2 (Preface) (potential flow) viscosty ( 0 (vorticity) (boundary layer) (shearing stress) (frictional stress) (frictional drag)) (laminar flow) (turbul

Size: px
Start display at page:

Download "2 (Preface) (potential flow) viscosty ( 0 (vorticity) (boundary layer) (shearing stress) (frictional stress) (frictional drag)) (laminar flow) (turbul"

Transcription

1 Viscous Fluid Dynamics Yoshiaki NAKAMURA Professor of Chubu University Emeritus Professor of Nagoya University September 1, 2014

2 2 (Preface) (potential flow) viscosty ( 0 (vorticity) (boundary layer) (shearing stress) (frictional stress) (frictional drag)) (laminar flow) (turbulent flow) (separation) (Navier-Stokes) (CFD: Computational Fluid Dynamics) (Reynolds number) (eddy) (turbulence model) (eddy viscosity)

3

4 i

5

6 (viscosity) (potential flow) (shearing stress) 0 (governing equation) (potential equation; (Euler equation; Navier-Stokes equation; (Navier- Stokes equation) (continuum fluid) (Boltzmann equation) (Rarefied gas flow) ( ) 0 (specular reflection) (tangential direction to the wall surface) (diffuse reflection) ( )

7 (Newton-Stokes) (Newtonian fluid; ) (τ) τ = µ u (1.1) y u x u/ y (strain rate) (Non-Newtonian fluid) y v τ yx u x τ yx 1.1: (molecular viscosity) µ (oil) (gas dynamics theory) µ (1845; George Gabriel Stokes) [ ] /[ ] kg m/sec 2 m/sec [µ] = [τ]/[ u/ y] = m 2 = kg/(m sec) m (SI) : N sec/m 2 P a sec (P a:); 10 poise CGS : poise ( )(= g/cm sec) 2 (µ) kg/(m sec)

8 µ (Sutherland; 1893 ) ( ) 3/2 ( ) µ T T0 + S = µ 0 T 0 T + S µ (T ) µ 0 T 0 T 0 = 273[K], S = 111, µ 0 = [kg/(sec m)] Maxwell Rayleigh (dilute gas) power law µ µ 0 = (1.2) ( ) n T (1.3) n 0.5 < n < 1 µ 0 = [kg/(sec m)], T 0 = 273K, n = 2/3 T (kinematic viscosity) µ ρ ν ν µ ρ (1.4) [ν] [ν] = [µ] kg/(m sec) = [ρ] kg/m 3 = m 2 /sec ( ) kinematics ( ) 20 (ν) m 2 /s air , 760mmHg 1 (P a) P a = kP a = MP a(= hp a) 1cal = J (ratio of specific heat) (water) 1.2

9 : ρ kg/m 3 µ kg/s m ν m 2 /s k kcal/s m K = kj/(s m K) C p kcal/(kg K) = 1.004kJ/(kg K) () C v kcal/(kg K) = 0.716kJ/(kg K) γ = C p /C v : ρ kg/m 3 µ kg/s m ν m 2 /s k J/(s m K) = W/m K = kj/(s m K) C p kj/(kg K) () C v * kcal/(kg K) γ = C p /C v (stress)σ ij i, j i = 1, 2, 3, j = 1, 2, 3 x, y, z σ ij 2 (pressure)p (viscous stress)τ ij p (isotropy) p p p 1.2: p σ 11 σ 12 σ 13 p 0 0 τ 11 τ 12 τ 13 σ 21 σ 22 σ 23 = 0 p 0 + τ 21 τ 22 τ 23 (1.5) σ 31 σ 32 σ p τ 31 τ 32 τ 33

10 ( ) n (a tensor of order n) 3 n = 1 (scalar) = 3 (1.5) ( ) τ ij = λ div u δ ij + 2µ 1 ( ui + u ) j 2 x j x i λ δ ij δ ij = { 1 i = j 0 otherwise τ ij (u 1, u 2, u 3 ) (u 1, u 2, u 3 ) 3 (x 1, x 2, x 3 ) (x 1, x 2, x 3 ) x, y, z (x 1, x 2, x 3 ) = (x, y, z) τ 11 = τ xx, τ 12 = τ xy, (1.6) (1.7) u 2 x 2 x 3 o x 1 u 1 u 3 1.3: (x 1, x 2, x 3 ) (u 1, u 2, u 3 ) τ 11 τ 12 τ 13 τ 21 τ 22 τ 23 τ 31 τ 32 τ 33 = λ div u + 2µ u 1 2µ 1 ( u1 + u ) 2 2µ 1 ( u1 + u ) 3 x 1 2 x 2 x 1 2 x 3 x 1 2µ 1 ( u2 + u ) 1 λ div u + 2µ u 2 2µ 1 ( u2 + u ) 3 2 x 1 x 2 x 2 2 x 3 x 2 2µ 1 ( u3 + u ) 1 2µ 1 ( u3 + u ) 2 λ div u + 2µ u 3 2 x 1 x 3 2 x 2 x 3 x 3 (1.8) 1.6 (strain rate) S ij τ ij = λ div u δ ij + 2µ S ij (1.9)

11 6 1 S ij S ij = 1 2 ( ui + u ) j x j x i ( trace ) (1.10) Στ ii = 3λdiv u + 2µΣ u i x i = (3λ + 2µ) div u 0 λ 3 (x, y, z ) Στ ij = (λ + 23 ) 3 µ div u (λ + 23 ) µ bulk viscosity 0 Stokes (Stokes hypothesis) λ = 2 3 µ (1.11) 1.3 homogeneous (translation) 2 (rotation) 3 extensional strain 4 shear strain 5 (dilatation) S ij S xy = S yx S ij = S xx S xy S xz S yx S yy S yz S zx S zy S zz (1.12)

12 S ij S ij = 1 ( ui + u ) j 2 x j x i (1.13) S ij Ω ij Ω ij = 1 ( ui u ) j (1.14) 2 x j x i Ω ij = Ω ji (1.15) (antisymmetric tensor) (diagonal elements) 0 Ω 11 = Ω 22 = Ω 33 = 0 (1.16) S xx = u x }{{} x, S yy = v y }{{} y, S zz = w z }{{} z (1.17) div v = 0 u x + v y + w z = 0 (1.18) (1.17) 0 dilatation S xx + S yy + S zz = 0 (1.19) dilatation = u x + v y + w z (1.20) div v = (Shearing-strain rate) S xy = 1 ( v 2 x + u ), S yz = 1 y 2 ( w y + v z ), S zx = 1 ( u 2 z + w ) x (1.21)

13 8 1 3 (I 1, I 2. I 3 ) (invariant) (x, y, z) I 1 = trace S = S xx + S yy + S zz (1.22) I 2 = 1 2 [(trace S)2 trace S 2 ] = S xx S yy + S yy S zz + S zz S xx Sxy 2 Syz 2 Szx 2 (1.23) S xx S xy S xz I 3 = det S = S yx S yy S yz (1.24) S zx S zy S zz I 1 S 1.4 (Navier-Stokes equations) Navier(Claude Louis Marie Henri Navier) 1826 (1827?) Stokes(George Gabriel Stokes) Navier 1845 Navier molecular flow Stokes continuum flow x u(t, x, y, z) t x, y, z (x, y, z) t u u(t + δt, x + δx, y + δy, z + δz) = u + u t δt + u x δx + u y u δy + δz (1.25) z δx, δy, δz ( ) δx = u δt, δy = v δt, δz = w δt (1.26) Lagrange Lagrange 1.25 u(t + δt, x + δx, y + δy, z + δz) = u + u t δt + u x uδt + u y u vδt + wδt (1.27) z u u t t 0 Du Dt = lim u u t 0 t = u t }{{} + u u x + v u y + w u z }{{} (1.28) 2 D/Dt substantial derivative (Lagrange derivative) 1.28) (Euler) ( ) 2 Langrange Euler

14 (t = 0) u u = u( X, t) X t = 0 du/dt vortex method u=u( X, t 2 ) u=u( X, 0 ) t=t 2 x = X t=0 t=t 1 1.4: ( ) Lagrange (x, y, z) (x, y, z) u u = u ( x, t) ρ Dρ Dt = ρ + v grad ρ }{{} t }{{} (1.29) grad = v v = (u, v, w) 2 (1.28) 2 ma = F ( ) (1.30) x ρ Du ( Dt = X + σxx x + τ yx y + τ ) zx z (1.31)

15 10 1 ƒ y ƒ z ƒ x 1.5: y z ρ Dv ( Dt = Y + τxy x + σ yy y + τ ) zy z ρ Dw ( Dt = Z + τxz x + τ yz y + σ ) zz z (1.32) (1.33) y t yx s xx s xx x t yx 1.6: ρ (X, Y, Z) m ρ ρ D v Dt = X + σ (non-conservative form of the dynamic equation) (1.34) σ σ = σ xx τ xy τ xz τ yx σ yy τ yz τ zx τ zy σ zz (1.35) σ xx = p + λ div v {( }}{ u x + v y + w ) +2µ u z x (1.36)

16 ( u σ yy = p + λ σ zz = p + λ x + v y + w ) z ( u x + v y + w z + 2µ v y ) + 2µ w z (1.37) (1.38) λ Stokes λ = (2/3)µ 1.35 ( v τ xy = τ yx = µ x + u ) = 2µ 1 ( v y 2 x + u ) = 2µ S xy (1.39) y ( w τ yz = τ zy = µ y + v ) = 2µ 1 ( w z 2 y + v ) = 2µ S yz (1.40) z ( u τ zx = τ xz = µ z + w ) = 2µ 1 ( u x 2 z + w ) = 2µ S zx (1.41) x ρ Du = X p Dt x + [ ( µ 2 u x x [ ( u µ y y + v )] + x z ρ Dv = Y p Dt y + [ ( µ 2 v y y [ ( v µ z z + w )] + y x ρ Dw = Z p Dt z + [ ( µ 2 w z z x [ µ ( w x + u z )] + z )] div v [ ( w µ x + u )] z )] div v [ ( u µ y + v )] x )] div v [ ( v µ z + w )] y (1.42) (1.43) (1.44) x y z 1.42 ( u ρ t + u u x + v u y + w u ) ({}}{ ρ + u z t + ρu x + ρv y + ρw ) z = ρu t + ρuu x + ρuv y + ρuw z (1.45) t (ρ u) + div (ρ u u) = X + div σ (the momentum equation) (1.46) div σ (divergence)

