, t) = E + (k r ckt) + E (k r + ckt) (13.22) k k E(r, t) = 0 k (E +(k r ckt) + E (k r + ckt) ) = 0 (13.23) E ± E ± k 0 k E(r, t) = 0 (13.24) [13 2] Maxwell E 1 E 2 E 1 + E 2 2 z 144

153 k k ** (13.46) (13.47) ϕ(r) = 1 d 3 r 1 4πϵ 0 r r ρ(r ) (13.25) A(r) = µ 0 d 3 r 1 4π r r J(r ) (13.26) I II ϕ A 5 ( r r ρ ϕ(r, t) = 1 d 3 r 1 4πϵ 0 A(r, t) = µ 0 d 3 r 1 4π r r J r, t r ) r c ( r, t r ) r c (13.27) (13.28) (12.73) (12.74) 138 r r r c r r /c t t r r c 3 Fourier 4 Feynman If it gets difficult in places, well, that s life there is no other way. Feynman Lectures on Physics, Volume II 5 Lorenz 145

154 c retarded potential causality z t = 0 I 8 0 z (ρ, φ, z) E(r, t) = E ρ (ρ, t)e ρ + E φ (ρ, t)e φ + E z (ρ, t)e z (13.29) B(r, t) = B ρ (ρ, t)e ρ + B φ (ρ, t)e φ + B z (ρ, t)e z (13.30) x = ρ cos φ (13.31) y = ρ sin φ (13.32) e ρ = 1 x cos φ ρ y = sin φ, 0 0 e φ = 1 ρ y x 0 = sin φ cos φ 0, e z = (13.33) z ρ E(r) = 0 (13.34) B(r) = µ 0I 2πρ e φ (13.35) 0 7 t = z Gauss ρ 0 Maxwell 1 3 E ρ = 0 (13.36) B ρ = 0 (13.37) 6 (13.39) (13.39) 146

155 13.1: z t l 2 < z < l 2 (13.28) ρ 13.1 l A(r, t) = µ 0I 4π l 2 = c 2 t 2 ρ 2 (13.38) z z < l 2 dz 1 r r e z (13.39) A(r, t) = µ 0I dz 1 4π r r e z (13.40a) = µ 0I 4π = µ 0I 4π z z < l 2 z z < l 2 l/2 l/2 dz 1 ρ2 + (z z ) 2 e z dz 1 ρ2 + z 2 e z = µ [ 0I ( ln ρ2 + z 4π 2 z )] l/2 = µ 0I 4π ln ρ 2 + ( ) l l 2 ρ 2 + ( ) e z l 2 2 l 2 ( = µ 0I 4π ln ct + ) c 2 t 2 ρ 2 e z ct c 2 t 2 ρ 2 l/2 e z (13.40b) (13.40c) (13.40d) (13.40e) (13.40f) B(r, t) = A(r, t) (13.41a) A z = y Az x (13.41b) 0 147

156 = A z ρ e φ = µ 0I ct 2πρ c2 t 2 ρ e 2 φ (13.41c) (13.41d) Maxwell 2 7 A(r, t) E(r, t) = = µ 0I c t 2π c2 t 2 ρ e 2 z (13.42) Maxwell 4 8 z ρ S dr B(r, t) 1 d c 2 ds E(r, t) = µ 0 I (13.43) dt C S C S ρ ct dr B(r, t) = 2πρB φ (ρ, t) = µ 0 I (13.44) c2 t 2 ρ 2 C 1 d c 2 ds E(r, t) = 1 d dt S c 2 dt = µ 0I 2c = µ 0I 2c = µ 0 I d dt d ( dt ρ 0 ρ 2 2πρ dρ E z (ρ, t) dρ 2 0 c2 t 2 ρ 2 (2ct 2 ) c 2 t 2 ρ 2 1 ) ct c2 t 2 ρ 2 (13.45a) (13.45b) (13.45c) (13.45d) Maxwell 4 E(r, t) = µ 0I 2π c c2 t 2 ρ 2 e z (13.46) B(r, t) = µ 0I ct 2πρ c2 t 2 ρ e 2 φ (13.47) ρ 13.2 ρ < ct ρ = ct 0 (13.35) Poynting S(r, t) = 1 µ 0 E(r, t) B(r, t) = µ 0I 2 4π 2 c 2 t ρ(c 2 t 2 ρ 2 ) e ρ (13.48) 13.3 Maxwell 7 Maxwell z =