17 12 1 div σ = σ = ( i σ ij ) = 1 σ σ σ 31 1 σ σ σ 32 1 σ σ σ 33 (1, 2, 3) (x, y, z) i x i (1.47) ; viscous terms Euler Leonhard Euler 1757 div v = 0 µ = const ρ Du Dt ρ Dv Dt ρ Dw Dt 2 = (x, y, z) = X p x + µ 2 u (1.48) = Y p y + µ 2 v (1.49) = Z p z + µ 2 w (1.50) 2 u = 2 u x u y u z 2 (1.51) ( ) (1.48) ( ) PHILOSOPHIA NATURALIS PRINCIPIA MATHEMATICA Mathematical Principles of Natural Philosophy; (Isaac Newton, ) 1687 Part 1 Part 2 Part 3 ( ) (continuity equation) div = ρ + div (ρ v) = 0 (the continuity equation) (1.52) t ρ t + x (ρu) + y (ρv) + (ρw) = 0 (1.53) z

18 ρ t + u ρ x + v ρ y + w ρ + ρ div v = 0 (1.54) z ρ + v grad ρ + ρ div v = 0 (1.55) t Dρ + ρ div v = 0 (1.56) Dt 1.7: ( ) ( ρu + ρu ) ( y ρu y + ρv + ρv ) x ρv x = 0 x y ρu x + ρv y = 0 (1.57) t t t = 1 ( ρu + ρu ) ( y ρu y + ρv + ρv ) ( x ρv x + ρ + ρ ) x y ρ x y = 0 x y t ρ t + ρu x + ρv y = 0 (1.58) ( ) ρ (1.56) div v = div v = 0 v = 0 (1.59)

19 (the equation of state) (thermally perfect gas) p = RT, or pv = RT (the state equation) (1.60) ρ 1.3: v = 1 /ρ : (specific volume) R : R = R 0 /M (M: ) R 0 : gas constant R 0 = [J/(K mol)] M = 29 R = 287[m 2 /s 2 K] = 287[J/kg K] M = 29 g/mol kg M = kg/mol k b N b = mol R 0 ( ) k b = R o N b = J/K (1.61) pv = nr 0 T (1.62) n (the number of moles) R 0 p = 1 atm T = 0 C 1 (n = 1) V = 22.4 l (1.62) R 0 = 8.314J/(K mol) (1.63) V M ρ ρ = M V (1.64) (1.62) p M ρ = nr 0T p ρ = nr 0 M T (1.65) n M M(molecular weight) n = M M (1.66)

20 (1.65) p ρ = M M R 0 M T p ρ = R 0 M T (1.67) MKS M g/mol MKS (kg) R 0 M R 0 M 10 3 R M (1.63) R = R 0 J/(K mol) = 8314 M 10 3 kg/mol M J kg K (1.68) (1.69) (energy equation) ρ De i Dt ( + p div v = k T ) + ( k T ) + ( k T ) +µφ (1.70) x x y y z z }{{} e i k Φ { ( u ) 2 ( ) 2 ( ) } 2 ( v w v Φ = x y z x + u ) 2 ( w + y y + v ) 2 ( u + z z + w ) 2 x 2 ( u 3 x + v y + w ) 2 (1.71) z µφ (i, j) u µφ = τ xx x + τ u yx y + τ v xy x + τ v yy y 3 i = 1, 2, 3, j = 1, 2, 3 (1.72) µφ = τ ij u i x j (1.73) ( ) (dissipation) µφ = µ[2(s S S 2 33) + (2S 23 ) 2 + (2S 31 ) 2 + (2S 12 ) 2 ] + λ(s 11 + S 22 + S 33 ) 2 (1.74)

21 16 1 S ij 1.13 (1.70) (1.70) 2 x ( u ρ t + u u x + v u ) y y ( v ρ t + u v x + v v ) y = p x + x τ xx + y τ xy (1.75) = p y + x τ xy + y τ yy (1.76) (1.75) u (1.76) v ( u 2 + v 2 ρ + u u 2 + v 2 + v u 2 + v 2 ) t 2 x 2 y 2 = u p x v p y + u x τ xx + u y τ xy + v x τ xy + v y τ yy u2 + v 2 2 u 2 + v 2 2 ρ t + u2 + v 2 2 x ρu + u2 + v 2 2 (1.77) ρv = 0 (1.78) y (1.77) (1.78) ( u 2 + v 2 ) ρ + ( u 2 + v 2 ) ρu + ( u 2 + v 2 ) ρv t 2 x 2 y 2 = u p x v p y + u x τ xx + u y τ xy + v x τ xy + v y τ yy (1.79) 1 (the first law of thermodynamics) δq = δe i + pδv (1.80) ( δq δe i pδv v per unit volume δq { ( δq = k T ) + ( k T )} x x y y (1.81) 1.80 { = x ρ De i Dt }{{} ( k T x ) + ( k T )} y y ( u + ( p) x + v ) u + τ xx y x + τ u yx y + τ v xy x + τ v yy y (1.82)

22 p ( u ( p) x + v ) u + τ xx y x + τ u yx y + τ v xy x + τ v yy y = ( p + τ xx ) u x + ( p + τ yy) v y + τ u yx y + τ v xy x u = σ xx x + σ v yy y + τ u yx y + τ v xy x = σ v (1.83) σ (1.82) ρ De i Dt = q + σ v (1.84) q q = k T (1.85) 1.82 ρ De ( i Dt = ρ ei t + u e i x + v e ) i y (1.86) e i (1.86) (1.82) (1.82) ρ e i t + e i x ρu + e i ρv = 0 (1.87) y t ρe i + x (ρue i) + y (ρve i) (1.88) t ρe i + x ρue i + y ρve i ( u = div (k grad T ) p x + v ) u + τ xx y x + τ u yx y + τ v xy x + τ v yy y (1.89) (1.79) (1.89) { u 2 + v 2 } ρ + ρe i + { u 2 + v 2 t 2 x 2 } ρu + ρue i + { u 2 + v 2 } ρv + ρve i y 2 = div (k grad T ) x pu y pv + x uτ xx + y uτ yx + x vτ xy + y vτ yy (1.90) ( ) } 1 t 2 ρ u2 + ρe i + div {ρ u u2 2 + ρ ue i = div (k grad T ) div p u + div ( τ u) (1.91)

23 18 1 τ τ u ( τ u = τ xx τ xy τ yx τ yy ) ( ) ( ) u τ xx u + τ xy v = v τ yx u + τ yy v (1.92) ( ) B a ( ) b 11 a 1 + b 12 a 2 B a = (b ji a i ) = b 21 a 1 + b 22 a 2 (1.93) ( ) 1.91 ( ) 1 t 2 ρ u2 + ρe i + div { ( ) } u 2 ρ u 2 + h k grad T τ u = 0 (1.94) h (static enthalpy), h = e i + p ρ (1.95) total energy e t total enthalpy H t e t = 1 2 ρ u2 + ρe i, 1.94 H t = u2 2 + h (1.96) t e t + div (ρ uh t k grad T τ u) = 0 (the energy equation) (1.97) σ p H t τ (u, v, w, p, ρ, T, µ) 7 7 (x, y, z ) ( ) (1.91) (non-conservative form) ρ D ( ) u 2 Dt 2 + e i = div( q + σ u) (1.98) σ σ = pi + τ (1.99) I (unit matrix) τ

24 (1.34) u X = 0 v = u ρ D ( ) u 2 = u div σ (1.100) Dt 2 (1.98) (1.100) σ (1.99) ρ De i Dt = div( q + σ u) u div σ = σ u div q (1.101) ρ De i Dt + p div u = τ u div q (1.102) (1.84) σ p ρ Dρ + div ρ u = + ρ div u = 0 (1.103) t Dt div u = 1 Dρ ρ Dt = ρdv Dt (1.104) v specific volume v = 1/ρ (1.104) (1.102) ( ) Dei ρ Dt + pdv = τ u div q (1.105) Dt (1.105) T ds = de i + pdv (1.106) ρt DS Dt = τ u div q (entropy equation) (1.107) 1.5 control volume (divergence form) ρ + div (ρ u) = 0 (continuity equation) (1.108) t

25 20 1 t (ρ u) + div (ρ u u σ) = f (momentum equation) (1.109) div div = f σ ρ u u tensor product ρu 1 u 1 ρu 1 u 2 ρu 1 u 3 ρ u u = ρu 2 u 1 ρu 2 u 2 ρu 2 u 3 (1.110) ρu 3 u 1 ρu 3 u 2 ρu 3 u 3 [ ρ t ( 1 2 u u + e i )] [ ( ) ] 1 + div ρ u 2 u u + e i σ u + q = f u (energy euation) σ p (1.111) 1.8: V control volume V ( 1.8) (divergence theorem) div w dv = V div T dv = V A A n w da (1.112) n T da (1.113) A V n w T 2 { } ρ + div (ρ u) dv = t 2 V ρ t dv + div (ρ u) dv = 0 (1.114) ρ t dv + n (ρ u) da = 0 (1.115) A

26 { } V t (ρ u) + div (ρ u u σ) dv V fdv = 0 (1.116) V ρ u dv + n (ρ u u σ) da t A f dv = 0 (1.117) σ V { ( )} { ( ) } 1 1 ρ t 2 u u + e i dv + n ρ u A 2 u u + e i σ u + q da = f udv V (1.118) σ p Leibnitz Leibnitz f d f f ( r, t) dv = dt t dv + n u A f da (1.119) V A u A V A da u A = 0 f t dv = d f ( r, t) dv (1.120) dt V f/ t Leibnitz f V [ ] d ρ dv n ρ ( u A u) da = 0 (1.121) dt V A [ ] d ρ u dv n {( u A u) ρ u + σ} da = dt V A V f dv (1.122)

27 : [ ( ) ] { ( ) } d 1 1 ρ dt V 2 u u + e i dv n ρ ( u A u) A 2 u u + e i + σ u q da = f u dv (1.123) v T = a b a b T ij = a i b j ( ) ( n n σ ij σ x n 1 σ 11 σ 12 σ 13 n 1 σ 11 + n 2 σ 21 + n 3 σ 31 σ = σ y = n σ = n 2 σ 21 σ 22 σ 23 = n 1 σ 12 + n 2 σ 22 + n 3 σ 32 (1.124) σ z n 3 σ 31 σ 32 σ 33 n 1 σ 13 + n 2 σ 23 + n 3 σ 33 n = (n 1, n 2, n 3 ) σ σ n σ = σ n σ 11 σ 12 σ 13 σ = σ n = σ 21 σ 22 σ 23 n 1 n 2 = σ 11 n 1 + σ 12 n 2 + σ 13 n 3 σ 21 n 1 + σ 22 n 2 + σ 23 n 3 (1.125) σ 31 σ 32 σ 33 n 3 σ 31 n 1 + σ 32 n 2 + σ 33 n 3 σ = σ ij n j e i e i i ( ) u A n ( u A u) u A

28 Leibniz d dα = h(α) g(α) h(α) g(α) f (x, α) dx f (x, α) α dx + f [h(α), α] dh(α) dα dg(α) f [g(α), α] dα (1.126) ρ DV [ ] V Dt = ρ + (V ) V = p + µ 2 V (1.127) t D/Dt (substantial derivative) V (1.42) (1.44) (a pesudo-vector expression [ ( V V 2 ) ] ρ t + V ( V ) = p + µ 2 V (1.128) 2 (A B) = (A )B + (B )A + A rotb + B rota (1.129) A = B = V rot rot = ω ω = V [ ( V V 2 ) ] ρ t + V ω = p + µ 2 V (1.130) 2 2 V 2 V = ( V ) ( V ) = (divv ) ω (1.131)

29 (1.130) rot ω t (V ω) = ν 2 ω (1.132) = 0 ω (1.132) ) Helmholtz ω = V (1.133) (V ω) = (ω )V (V )ω (1.134) ω t (ω ) V + (V ) ω = ν 2 ω (1.135) D ω Dt = ω t + ( V ) ω (1.136) D ω Dt = ( ω ) V }{{} +ν 2 ω (1.137) 0 ω ( ) (cascade phenomenon) ( ) (Helicity) v ω (scalar product) H = v ω dv (1.138) H NS

30 : (cylindrical coodinates)(r, θ, z) (v r, v θ, v z ) a) (radial direction) [ vr ρ t + v v r r = p r + µ r + v θ r [ 2 v r r 2 ] v r θ + v v r z z v2 θ r + 1 r b) (circumferential direction) [ vθ ρ t + v v θ r = 1 r r + v θ r p θ + µ [ 2 v θ r 2 v r r v r r 2 θ v r z 2 v r r 2 2 v θ r 2 θ v θ θ + v v θ z z + v ] rv θ r + 1 r c) (axial direction) [ vz ρ t + v v z r = p z + µ r + v θ r [ 2 v z r 2 v θ r v θ r 2 θ v θ z v r r 2 θ v θ r 2 v z θ + v z + 1 r ] v z z v z r v z r 2 θ v z z 2 ] ] ] (1.139) (1.140) (1.141) ( ) (r, θ, z) (x, r, θ) (1.141) z x

31 26 1 v = 1 r r (rv r) + 1 v θ r θ + v z z = v r r + v r r + 1 v θ r θ + v z z ( ) = r, 1 r θ, z (1.142) (1.143) θ rδθ 2 2 = = 2 r r r r 2 θ z 2 = 1 ( r ) + 1r 2 r r r 2 θ z 2 (1.144) (vorticity) ω = rot v = v (1.145) ω r = 1 v z r θ v θ z ω θ = v r z v z r ω z = v θ r + v θ r 1 r v r θ = 1 r r (rv θ) 1 v r r θ () ( ) ( ) (1.146) r v t + (v ) v = 1 ρ p + ν 2 v (1.147) (cylindrical coodinates) (1.139) (1.141) a) v r t + (v ) v r v2 θ r = 1 ( p ρ r + ν 2 v r v r r 2 2 ) v θ r 2 θ (v ) = u r r + u θ r θ + u z z D/Dt Dv r Dt v2 θ r = 1 ( p ρ r + ν 2 v r v r r 2 2 ) v θ r 2 θ (1.148) (1.149) (1.150) D Dt = t + (v ) = t + v r r + v θ r θ + v z z (1.151)

32 b) θ v θ t + (v ) v θ + v rv θ r = Dv θ Dt + v rv θ r = 1 ρr ( p θ + ν 2 v θ + 2 v r r 2 θ v ) θ r 2 (1.152) c) z v z t + (v ) v z = Dv z Dt = 1 ρ p z + ν 2 v z (1.153) v = 1 r r (rv r) + 1 v θ r θ + v z z = 0 (1.154) ( 1) (advection trem) (v ) v v = v r e r + v θ e θ + v z e z (1.155) e r, e θ, e z r, θ, z (1.147) ( (v ) v = v r r + v ) θ r θ + v z (v r e r + v θ e θ + v z e z ) z = v r v r r e r + v 2 r / r e r + v θ v r r θ e r + v θv r r / θ e v r r +v z }{{} z e r + v z v r z e r + r, θ, z (e r, e θ, e z ) (x, y, z) e r r = 0, e r θ = e e θ θ, θ = e e z r, θ = 0, e r / θ ( 1.11 ) e θ e r z = 0 (1.156) r = r 2 r 1 r θ e θ r θ r e θ r θ r e θ θ e r = e θ (1.157) e θ θ e r (1.148) {(v ) v} r = (v ) v r v2 θ r (1.152) ( ) (1.158)

33 : e z O 1.12: ( 2) ( ) 1 (v ) v = ( v) v + 2 v2 (1.159) ( ) 2 v = ( v) ( v) (1.160) ( ) ω = v = e r r + e θ r θ + e z (v r e r + v θ e θ + v z e z ) (1.161) z 1.156

34 ( ) (1.161) ω = v = 1 r e r re θ e z r θ z v r rv θ v z (1.162) S 11 = S rr = v r r S 22 = S θθ = 1 v θ r θ + v r r S 33 = S zz = v z z S 12 = S rθ = 1 ( 1 v r v θ 2 r θ r v ) θ r S 13 = S rz = 1 ( vr 2 z + v ) z r S 23 = S θz = 1 ( 1 v z 2 r θ + v ) θ z (1.163) (1.164) (1.165) (1.166) (1.167) (1.168) τ ij = 2µS ij (1.169) θ (1.140) [ vθ ρ t + v v θ r r + v θ v θ r θ + v v θ z z + v rv θ r = 1 r p θ + µ [ 2 v θ r r ] v θ r v θ r 2 θ v θ z v r r 2 θ v θ r 2 ] (1.170) (θ ) v θ (swirling flow) θ (axisymmetric approximation) (z ) 0 θ = 0, (1.170) ρ v ( θ 2 t = µ v θ r v θ r r v ) θ r 2 r ρ rv θ t z = 0, v r = 0, v z = 0 (1.171) ( = µ r 2 v θ r 2 + v θ r v ) θ r (1.172) (1.173)

35 30 1 r ρ { t r (rv θ) = µ r 3 v θ r v θ r v θ r 2 1 v θ r r + v } θ r 2 r ρ 1 t r r (rv θ) }{{} ζ { 3 v θ = µ r v θ r r 2 1 v θ r 2 r + v } θ r 3 (1.174) (1.175) z ζ = ω z ζ 1 r r (rv θ) 1 v r r θ = 1 r r (rv θ) (1.176) (1.175) ζ 1.176) ζ r 2 ζ = ( vθ r r r + v ) θ r 2 ζ r 2 = 3 v θ r v θ r r 2 = 3 v θ r v θ r r 2 = 2 v θ r r v θ r v θ r 2 1 r 2 v θ r 1 r 2 v θ r + 2 r 3 v θ 2 r 2 v θ r + 2 r 3 v θ (1.177) 2 ζ r ζ r r = 3 v θ r v θ r r 2 1 v θ r 2 r + 1 r 3 v θ (1.178) ζ ρ ( 2 t ζ = µ ζ r ) ζ r r ( ζ ) (1.179) ( ) 1.137) 1.135) 1.7 ( ) (1.179) ζ t = ν 1 ( ( r ζ )) r r r ν ν = µ/ρ (1.180) ) ζ = C 0 t 1 exp ( r2 4νt v θ v θ = Γ ( )) 0 1 exp ( r2 2πr 4νt (1.180) (1.181) (1.182)

36 Γ 0 = C 0 π Γ 0 (1.182) Γ(= 2πrv θ ) )) Γ = 2πrv θ = Γ 0 (1 exp ( r2 4νt ( ) ( ) (1.183) 1.8 (r, θ, ϕ) (spherical coordinates) r θ (z ) ϕ ((x, y) ) 1.13: (r, θ, ϕ) v = 1 r 2 r (r2 v r ) + 1 r sin θ θ (v θ sin θ) + 1 v ϕ r sin θ ϕ ( ) (1.184) (v r, v θ, v ϕ ) (r, θ, ϕ) = r e r + ( r θ e θ + z e z (1.185) D Dt = t + v r r + v θ r θ + v ϕ r sin θ ϕ (1.186) µ

37 32 1 [ Dvr ρ Dt v2 θ + ] v2 r r = p r + µ θ [ Dv θ ρ Dt + v rvθ 2 v2 ϕ cot θ ] = 1 r r [ 2 v r 2v r r 2 2 v θ r 2 θ 2v θ cot θ r 2 [ p θ + µ 2 v θ + 2 v r r 2 θ 2 r 2 sin θ v θ r 2 sin 2 θ 2 cos θ r 2 sin 2 θ ] v ϕ ϕ ] v ϕ ϕ (1.187) (1.188) ϕ [ Dvϕ ρ Dt + v ] ϕv r + v θ v ϕ cot θ r 2 2 = 1 r 2 r = 1 [ p r sin θ ϕ + µ 2 v ϕ ( r 2 ) + r 1 r 2 sin θ v ϕ r 2 sin 2 ϕ + 2 v r r 2 sin 2 θ ( sin θ ) + θ θ 1 r 2 sin 2 θ ϕ + 2 cos θ ] v θ r 2 sin 2 θ ϕ (1.189) 2 ϕ 2 (1.190)

38 (external flow) (internal flow) (x, y) 2 x y ( u ρ t + u u x + v u ) = p y x + µ 2 u (2.1) ( v ρ t + u v x + v v ) = p y y + µ 2 v (2.2) 2 2 = 2 x y 2 (2.3) = ( / x, / y) = ρ (u, v) (x, y) p µ x x = 0 (2.4) 2) t = 0 (2.5) (steady flow) 0 (unsteday flow) u x + v y = 0 (2.6)

39 34 2 y=h y=0 2.1: 1) 1 u x = 0 (2.7) 2.6 y v y = 0 (2.8) v = const. (2.9) v = 0 y y v (Couette Flow) Maurice Couette ( ) (x ) U (boundary conditions) h y = 0 u = 0, y = h u = U (2.10) x (2.1) 0 = p x + µ 2 u y 2 (2.11) v = 0 y (2.2) 0 = p y (2.12) p y y p = p(x) (2.13)

40 (2.11) p x = u µ 2 y 2 (2.14) x 2.7y (2.15) y C 1 y dp dx = u µd2 = const. (2.15) dy2 dp dx y = µdu dy + C 1 (2.16) dp y 2 dx 2 = µu + C 1y + C 2 (2.17) C 2 (2.10) y = 0 C 2 = 0 y = h C 1 = dp h dx 2 µu (2.18) h C 1, C 2 (2.18) (2.17) x u u = U y ( h + h2 dp ) y ( 1 y ) 2µ dx h h (2.19) 2 dp dx = 0 u = U h y (2.20) τ τ = µ u y = µu h (2.21) y x F x = 0 [ ] (Poiseuille Flow) y = ±b u = 0 (2.22)