157 13.2: (13.46) (13.47) ( ): t = t 1, t 2 t 1 < t 2 ρ ( ): ρ = ρ 0 t ρ = ct Maxwell Maxwell Maxwell Maxwell Lorentz Newton 13.2 Einstein 149

158 (12.15) 130 Gauss Gauss 13.4 [13 1] Poynting Poynting k 2 < 0 [13 2] (13.22) k [13 3] r = r t re(r, t) [13 4] ρ(r, t) J(r, t) E(r, t) = k B(r, t) = k m Maxwell d 3 r ρ(r, t) r r r r 3 (13 4.1) d 3 r J(r, t) r r r r 3 (13 4.2) 150

159 Poisson Coulomb Fourier Maxwell Fourier

160 Maxwell E. P. Wigner The unreasonable effectiveness of mathematics in the natural sciences Ohm Maxwell Ohm Ohm 152

161 Newton 4 5 Lorentz Lorentz Coulomb Ampère Faraday Coulomb C. Huygens 6 Newton k

162 19 Einstein Einstein Newton 154

163 A (1) 1. x = a y = 0 λ x = a y = 0 λ [1 1] E(r) ϕ(r) [1 2] xy dy = f(x, y) dx dy = g(x, y) dx f g xy 2. 2 z = a/2 z = a/2 σ σ [2 1] E(r) [2 2] [2 3] b 2b < a ϕ(r) [2 4] [2 5] [2 3] 3. z I m q 155

164 B (2) 1. ρ(r) E(r) [1 1] (a). r = x 2 + y 2 + z 2 : ρ = ρ(r) (b). z : ρ = ρ(x, y) (c). r = x 2 + y 2 : ρ = ρ(r) (d). xy r = x 2 + y 2 : σ = σ(r) [1 2] a E(r) Q 2. z < 0 I Q(t) = It 3. [3 1] [3 1] Maxwell [3 2] Gauss Coulomb [3 3] [3 4] [3 5] 156

165 C (3) 1. xy a x 2 + y 2 a 2 z = 0 Q [1 1] E(r) [1 2] z [1 3] [1 2] 2. R 0 Q [2 1] E(r) [2 2] R 1 R 2 R 0 < R 1 < R 2 Q Q < Q [2 3] [2 2] [2 4] [2 2] ϕ(r) 0 3. [3 1] E(r) = k C dr E(r) = 0 C d 3 r ρ(r ) r r r r 3 [3 2] (a). Gauss (b). Gauss (c). (d). 157

166 D (4) 1. I z [1 1] (ρ, φ, z) B(r) = B ρ (r)e ρ + B φ (r)e φ + B z (r)e z e ρ,φ,z Maxwell (a). B ρ B φ B z ρ (b). B ρ = 0 (c). B z = const. [1 2] Ampère B z = 0 [1 3] 2. oa o ω oabcdeo B oa ocde oa a [2 1] Φ(t) = ds B S(t) S(t) [2 2] bcdeo R Ohm oa ab 3. [3 1] (a). A(r) = 0 (b). B(r) = 0 (c). t C(r, t) + D(r, t) = 0 (d). 2 E(r, t) 1 2 v 2 E(r, t) = 0 t2 [3 2] E B (a). B = 0, 0 (b). E = 0, (c). E B, 0 [3 3] (a). Ampère Maxwell 4 M4 (b). Ohm Maxwell (c). 158