41 36 2 y=b y=-b y=0 u=u(y) 2.2: (2.22) (2.17) C 1 C 2 C 1 = 0, C 2 = b2 2 dp dx (2.23) (2.17) x u u = 1 ( dp ) (b 2 y 2) ( ) (2.24) 2µ dx Q u y b ( Q = u dy = 2b3 dp ) 3µ dx Q u b u = 3Q 4b { ( y ) } 2 1 b ( y ) } 2 u = u max {1 b (2.25) (2.26) (2.27) (Hagen-Poiseuille flow) 2 Hagen 1839 v θ = 0, θ = 0 (2.28) (1.141) ( d 2 u µ dr ) du = dp r dr dx (2.29)

42 r R x u 2.3: z x 0 r = 0 du = 0 dr r = R u = 0 (2.30) (2.29) (2.30) u(r) = 1 ( dp ) (R 2 r 2) (2.31) 4µ dx dp = const. (2.32) dx dp dx = p 1 p 2 (2.33) l l p 1 p 2 r = 0 ( u max = R2 dp ) 4µ dx Q (2.34) Q = = = R 0 R 0 ( 1 = πr4 8µ u(r) 2πr dr 1 dp ( R 2 r 2) 2πr dr 4µ dx ) [ dp R 2 4µ dx 2π r 2 ] R r ( dp ) dx (2.35)

43 38 2 µ ū ū = 1 πr 2 Q = 1 ( dp ) R 2 (2.36) 8µ dx ( ) (2.36) p/ x ū ū p/ x Reynolds ū ( p/ x) 1/1.7 ū ( p/ x) 0.59 ( ) f(darcy friction factor) dp dx = f ρv 2 D 2 (2.37) V ( p 1 πr 2 p 2 πr 2 (2.38) τ w (2πR) L (2.39) L 2 p 1 πr 2 p 2 πr 2 = τ w (2πR) L (2.40) p L = τ 2 w R p = p 1 p 2 (2.41) 2.37) 2.42) dp dx = τ 2 w R f ρv 2 2 = τ w D 2 R (2.42) (2.43) f = 8τ w ρv 2 (2.44)

44 (2.31) r r = R µ f = 64 Re D (2.45) Re D Re D = V D ν (2.46) f = 0.316Re 1/ Re 10 5 (2.47) f = Re Re (2.48) ( ) L L = Re D (2.49) L = D (2.50) 2.2 ( ) (r, θ, z) z t r (z ζ ( ζ 2 t = ν ζ r ) ζ = ν 1 ( r ζ ) r r r r r (2.51) ν (1.137) 2 (1.137) ( ) 0 z ζ ζ = 1 r r (ru θ) 1 u r r θ u r ζ (2.52) ζ = u θ r + u θ r = 1 r r (ru θ) (2.53)

45 40 2 r ξ θ η ξ = 1 r u z θ u θ z, η = u r z u z r (2.54) 2 QŽ Q xƒä ªzŽ² É W 2.4: u θ [ 1 exp u θ = Γ 0 2πr ( r2 4νt )] (2.55) Oseen(1912) Γ 0 (r ) (circulation) ( ) (2.55) p(r) Γ Γ = v d r = 2πru θ (2.56) ( ) v θ t Γ ( Γ 2 t = ν Γ r 2 1 ) Γ r r (2.57) ( ) (2.57) (2.51) 2πr r

46 (2.57) Γ = Γ 0 {1 exp( η 2 )} (2.58) Γ η η η 2 = r2 4νt η = r 2 νt (2.59) η ( ) Γ v θ ζ ( ) (2.57) 2.3 (2.53) (2.58) ζ ζ = Γ ( ) 0 r 2 4πνt exp 4νt (2.60) ζ η ζ Stokes Γ r ( )] r 2 Γ = ζ 2πr dr = Γ 0 [1 exp (2.61) 4νt t 0 Γ 0 δ(r) (vortex filament) ( ) 2.5: (2.55) u θ 2.6 ν ( 2.5) t ( 2.6) η ν t

47 Circumeferential velocity Radius r t=1000 t=2000 t=3000 t= : 0 ν = 0 0 r > 0 : = 0 u θ = Γ 0 2πr r = 0 : = () (2.62) diffusion u θ ( u θ 2 u θ = ν t r u θ r r u ) θ r 2 Γ 2.57 u θ = u θ r = 2 u θ r 2 = Γ ( 2πr 1 Γ r Γ r 2 ) 1 2π r ( 1 2 Γ r r 2 1 Γ r 2 r 1 Γ r 2 r + 2 r 3 Γ ) 1 2π (2.63) 2 u θ r r u θ r u θ r 2 = 1 2 Γ r r 2 1 Γ r 2 r + 1 r 3 Γ Γ r 3 = 1 2 Γ r r 2 1 Γ r 2 r = 1 ( 2 Γ r r 2 1 ) Γ r r (2.64) 2.57 Γ(r, 0) = Γ 0 t = 0 Γ(0, t) = 0 t > 0 ) (2.65)

48 (similarity solution) η = r/ νt 2.55 r 4νt (solid rotation) ω u θ = ωr = Γ 0 8πνt r (2.66) r u θ Γ 0 2πr ( ) Taylor ( ) 1 r 2 v θ = ωr exp 2 ( ) 1 r ζ = ω(2 r 2 2 ) exp 2 (2.67) (2.68) (2.69) v θ ζ ω Taylor r ω (induced velocity) (Biot-Savart law) l l dl dl x Γ P (x, y, z) l u p (x, y, z) = Γ 4π r d l P r d l ( x ) r 3 (2.70) r = x x, r = r (2.71) B = µ 0I 4π r d s r 3 (2.72) B (W b/m 2 ) I s d s µ µ 0 I = Γ (2.73)

49 44 2 x' P (x,y,z) r v dl Q (x',y',z') ƒ 2.7: ( ) 2.70 vortex method r i r i (ξ, t) t = 1 4π L j=1 ( ri r j ) ( r j / ξ )s( r i r j, σ i, σ j )dξ r i r j 3 (2.74) r i, r j i, j s(y, σ i, σ j ) ( ) s(y, σ i, σ j ) = σ (core) 1 [ (σ 2 i + σ2 j )/2y2 ] 3/2 (2.75) (angular velocity vorticity) ω v θ ζ ζ = 1 r ζ ω 2 v θ = ωr (2.76) r (rv θ) = 1 ( ωr 2 ) = 1 2ωr = 2ω (2.77) r r r (ζ) = 2 (ω) (2.78)

50 ρ v2 θ r = p r (2.79) v ƒæ (a) (b) 2.8: ( a v θ = ωr r < a (2.80) v θ = ωa2 r (2.80) (2.79) r (2.81) (2.79) r r p 0 r > a (2.81) p r = ρω2 r p = ρω 2 r2 2 + p c (2.82) p r = ρω2 a 4 1 r 3 p = ρω2 a r 2 (2.83) 2 r = a( ) p p c p c = ρω 2 a 2 (2.84) p = ρω 2 r2 2 ρω2 a 2 (0 < r < a) (2.85) p = ρω2 a r 2 (a < r) (2.86)

51 : 2.3 U τ x ( / x = 0) x u t = ν 2 u y 2 (2.87) (y) v 0 u/ x = 0 u x + v y = 0 v y = 0 v = 0 (2.88) 0 v = 0 y v = u y u x ν t < 0 : u(t, y) = 0 t 0 : y = 0 u = U y u 0 (2.89) x η η = y 2 νt (2.90) η 2 νt y

52 (t, y) = (τ, η) (τ, η) τ = t η = y 2 νt (2.91) τ = τ(t, y) (2.92) η = η(t, y) (2.93) t = t(τ, η) (2.94) y = y(τ, η) (2.95) (t, x) (τ, η) chain rule t y = τ τ t + η η t = τ = τ τ y + η η 2 y 2 = y y = 1 2 ντ y η = τ η 2τ 4 νt 3 2 y = 1 2 νt η = 1 2 ντ η ( ) 1 η 2 = 1 ντ η 4ντ η (2.96) (2.97) 2 η 2 (2.98) (2.96) (2.98) (2.87) x u u = Uf(η) (2.99) U η f () η f + 2ηf = 0 (2.100) (2.89) (τ, η) 2.91 } η = 0 f = 1 (2.101) η f 0 (2.100) f f(η) = 2 η e η2 dη + 1 (2.102) π 0

53 π e η2 dη = 2 (2.103) u [ u = U 1 2 η ] [ e η2 dη = U 1 2 ( )] y erf π π 2 νt 0 (2.104) erf(x) error function erf(x) = x 0 e x2 dx (2.105) y v y ƒä o x (a) (b) 2.10: (vorticity) 2 z ω z ζ(= ω z ) ζ(y, t) = v x }{{} 0 u y = u η η y = 1 ( 2 2U ) exp { η 2} = νt π η 2.90 u (2.104) U } exp { y2 πνt 4νt (2.106) ζ y = 0 y 0 y (Cartesian Coodinates)

54 : ω = rot v = v = ( i / x + j / y + k / z) ( iu + jv + kw) ( w = i y v ) ( u + j z z w ) ( + x v k x u ) y (2.107) i, j, k x, y, z (unit vector) i i = 0, i j = k, ω x = w y v z, ω y = u z w x, ω z = v x u y (2.108) (diffusion) y δ δ ζ(0, t)δ = (2.106) y = 0 0 ζ(0, t)δ = ζ(y, t) dy (2.109) Uδ πνt (2.110) y 0 ζ(y, t) dy = 0 U πνt e y2 4νt dy = 0 ( ) 2U e y2 y 4νt d π 2 = 2U π νt π 2 = U (2.111) U Uδ πνt = U (2.112)

55 : 2.13: δ = πνt (2.113) δ t 2.90 η dδ dt = 1 πν 2 t (2.114) (shearing atress) ( ) u τ w = µ = ρu 2 ( ν ) 1 2 ν y y=0 π U 2 = ρu t πt 1 (2.115) t τ w t 1 2 x

56 y, v ŠO Í ñ S «u b _ O(ƒË/c) x, u 2.14: 2. x y u u x + v u y = 1 ( p 2 ) ρ x + ν u x u y 2 u v x + v v y = 1 ( p 2 ) ρ y + ν v x v y 2 u x + v y = 0 (2.116) x x = x(x 0) (2.117) (2.118) y = 0 : u = 0, v = 0 (2.119) y : u ũ, v ṽ (2.120) ũ, ṽ x y ũ, ṽ ũ = cx, ṽ = cy (2.121) c > 0 c < 0 W W = ϕ + iψ = Cz n (2.122) n = 2 2 θ θ = π/n n = 2 θ = π/2 z z = x + iy c = 2C 2 ϕ = 2 ϕ x ϕ y 2 = 0 (2.123)

57 52 2 ϕ ũ = ϕ x, ṽ = ϕ y (2.124) c ν c [ũ ] [c] = = m/s x m = 1 s [ν] = m2 s ( l y η l y = ν c (2.125) η = y l y = y c = y ν/c ν (2.126) x y u v u = cxf (η), v = νcf(η) (2.127) f η (2.116) ψ ψ = νcxf(η) (2.128) νc x f(η) ψ u, v (2.127) u = ψ y, v = ψ x (2.129) (2.127) u, v (x = 0) x p ρv2 = p 0 (2.130) p v p 0 p p x < 0 (2.131)

58 y ˆ³ ÍŒ ˆ³ ÍŒ ˆ³ Í Á œ b Ý _ x 2.15: 3 (favorable pressure gradient) (x, y) (ξ, η) ξ η (x, y) (ξ, η) (2.132) ξ = x (2.133) c η = ν y (2.134) (chain rule) x = ξ ξ x + η η 2 x 2 = ( ) = 2 ξ ξ y 2 y 2 = x = ξ = ξ ξ y + η η y = ( ) c c = c ν η ν η ν ξ x = 1, (2.117) x (2.135) ξ 2 (2.136) c (2.137) ν η 2 η 2 (2.138) ξ y = 0 (2.139) c 2 xf 2 c 2 xff = 1 p ρ x + c2 xf (2.140) (2.118) y νccff = 1 ρ p y c νcf (2.141)

59 u ũ = cx, v ṽ = cy (2.142) (2.117) x c 2 x = 1 p ρ x (2.143) p ( (2.141) x ξ 0 = 1 2 p ρ x y (2.144) y p = const (2.145) x c 2 x = 1 p ρ x (2.146) p p (2.146) (2.140) f + ff f = 0 (2.147) f η ( ) (2.147) Falkner-Skan Falkner-Skan β f + ff + β(1 f 2 ) = 0 (2.148) β = 2m m + 1 (2.149) m ( 2.8 u ( e x ) m = (2.150) u 0 L m = 1 (,u e x) β = 1 f + ff + 1 f 2 = 0 (2.151) m = 0(β = 0) u e = const Blasius ( ) β m

60 ƒà ~ƒî/2 m m+1 ~ƒî 2.16: (Falkner-Scan ) (2.16) ( ) (2.147) (2.119) (2.120) (2.126) (2.127) y = 0 η = 0 : u = 0 f = 0 (2.152) v = 0 f = 0 (2.153) y η : u cx f 1 (2.154) (2.147) f = m m = g g = fg + m (f, m, g) y F (2.155) d y dη = F (η, y) (2.156) y = (f, m, g) t (2.157) F = (F 1, F 2, F 3 ) t (2.158) F 1 = F 1 (f, m, g) = m (2.159) F 2 = F 2 (f, m, g) = g (2.160) F 3 = F 3 (f, m, g) = fg + m 2 1 (2.161) F 1, F 2, F 3 f, m, g f = 0, m = 0 for η = 0 (2.162) m 1 for η (2.163) η = 0 g η = 0 g η m 1 η = 0 g m = 1 (iteration) Newton

61 56 2 Runge-Kutta four-stage, fourth-order method Runge-Kutta dy = f(x, y) (2.164) dx y n+1 = y n + h ( f 0 + 2f 1 + 2f 2 + f 3) (2.165) 6 x x = x n y n x (x n+1 ) y n+1 f 0 = f(x n, y n ) f 1 = f(x n h, y n hf 0 ) f 2 = f(x n h, y n hf 1 ) f 3 = f(x n + h, y n + hf 2 ) h = x (1, 2, 2, 1) x < 0 ( x = (scalar) (y, f) ( y, f) y y n+1 y n x n h/2 x n+1 x h 2.17: ( )

62 (boundary layer) (laminar boundary layer) (turbulent boundary layer) (Reynolds number) Re Re = UL ν = U L ν ( µ ρ ) ( ) 1904 (L.Prandtl; ; ) 1 u/ y y u τ = µ u/ y ( ) 2 (wake)

63 58 3 ƒ ƒeƒ ƒv ƒ i Q ³ µ:rotv=0 j «ŠE w U º Q x ª l Ü Á Ä é Ìˆæ Œã iwake j ûœü É x Ï» ªŒƒ µ y U(x) ƒâ x U(x) Fƒ ƒeƒ ƒv ƒ ê Ì x 3.1: (total pressure) (control surface) δ ν (3.1) δ δ L L 1 (3.2) δ L ( ) δ L = O(ϵ), 1 = O(ϵ0 ) (3.3) O(ϵ) 1 ( ) O(ϵ) 0 0 ( ) d «ŠE wœú ³ «ŠE w L ƒœ 3.2:

64 ( (reference values) U chord length L ρu 2 (ρ ) L/U ( ( ) ρu 2, L/U 2 u x + v y = 0 U L + v δ = 0 v U δ L (3.4) y v U 1 x u t + u u x + v u y = 1 ρ p x + ν ( 2 ) u x u y 2 (3.5) U U + U L/U L + U L δ U = 1 ( p δ ρ x + ν U L }{{} 2 + U ) δ }{{ 2 } U 2 ν U L δ (3.6) U L 2 U δ 2 (3.7) U 2 L = ν U δ 2 ( ) 2 δ = ν = 1 L LU Re δ L = Re 1/2 (3.8) Re Re = LU ν (3.9)

65 y x y v t + u v x + v v y = 1 ρ p y + ν ( 2 ) v x v y 2 U 2 L U L δ L U + U U L δ L + U U L δ L δ δ δ L + U 2 L δ L + U 2 L δ L = 1 ρ = 1 p ρ y + ν p y + ν ( U ( U L δ L 2 + L 2 U L δ δ 2 ) δ L + U δ 2 δ ) L (3.10) (3.6) (3.6) δ/l (3.6) 1 δ/l x y y y U 2 L δ L 1 p ρ y (3.11) y δp δp ρ U 2 L δ L δ (3.12) δy δ δp ρu 2 ( ) 2 δ (3.13) L y 2 y p y = 0 (3.14) x (3.14) p(x, δ) = p(x, 0) (3.15)

66 y p= ˆê è 3.3: p : ƒ ƒeƒ ƒv ƒ ̈³ Í U : ƒ ƒeƒ ƒv ƒ Ì x p p(x) U(x) U 3.4: U t + U U x = 1 ρ U y = 0 (3.16) p x (3.17) P 3.14 y 3.17 x p x = P x U U x = 1 p ρ x ( U 2 x 2 + p ) = 0 ρ (3.18) (3.19) p ρu 2 = const. = p ρu 2 (3.20) constant

67 62 3 X=X0 ƒâ X1 X2 º ûœü X Ì 3.5: U(x) 3.20 p (3.19) p/ x (3.5) u x (3.5) u x + v y = 0 (3.21) u t + u u x + v u y = 1 ρ p x + ν 2 u y 2 (3.22) U u x + v y = 0 (3.23) u t + u u x + v u y = U U x + ν 2 u y 2 (3.24) y = 0 : u = v = 0 (3.25) y : u = U(x, t) U y = 0 (3.26) u u x + v u y = 1 ρ u x + v y = 0 (3.27) p x + ν 2 u y 2 (3.28) y = 0 : u = v = 0, y : u = U(x) (3.29)

68 : (x x = x 0 : u = u(x 0, y) (3.30) y v (x, y) 3.6 x y R x y u t + R R + y u u x + v u = R R + y v t + y + { 1 p ρ x + ν + 2R (R + y) 2 v x R R + y u v x + v v y { 2 v y 2 uv R + y R 2 (R + y) 2 2 u x u y R + y R v (R + y) 3 x u2 R + y R dr (R + y) 3 dx v + u y u (R + y) 2 } Ry dr u (R + y) 3 dx x = 1 p ρ y + ν 2R u (R + y) 2 x + 1 v R + y y } + R2 2 v (R + y) 2 x 2 v (R + y) 2 + R dr (R + y) 3 dx u + Ry dr v (R + y) 3 dx x (3.31) (3.32) div u = 0 R u R + y x + v y + v R + y = 0 (3.33)

69 64 3 y U d x 3.7: ρ t + R (uρ) R + y x + (vρ) + vρ y R + y = 0 (3.34) R R R R 3.3 x (H. Blasius; 1908 Prandtl ph.d ) 0 dp dx = 0 (3.35) U = U = const u x + v y u u x + v u y = 0 (3.36) = ν 2 u y 2 (3.37) y = 0 : u = v = 0, y : u = U (3.38)

70 U ŠŽ U d1 x1 d2 x2 x 3.8: x u y x x x y U δ(x) u u ( y ) = ϕ U δ ϕ x (3.39) 2 δ δ νt (3.40) 2 t x tu = x (3.41) (3.41) δ δ νx νt (3.42) U (3.39) δ (3.42) η η = y δ = y U νx (3.43) ψ ψ = νxu f(η) (3.44) f(η) u = ψ y, v = ψ x (3.45)

71 66 3 u, v (ξ, η) (x, y) (ξ, η) ξ = x, chain rule η = y U νx (3.46) u = ψ y = ψ ξ ξ y + ψ η η y = νxu f (η) v = ψ x = ψ ξ = 1 2 ξ x ψ η η x = 1 2 νu U νx = U f (η) (3.47) f(η) νxu f (η) η x x νu x ( f + ηf ) (3.48) x, y ξ, η x = ξ η 2ξ U = y νξ η 2 y 2 = y y = η U νξ U η νξ η = U νξ (3.49) (3.50) 2 η 2 (3.51) (3.47) (3.51) (3.37) f ff + 2f = 0 (3.52) (1908) Blasius s equation) ( ) (3.47),(3.48) y = 0 : u = 0, v = 0 η = 0 : f = 0, f = 0 (3.53) y : u = U η : f = 1 (3.54) 2 ( ) 3.52 (2.165) Blasius Blasius (3.52) (3.1) η 0 u(y) (3.37) 2 u/ 2 y = 0, 2 u/ 2 η = 0

72 : U η = y f f = u f ηf f νx U u/u ( =f') u/u =f' h : y v y = δ 0 (3.48) v = 1 νu 2 x ( f + ηf ) (3.55) 3.1 η f + ηf = 1.72 (3.56) v v ν = 0.86 (3.57) U xu 0 x y ( ) ( ) ( )