167 Ampère, 95 Ampère, 108 Ampère, 95 Arago, 95 Biot, 95 Biot Savart, 98 Cavendish, 76 Coulomb, 18 Coulomb, 17, 70, 76 Coulomb, 17, 40 Dirac, 65 Faraday, 125 Faraday, 125 Feynman, 2 Fizeau, 134 Fleming, 102 Gauss, 46 Gauss, 46, 86 Gauss, 38, 44, 48, 107 Gilbert, 17 Grassmann, 97, 102 Green, 64 Hankel, 60 Henry, 125 Huygens, 153 Kepler, 4 Kirchhoff, 88 Kirchhoff, 93 Kohlrausch, 134 Kronecker, 30 Laplace, 19 Laplace, 63 Larmor, 101 Lenz, 125 Lorentz, 100 Lorentz, 100, 123 Lorenz, 138 Lorenz, 138, 145 Maxwell, 134 Maxwell, 6, 132, 142 Mayer, 95 Michell, 95 MKSA, 96 Neumann, 125 Newton, 3 Newton, 5 Ohm, 88 Ohm, 88, 123 Ørsted, 95 Ostrogradsky, 46 Poisson, 63 Poisson, 63 Poynting, 136 Poynting, 136 Priestley, 76 Savart, 95 Stokes, 60 Stokes, 60, 62 Thomson, 60 van Musschenbroek, 73 von Kleist, 73 Weber, 134 Wigner, 152,

168 , 146, 149, 106, 60, 16, 52, 135, 135, 35, 45, 47, 45, 60, 15, 18, 13, 89, 123, 72, 28, 18, 96, 111, 111, 138, 111, 45, 55, 1, 73, 137, 15, 116, 116, 115, 115 Coulomb, 116, 117, 14, 52, 114, 117, 106, 124, 15, 13, 97, 13, 13, 106, 16, 46, 109, 137, 145, 39, 118, 97, 108, 65, 71, 32, 61, 53, 69, 71, 75, 52, 54, 23, 127, 117, 28, 20, 14, 118, 146, 87, 87, 28, 97, 65, 88, 53, 55, 5, 17, 21, 20, 85, 75, 115, 75, 88, 88, 89, 74, 36, 57, 38, 142, 137, 145,

169 , 19, 64, 21, 85, 85, 134, 68, 45, 46, 44, 21, 32, 140, 44, 45, 46, 133, 142, 13, 134, 102, 79, 144, 16, 28, 46, 47, 109, 114, 137, 145, 130, 142, 69, 86, 55, 53, 102, 37, 54, 30, 54, 134, 73, 39, 63, 30, 38, 38, 85,

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0 4 4.1 conductor E E E 4.1: 45 46 4 E E E E E 0 0 E E = E E E =0 4.1.1 1) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0 4.1 47 0 0 3) ε 0 div E = ρ E =0 ρ =0 0 0 a Q Q/4πa 2 ) r E r 0 Gauss

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

Quz Quz

Quz Quz http://www.ppl.app.keo.ac.jp/denjk III (1969). (1977). ( ) (1999). (1981). (199). Harry Lass Vector and Tensor Analyss, McGraw-Hll, (195).. Quz Quz II E B / t = Maxwell ρ e E = (1.1) ε E= (1.) B = (1.3)

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

i

i 007 0 1 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................ 3 0.4............................................. 3 1

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 4 2 17 3 Coulomb 23 4 43 5 49 6 51 7 53 8 58 9 66 10 74 11 Lienard-Wiechert potential 78 12 86 13 89 14 Laplace 114 15 138 16 152 17 162 18 166 19 191

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi

G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi 1999 1999 12 17 Contents 1 9 1.1........................ 9 1.2 (Cartesian )..................... 9 1.3........................ 10 1.4............................. 11 1.5............................. 12

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

sin.eps

sin.eps 9 ( 9 4 7 ) : 3. 3 5 ( ). 3 ( ) (Maxwell).3 (= ) 4.4 x y(x) dy =3 y(x) =3x dx y(x) =3x + y(x) =3x + y(x) =3x + /m OK.5 .6. 5 3 ( ).6 5 5 ( ) +3 m+3kg m 3kg ( ) I(MKA ) m,kg,s(sec),a 4 4 ( ) m kg s 3 A

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30 2.5 (Gauss) 2.5.1 (flux) v(r)( ) n v n v n (1) v n = v n = v, n. n n v v I(2012), ec. 2. 5 p. 1/30 i (2) lim v(r i ) i = v(r) d. i 0 i (flux) I(2012), ec. 2. 5 p. 2/30 2.5.2 ( ) ( ) q 1 r 2 E 2 q r 1 E

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

II 2 ( )

II 2 ( ) II 2 ( 26 1 1 1 3 1.1....................................... 3 1.1.1.............................. 3 1.1.2.............................. 4 1.1.3..................... 5 1.2 : R 3...............................

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information