73 68 3 y v U 3.10: y v x y d 0 U u U=0.99U x 3.11: 99% 1/7 (one-seventh power law) ( ) u ( y ) 1/7 = (3.58) U δ 3.4 (Boundary layer thickness) % ( ) U 99% δ δ = δ 99 u = 0.99U (3.59) η 5.0 (3.60) (3.43) η = y U νx = 5 (3.61)

74 y 0 U u(y) ƒâ P 3.12: x y δ 99 νx δ 99 = 5 (3.62) U δ δ 3.62 δ Re δ = 5.0Re 1/2 x (3.63) Re δ δ Re x x Re δ = U δ ν, Re x = U x ν (3.64) Re δ = 0.14Re 6/7 x, Re δ = 0.37Re 4/5 x (3.65) Re x 1 1/2 ( ) 30m/s 5m (displacement thickness) δ 1 δ U u(< U) U δ 1 = y=0 (U u)dy (3.66)

75 70 3 δ 1 δ 1 = y=0 (1 u )dy (3.67) U 3.3 Blasius (3.43) (3.47) δ 1 = = = y=0 νx (1 f ) U dη νx [ ] η1 η f U 0 νx ( ) η 1 f(η 1 ) U (3.68) η 1 η 1 (3.1) η 1 = 5 νx δ 1 = 1.72 (3.69) U Re δ1 = 1.72Re 1/2 x (3.70) (3.62) (3.69) δ 1 δ 1/3 δ 1 δ = 0.34 ( ) (3.71) δ 1 = 1/8 = 0.13 ( ) (3.72) δ 1/7 ( (3.58)) (3.67) (roughness) momentum thickness δ 2 θ ρu δ 2 2 = ρ u(u u)dy (3.73) y=0 U u

76 y U 0 u ƒâ2 x 3.13: δ 2 θ = δ 2 θ = δ 2 = = u y=0 U η=0 ( 1 u U ) dy νx f (1 f ) dη (3.74) U η = 5 Blasius f θ νx θ = δ 2 = (3.75) U Re θ = 0.664Re 1/2 x (3.76) 1/3 ( ) δ x = 5 Rex ( ), δ x = Re 1/5 x ( ) (3.77) δ x = 1.72 Rex ( ), δ x = Re 1/5 x ( ) (3.78) θ x = Rex ( ), θ x = Re 1/5 x ( ) (3.79) Re x x Re x = U x/ν

77 72 3 n y t w s U f x 3.14: δ 1 δ 2 H shapefactor) H = δ 1 = δ 1 δ 2 θ = δ θ (3.80) H = 2.59 H = 1.4 H = 1.3) H adverse pressure gradient H = 3.5 H = (skin friction)

78 shearing stress frictional stress ( ) u τ w (x) = µ (3.81) y y frictional stress 3.3 Blasius τ w (x) = µ U νx y=0 ( ) η U f (η) η=0 (3.82) = αµu U νx (3.83) (3.1) α = f (0) = 0.33 (3.84) C f C f = τ w(x) ρu /2 2 = αν 2 U ν U νx = 0.66 U x x Re x ( U x/ν) (3.85) C f = 0.66 Rex (3.86) C f x C f = Re 1/5 x C f = Re 1/5 x Re x,cr (3.87) A Re x, A = Re x,cr (C f,turbulent C f,laminar ) (3.88)

79 74 3 s b x l x 3.15: 3 U p ˆ³ Í å p p p p s s p ˆ³ Í 3.16: D f viscous drag l D f = b τ w cos ϕ ds (3.89) s=0 b l ϕ x s D f cos ϕ ds = dx (3.90) lx lx D f = b τ w dx = bµ s=0 x=0 ( ) u dx (3.91) y y=0 l x x ( profile drag U 0 (d Alembelt s paradox) D f (3.91),(3.83) D = b = b l x=0 l x=0 τ w dx αµu U νx dx = 2bα ρµu 3 l (3.92)

80 C D f C = 1.328Re -1/2 D f Laminar (Blasius) C D f Turbulent (Plandtl) -1/5 = 0.074Re transition CDf= ( logrl) Re l : 2D = 4bα ρµu 3 l = 1.328b U 3 µρl (3.93) D f D f U 3/2 l 1/2 µ 1/2 ρ 1/2 l 1/ C Df D C Df = 2D f 1 2 ρu 2 S (3.94) (1/2)ρU 2 S wetted surface area S S = 2bl (3.95) D f (3.93) (3.94) C Df = U l ν = Rel (3.96)

81 76 3 s U Stagnation i b Ý _ j Separation i _ j s 3.18: y p 1 2 p p > p 1 2 _ Ç ß Å Í,kinetic energy ª ³ D s t irecirculated flow j x 3.19: Re l (3.96) Re l < Re l ( ) C Df = Re 1/5 (3.97) C Df = (log 10 Re) 2.58 ( M 2 ) 0.65 (3.98) M ( ) 3.6 separation) adverse pressure gradient (dp/dx > 0)

82 y u d : «ŠE wœú ³ d Ýu ( Ýy) >0 Ýu y=0 ( ) =0 Ýu ( ) Ýy y=0 _ Ýy <0 y=0 t 3.20: ( ) u = 0 (3.99) y y=0 u τ y x (3.100) (x ) y x (3.101) (3.19), dp dx > 0 (3.102) (3.28) y = 0 µ ( 2 ) u y 2 = dp y=0 dx (3.103)

83 78 3 y 0 u ŠÔ Í ƒxƒ [ƒy É Â È ª é u y 0 0 É È é Ýu Ýy u Ì ª z ª ã É Ê 2 Ýu 2 Ýy ƒ0 Œù z Í0 y 2 Ýu 2 Ýy 3.21: (3.28) y u u y x + u 2 u x y + v u y y + v 2 u y 2 = 1 ρ y 0 2 p x y + ν 3 u y 3 (3.104) u = 0, v = 0, u x = 0, v y = u x = 0, 2 p x y = 0 (3.105) ( 3 ) u y 3 y=0 u 2 2 u/ y 2 0 = 0 (3.106) (3.103) (adverse pressure gradient) dp dx > 0 ( 2 ) u y 2 > 0 (3.107) y=0 (favorable pressure gradient) dp dx < 0 ( 2 ) u y 2 < 0 (3.108) y=0 dp dx = 0 ( 2 ) u y 2 = 0 (3.109) y=0 (3.9) ( p/ x < 0) 3.21 ( p/ x > 0) 3.22

84 y 0 u K Ï È _ ª Å «é (inflexion point) u y 0 0 É È é Å å l ª Ž² Ì r Å N «é Ýu Ýy 3.22: 0 y Œù z Í0 2 Ýu 2 Ýy U x f q o 3.23: u dp y = 0 dx > [ ] dp/dx > 0 λ θ Cp = p p 1 2 ρu 2 = 1 4 sin 2 θ (3.110)

85 : subcritical : ê ª w supercritical : ê ª sub super 3.25: 3.25 subcritical supercritical pressure drag (critical) drag crisis 3.24 ( C p = 1 C p = 0 C p = +1

86 U U = 2 sin x = 2x 0.333x x 5 + (3.111) x ( R ϕ x = ϕ = x/r, x ) U ϕ = (3.111) Hiemenz(1911) U U = 1.814x 0.271x x 5 + (3.112) ϕ = U ϕ = 80 Stratford ( ) 2 (x x B ) 2 dcp C p (3.113) dx x B Thwaites x0 ( U x B x 0 0 U max ) 5 dx (3.114) x 0 ϕ sep (seperation) x B = , ϕ sep = 79.8 (3.115) 3.7 D Alembert 5 (aerodynamic force) (lift) (drag) (side force) (pitching moment) (rolling moment) (yawing moment) 3 3 (aerodynamic coefficient) (lift) (drag) U U

87 C L L C L = 1 2 ρ U S 2 C D D C D = 1 2 ρ U S 2 (3.116) (3.117) C M M C M = 1 2 ρ U Sl 2 (3.118) L D M S l (1/2)ρ U 2 C l( l) C L C D Reynolds (C L = C L (Re), C D = C D (Re)) (similarity) M( / ) C L = f(re, M) C D = g(re, M) C M = h(re, M) 3.26 C D C D Re = 10 3 C D = C D = 1.2 Re = drag crisis ϕ sep ( ) f (Strouhal number)st St = fd U (3.119)

88 D U St = 0.2 ( ) Re 1 Oseen-Lamb C D = 8π Re[0.5 γ + ln(8/re)] (3.120) γ γ = C D Re 2/3 (3.121) C D R=VD/ 3.26: 100 C D R=VD/ 3.27: 3.27 C D

89 84 3 C D C D = 0.4 C D 0.4 Re = (drag crisis) C D = 0.09 Re 1 (Stokes) D D = 6πµRV (3.122) R µ C D C D = Re = ρ2rv /µ D 1 2 ρv S = 24 (3.123) 2 Re Stokes Stokes v t = K 1 p + ν v (3.124) ρ v = 0 (3.125), ω ( ) ω t p = 0 (3.126) = ν ω (3.127) Oseen C D = 24 [ Re 16 Re + 9 ] 160 Re2 ln Re (3.128) Stokes Oseen Re 1 0 Re C D 24 Re (3.129) Re

90 Re 1 C Df C Dp (3.130) Re 1 C Df C Dp C Df C Dp (induced drag) (trailing vortex) (parasite drag) (skin friction drag) (wetted surface) (pressure drag) 9 (interference drag) 2 ( ) (trim drag) (profile drag) 2 (cooling drag) (base drag) (wave drag) CFD Re 10 4 ( C D = 2.0) ( (2.1) ((1.6) (1.2) (2.3) (1.2)(1.7) (1.6)(2.0) Re = C D = Re = 10 6 C D

91 86 3 U CD 2.0 CD : ( Re 10 4 (C D = 1.07) ( 60 (0.5) (1.17) (1.4) C D = 1.2 (0.4) l/d = 0.5 C D = (streamlined form) 2 C D = 2.0 C D = 1.1 C D = C D = : 1 C D = : 1 C D = : 1 C D = 0.25 C D = : 1 C D = : 1 C D = : 1 C D = 0.1

92 cube disk cup cone 3.29: L D L/D 1 induced drag 2 parasite drag profile dragfrictional drag pressure drag 1.0 Cl max Ž (stall) Cl ƒ 12 (deg) 3.30: (NACA0012 Re = ) (wing section; airfoil) 12% NACA0012 ( 30% )

93 88 3 Re = α = 12 C L = 1.0 C D C L = 0 C D = 0.01 C L = 0.8 ( 8 ) C D = C L C D C L C D C D (L/D) L/D 7 25 : L/D = 7.5 B747: L/D = 17 B52 L/D = 22 L/D = range down range R (Breguet range equation) R = V C L D ln W 0 W 1 (3.131) V W 0 ( ) W 1 (W 1 = W 0 W f ) T C dw dt = CT (3.132) R R = 550η C C l C D ln W 0 W 1 (3.133) η W 0 W 1 W f W 1 = W 0 W f L/D L/D (cross range) L/D L/D = 1L/D = 4.5 (Lift drag ratio) FX FX Re = 10 6 α = 10 C L = , C D = , C M = C L C D C D 10 4

94 (stall) 3 NACA ( 18%) NACA ( 12%) NACA ( 6%) ( ) (viscous drag) 50% (induced drag) 40% ( 42% 8% ) (winglet) 40% 37% (wave drag) 18% (turbulent boundary layer) (laminar boundary layer) B C D = B787 C D = C D0 (zero-lift drag coefficient) (biplane) C D0 = B52 C D0 = ( ) V max 3 P C D0 S (3.134) P power S

95 (ballistic coefficient) C BC = M SC D (3.135) M S C D (bluff body) (bullet) C BC =

96 x «ŠE w x ª ̈æ T U 4.1: internal enery e i ( conduction of heat) κ convection of heat u T/ x + v T/ y heat through friction : τ ij u i / x j radiation ( 800 C hypersonic flow heat transfer (condensation) evapolation ( ) (1/2)kT (k )(3/2)kT (1/2)RT (R ) e i = (3/2)RT ( )

97 t heat Q V = x y z (the First Law of Thermodynamics Q = E + W dq dt = de dt + dw dt (4.1) 1 E (total energy = internal energy + kinetic energy) 2 Fourier 1 dq T = q = k A dt n (4.2) Ê ÏA n q 4.2: A: area k: thermal conductivity 15 C k = J/m sec deg n: Q: q: (heat flux

98 y dz ü Á Ä é M Ê z dx dy control volume x o Ä M Ê 4.3: x ( k T ) [ y z + k T x x + ( k T ) ] x y z = ( k T ) x y z (4.3) x x x x, y z t [ ( Q = t }{{} V k T ) + ( k T ) + ( k T )] x x y y z z x y z (4.4) de i de t { de t dei = ρ V dt dt + 1 d ( u 2 + v 2 + w 2)} (4.5) 2 dt { ( dw σx = dydz t uσ xx + u + u ) ( x δx σ xx + σ )} xx x δx = V t x (uσ xx) (4.6) 4.4 { dw = V t x (uσ xx + vτ xy + wτ xz ) + y (uτ yx + vσ yy + wτ yz ) + } z (uτ zx + vτ zy + wσ zz ) (normal stress) σ p (u, v, w) (4.7) σ xx = p 2 µ div v + 2 µ u 3 x σ yy = p 2 µ div v + 2 µ v 3 y σ zz = p 2 µ div v + 2 µ w 3 z (4.8) (4.9) (4.10)

99 94 4 dz σ xx σ xx + δ σ xx dy dx δ x δ x 4.4: shearing stress ( v τ xy = τ yx = µ x + u ) y ( w τ yz = τ zy = µ y + v ) z ( u τ zx = τ xz = µ z + w ) x (4.11) (4.12) (4.13) ρ De ( i + p div v = k T ) + ( k T ) + ( k T ) + µφ (4.14) Dt x x y y z z D/Dt Φ dissipation function µφ = τ ij u ij x ij = u x τ xx + v x τ xy + w x τ xz + u y τ yx + v y τ yy + w y τ yz + u z τ zx + v z τ zy + w { ( u ) 2 ( ) 2 v = 2µ + + x y ( v + µ x + u ) 2 + µ y ( w z ) 2 } ( w y + v z 2 ( u 3 µ x + v y + w z ) 2 ( u + µ z + w x ) 2 z τ zz ) 2 (4.15) Φ 2 2 u 2 /l 2 τ xx, τ yy, τ zz σ xx, σ yy, σ zz ( ) µ ( ) (4.14) S (1.102) (1.107) ρt DS Dt = ( k T ) + ( k T x x y y ) + z ( k T ) + µφ (4.16) z

100 Thermodynamic Properties e i h de i = C v dt (4.17) ( ) p dh = C p dt = C v dt + d = C v dt + d (pv) (4.18) ρ h = e i + p ρ = e i + pv (4.19) v (specific volume) v = 1 ρ (4.20) calorically perfect gas C v = const C p = const (4.21) C p : Specific heat at constant pressure (4.22) C v : Specific heat at constant volume (4.23) C p 1.0 kj/kg K C v 0.72 kj/kg K R = C p C v γ = C p /C v R γ C p = C v = C (4.24) C p C v h de i = C dt (4.25) dh = C dt + dp = C dt + vdp ρ (4.26) h e i + p ρ = e i + pv (4.27) e i h ρ De i Dt = ρ D ( h p ) = ρ Dh Dt ρ Dt ρ D ( ) p DT = ρc p Dt ρ Dt ρ D ( ) p Dt ρ (4.28)

101 ρ De i Dt + p div v = ρc DT p Dt ρ D ( ) p + p div v Dt ρ ( DT 1 = ρc p Dt ρ Dp ρ Dt p ) Dρ ρ 2 + p div v Dt DT = ρc p Dt Dp ( ) 1 Dt + p Dρ ρ Dt + div v }{{} 0 DT = ρc p Dt Dp Dt 4.14 ρc p DT Dt Dp Dt = x k k ( ) (4.29) ( k T ) + ( k T ) + ( k T ) + µφ (4.30) x y y z z ρc p DT Dt = Dp Dt + k 2 T + µφ (4.31) (4.30) (4.31) Dp/Dt p = ρrt (4.35) (4.36) (4.39) ( ) Dp Dt Dp Dt = RT Dρ = RT Dt + RρDT Dt (4.32) ( ρβ DT ) + Rρ DT Dt Dt = 0 (4.33) div v = 0 div v = 0 v = 1 Dρ ρ Dt ( ) Dρ ρ Dt DT T Dt p (4.34) (4.35) β (the coefficient of volume expansion) β = ( ρ/ T ) p ρ β = ( v/ T ) p v (4.36)

102 v (v = 1/ρ) v = β DT Dt (4.37) β p = RT (4.38) ρ β = 1 T v = 1 T DT Dt p p v = ρr DT Dt (4.39) (4.40) (4.41) C p C v = R (4.42) p v = ρ(c p C v ) DT Dt (4.43) 4.14 ρc p DT Dt = k 2 T + µφ (4.44) k C p C v C p C v thermal diffusivity a a k ρc p (4.45) DT ρc p Dt = k 2 T (4.46) DT Dt = a 2 T (4.47) (4.47) (forced convection)

103 u T x + v T y = a 2 T y 2 (4.48) x x y y = 0 T = T w (4.49) y = δ T T = T T y = 0 (4.50) T w δ T u ν T 4.50 u u x + v u y = ν 2 u y 2 (4.51) θ = T T w T T w (4.52) y = 0 θ = 0 (4.53) y = δ T θ = 1 (4.54) Pohlhausen Blasius η(3.43) ψ(3.44) η = y U 4.48 νx, ψ = νxu f(η) (4.55) d 2 θ dη 2 + P r 2 f dθ dη = 0 (4.56) ( η 0 exp θ(η) = P r 2 0 exp ( P r 2 ) β 0 f(α)dα dβ ) β 0 f(α)dα dβ (4.57)

104 y ƒ V x d Í Y = -ƒïƒ V g 4.5: 4.4 (natural convection) 10 6 x, y, z ( ρ u u x + v u y + w u ) = p z x + X + µ 2 u (4.58) ( ρ u v x + v v y + w v ) = p z y + Y + µ 2 v (4.59) ( ρ u w x + v w y + w w ) = p z z + Z + µ 2 w (4.60) (X, Y, Z) (body force) (X, Y, Z) (X, Y, Z) = (ρg x, ρg y, ρg z ) (4.61) g = (g x, g y, g z ) (4.62) g (g x, g y, g z ) (x, y, z) ( ρ u u x + v u y + w u ) z ( ρ u v x + v v y + w v ) z ( ρ u w x + v w y + w w ) z = p x + ρg x + µ 2 u (4.63) = p y + ρg y + µ 2 v (4.64) = p z + ρg z + µ 2 w (4.65) ρ p T ρ, p, T

105 100 4 Boussinesq ρ = ρ ( p, T ) ( ) ( ) ρ ρ ρ = ρ + (T T ) + (p p ) T p γ = ρ ρ β (T T ) + c 2 (p p ) }{{} (4.66) coefficient of thermal expansion β β = 1 ( ) ρ (4.67) ρ T p = ρrt (4.68) β β = 1 T (4.69) β = (1/K) ( ρ/ρ ( ) ρ = 1 p T RT = γ γrt = γ c 2 (4.70) p/ρ U 2 ) ρ ρ U 2 = γ c 2 (4.71) ( ) ρ = U 2 p c 2 γ = M γ 2 (4.72) M (M = 0.01) p, ρ ( ρ/ρ T/T ( ) ρ 1 = ρ β = ρ (4.73) T T ) ρ T = ρ T ( ) ρ T = 1 (4.74) u x + v y + w z = 0 (4.75)

106 x, y, z ( ρ u u x + v u y + w u ) z ( ρ u v x + v v y + w v ) z ( ρ u w x + v w y + w w ) z = p x ρ g x βθ + µ 2 u (4.76) = p y ρ g y βθ + µ 2 v (4.77) = p z ρ g z βθ + µ 2 w (4.78) θ ( ρc p u T x + v T y + w T z θ = T T (4.79) ) ( 2 ) T = k x T y T z 2 + µφ (4.80) p p x p x + ρ g x = x (p ρ g x x) = p x (4.81) p p ρ g x = p (4.82) y 2 z ρu 2 ( u u L x + v u y + w u ) z θ p = p ρ (g x x + g y y) (4.83) p = p ρ (g x x + g y y + g z z) (4.84) = ρu 2 L p x ρgβ T g xθ + µu L 2 2 u (4.85) θ = T T T (4.86) u u x + v u y + w u z = p x gβ T L U 2 g x θ + 2 gβ T L U 2 = ν LU 2 u (4.87) ( ) 2 gβ T L3 ν ν 2 = Gr 1 U L Re 2 (4.88)

107 102 4 Gr Gr = Re gβ T L3 ν 2 (4.89) Re = U L ν (4.90) /Re u u x + v u y + w u z u v x + v v y + w v z u w x + v w y + w w z = p x Gr Re 2 g xθ + 1 Re 2 u (4.91) = p y Gr Re 2 g yθ + 1 Re 2 v (4.92) = p z Gr Re 2 g zθ + 1 Re 2 w (4.93) µφ 4.80 () ρ C p U T L ( u T x ρ C p U T L ( u T ) x + = Φ klt ρ C p U T L 2 2 T + ) = k T L 2 2 T + U 2 µφ (4.94) L2 U µ ρ C p T L Φ (4.95) U µ ρ C p T L = µ U 2 = 1 (γ 1)U 2 = (γ 1) M 2 (4.96) ρ LU C p T R e γrt R e M 0 2 T klt ρ C p U T L 2 = k ρ C p U L = k µc p = 1 ( ) 1 1 = P r R e P e µ ρ U L (4.97) P e P e = P r Re (4.98) R e = UL/ν Reynolds number G r = gβ T L 3 /ν 2 Grashof number P r = µc p /k Prandtl number R a = G r P r Rayleigh number) P e = P r R e (Peclet number)

108 Ra = Gr P r < 10 9 ( ), Ra = Gr P r 10 9 ( ) (4.99) (heat transfer) ( Nu Nu = 0.59Ra 1/ < Ra < 10 9 ( ) (4.100) Nu = 0.13Ra 1/ < Ra < ( ) (4.101) ( ) (Nu) α x Nu x = αx k (4.102) α = q w q w T w T (4.103) (St: Stanton number) St = α ρc p U (4.104) St = Nu Re P r (4.105) ( ) P r C C C P r P r > 1 > P r = 1 = P r < 1 <

109 104 4 u ĉ T ĉ T Pr>1 u ĉ T ĉ T Pr=1 u ĉ T ĉ T Pr<1 4.6:

110 105 5 (laminar flow) (turbulent flow) Re(= UL/ν) (turbulent flow) M ü Œv v( x) t(žžšô) 5.1: ( ) x u u = u + u (5.1) u u v = v + v w = w + w (5.2) p = p + p T = T + T compressible flow T ρ } ρ = ρ + ρ (5.3) T = T + T u = 1 t t0+ t t 0 u dt (5.4) t t

111 106 5 u u- t 0 t t0 +ƒ t 5.2: ) u = u + u (5.5) u = 0 (5.6) v = 0, p = 0, ρ = 0, T = 0 (5.7) u, v, w, p, ρ, T (5.4) f g f g f = f f + g = f + g f g = f g = f g f/ s = f/ s fds = fds (5.8) s 5.8 [ ] (mass-weighted average density-weighted average ) Favre à = ρā ρ (5.9) à A A A = à + A (5.10) A ρa = 0 (5.11)

112 (x y S x x Ì ò da : Ê Ï z 5.3: S x ) ( ( 5.3 ) x, y, z x : dm x = ρu u da y : dm y = ρu v da z : dm z = ρu w da (5.12) 5.8 x dm x = da ρu 2 = da ρ (u + u ) 2 = da ρ (u 2 + u 2 ) (5.13) 2uu = 0 y z 2ūu = 2ū u = 0 (5.14) dm y = da ρ(u v + u v ) (5.15) dm z = da ρ(u w + u w ) (5.16) law of action and reaction momentum) da da x σ xx = ρ (u u + u u ) y τ xy = ρ (u v + u v ) z τ xz = ρ (u w + u w ) (5.17)

113 108 5 ƒñ f ƒñ f š ƒð f xx 5.4: σ xx = ρu u τ xy = ρu v τ xz = ρu w (5.18) (apparent stress), (Reynolds stress) Osborne Reynolds 1885 (1895?) 2 S y, S z u v u v 2 (correlation) u v u v > 0 y u(y) u 2 y 2 y 1 v u 1 x 5.5: y dū/dy > 0 v > 0 x u 1 (eddy) ( 5.5 ) u 1 < u 2 y = y 2 x u 2

114 u 1 u 1 u 2 < 0 u < 0 u v u v < 0 (5.19) ensemble average: u v < 0 or u v > 0 (5.20) y u(y) u 2 y 2 v y 1 u 1 x 5.6: v < 0 x u 2 eddy ( 5.6 ) (y = y 1 ) u 2 u 1 > 0 u > 0 u v < 0 (5.21) u v < 0 or u v > 0 (5.22) ρ τ xy = ρu v > 0 (5.23) τ yx = µ u y > 0 (5.24)

115 ( u ρ t + x uu + y uv + ) z uw ( v ρ t + x vu + y vv + ) z vw ( w ρ t + x wu + y wv + ) z ww u x + v y + w z = 0 (5.25) , = p x + µ 2 u (x ) (5.26) = p y + µ 2 v (y ) (5.27) = p z + µ 2 w (z ) (5.28) x (u + u ) + y (v + v ) + z (w + w ) = 0 (5.29) x u + y v + z w = 0 (5.30) x u = x u = 0 (5.31) (5.30) (divergence) x u + y v + z w = 0 (5.32) x, y, z ( u ρ t + u u x + v u y + w u ) = p [ ] z x + ρu u µ 2 u + + ρu v + ρu w (5.33) x y z ( v ρ t + u v x + v v y + w v ) = p [ ] z y + ρu v µ 2 v + + ρv v + ρv w (5.34) x y z ( w ρ t + u w x + v w y + w w ) = p [ ] z z + ρu w µ 2 w + + ρv w + ρw w (5.35) x y z ρ Du Dt = p x + µ 2 u + ( x τ xx + y τ yx + ) z τ zx (5.36)

116 ρ Dv Dt ρ Dw Dt = p ( y + µ 2 v + = p z + µ 2 w + ) x τ xy + y τ yy + z τ zy ( x τ xz + y τ yz + ) z τ zz (5.37) (5.38) ρ D Dt v = grad p + µ 2 v + T R (5.39) v = (u, v, w) t t T R τ xx τ xy τ xz T R = τ yx τ yy τ yz τ zx τ zy τ zz = ρu u ρu v ρu w ρv u ρv v ρv w ρw u ρw v ρw w (5.40) σ xx = p + 2µ u x ρu u (5.41) ( u τ xy = µ y + v ) ρu x v (5.42) ( u τ xz = µ z + w ) ρu x w (5.43) σ yy = p + 2µ v y ρv v (5.44) ( v τ yz = µ z + w ) ρv y w (5.45) σ zz = p + 2µ w z ρw w (5.46) τ xy = τ yx τ xz = τ zx τ yz = τ zy (eddy viscosity) (molecular viscosity) u v ρ + ( ρṽ) = 0 (5.47) t ρṽ t + ( ρṽ ṽ + pi T T ) = 0 (5.48) T T = ρv v (5.49) ṽ, v

117 x u x + v y u u x + v u y = 0 (5.50) = 1 p ρ x + { ν u } y y u v (5.51) y y?? 3.22) u, v, p u, v, p (5.52) ( ν u ) y y y ( ν u ) y u v (5.53) τ l τ t ( τl y ρ + τ ) t (5.54) ρ τ l = µ u y, τ t = ρu v (5.55) closure problem ( ) Tollmien-Schlichting instability 2 (TS ) Re = U e δ /ν < 420 (U e δ ) U e δ δ TS TS 5.4 (J.Boussinesq, 1897) τ t = ρu v = µ t du dy (5.56)

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

Preface) compressible fluid dynamics) ) density) Reynolds number; ) Mach number) 0.3 5% 5% 300km M = km M = 0.41 M = shock wave) 0 wave

Preface) compressible fluid dynamics) ) density) Reynolds number; ) Mach number) 0.3 5% 5% 300km M = km M = 0.41 M = shock wave) 0 wave Compressible Fluid Dynamics Yoshiaki NAKAMURA Professor of Chubu University Emeritus Professor of Nagoya University 014 4 April, 014 Preface) compressible fluid dynamics) ) density) Reynolds number; )

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 基礎からの冷凍空調 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067311 このサンプルページの内容は, 初版 1 刷発行当時のものです. http://www.morikita.co.jp/support. 03-3817-5670FAX 03-3815-8199 i () () Q&A

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

2013 25 9 i 1 1 1.1................................... 1 1.2........................... 2 1.3..................................... 3 1.4..................................... 4 2 6 2.1.................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

Contents 1 Jeans (

Contents 1 Jeans ( Contents 1 Jeans 2 1.1....................................... 2 1.2................................. 2 1.3............................... 3 2 3 2.1 ( )................................ 4 2.2 WKB........................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1 September 25, 2017 1 1.1 1.2 p = nr = 273.15 + t : : K : 1.3 1.3.1 : e.g. 1.3.2 : 1 intensive variable e.g. extensive variable e.g. 1.3.3 Equation of State e.g. p = nr X = A 2 2.1 2.1.1 Quantity of Heat

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

untitled

untitled 1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

14 6 18 3 1 1.1. 1,,,,,,., uid, (uid dynamics) Newton. (geophysical uid).,.,. 2,,,. 1 2, II,. 4 1 1.2 60% 40 %. 1.3..,. 1., ( ) ( ),.,. 30.,,...,,", ". ( ) 2., (, 21),.,,.,. 3 ", (, " 3. G. K. Batchelor,

More information

Microsoft Word - ●ipho-text3目次

Microsoft Word - ●ipho-text3目次 国際物理オリンピック 研修用テキスト Ⅲ 熱物理 相対論 量子力学 特定非営利活動法人物理オリンピック日本委員会 1 1.1 1 1. 1.3 3 1.4 4 1.5 6 1.6 7 1.7 9 11.1 11. 0.3 1 6 3.1 6 3. -9 3.3 - -- 31 3.4 --33 39 4.1 39 4. 40 4.3 4 4.4 44 4.5 47 5 5.1 5 5. 5 5.3

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

ii (Preface) Mach number: M; : M = V/a 0.3 5% km/h( M=0.4) (thermodynamics) ( SST: supersonic transport (trade-off) ( ) (fluid dynamics) (compr

ii (Preface) Mach number: M; : M = V/a 0.3 5% km/h( M=0.4) (thermodynamics) ( SST: supersonic transport (trade-off) ( ) (fluid dynamics) (compr Incompressible Fluid Dynamics Yoshiaki NAKAMURA Professor of Chubu University Emeritus Professor of Nagoya University 2014 4 April, 2014 ii (Preface) Mach number: M; : M = V/a 0.3 5% 0.3 500km/h( M=0.4)

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O - 44 4 4.1 d P = d dv M v = F M = F 4.1 M v P = M v F 4.1 d H = M 4.2 H M Z K I z R R J x k i P r! j Y y - XY Z I, J, K -xyz i, j, k P R = R + r 4.3 X Fig. 4.1 Fig. 4.1 ω P [ ] d d = + ω 4.4 [ ] 4 45 4.3

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š n š p š š Ž p í š p š š» n É» š å p š n n š û o å Ì å š ˆ š š ú š p š m å ìå ½ m î

More information