Size: px
Start display at page:

Download ""

Transcription

1

2

3 ,,,,,,., uid, (uid dynamics) Newton. (geophysical uid).,.,. 2,,,. 1 2, II,.

4 % 40 % ,. 1., ( ) ( ),.,. 30.,,...,,", ". ( ) 2., (, 21),.,,.,. 3 ", (, " 3. G. K. Batchelor, An Introduction to Fluid Mechanics (Cambridge U. P.) 3

5 1.3. 5, Journal of Fluid Mechanics 1999.,. 4. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press) Landau - Lifshitz 1. Landau S. H. Lamb, Hydrodynamics (Cambridge U. P.) Sir ,.,. 2,. 2. J. Pedlosky, Geophysical Fluid Dynamics (Springer). 3. R. Salmon Lecture on Geophysical Fluid Dynamics (Oxford U. P.). Hamilton. Review Hamilton. 4., 5., : (, 13) 1., ( 2 ) ( ).

6 iwayamakobe-u.ac.jp 1.5, \ ",

7 (Cartesian coordinate).,, nonation 2.2.1, ~ A A x y z i j k e 1 e 2 e 3 e 1 = i e 2 = j e 3 = k (2.1). x y z. 1,.

8 r x. 2, r r = x i + y j + z k (2.2) x y z r x y z r =(x y z) (2.2). 3 (2.1) x = x 1 e 1 + x 2 e 2 + x 3 e 3 (2.3) v v = u i + v j + w k (2.4). u v w u x y z. 4 (2.1) v = v 1 e 1 + v 2 e 2 + v 3 e 3 (2.5) , (westerly: u > 0) (easterly: u < 0) (northerly: v<0) (southerly: v>0), (eastward: u >0) (westward: u <0) (southward: v<0) (northward: v>0),.

9 2.3. summation rules, Einstein's notation t x y z t x y z x 1 x 2 x r. r = i x + j y + k z (2.6) = i x + j y + k z (2.7) = e e e 3 3 (2.8) 2.3 summation rules, Einstein's notation 2, 1 3. x = x 1 e 1 + x 2 e 2 + x 3 e 3 = 3X i=1 x i e i = x i e i : (2.9) P. 1: 2 x i e i = x j e j = x k e k. 2: 2, 1 2. : v = v i e i : (2.10) r = e i i : (2.11) df(x 1 x 2 x 3 ) = dx 1 ( 1 f)+dx 2 ( 2 f)+dx 3 ( 3 f) = dx i ( i f): (2.12)

10 Kronecker 2 Kronecker : ij ( 0 (i j ): (2.13) 1 (i j ): Kronecker ij e i e j (2.14). ra = (e i i ) (A j e j ) = ij i A j = j A j : (2.15) : Kronecker,. 1. ii 2. ij A j 2.5 Eddington 3 Eddington : " ijk 8 >< >: 1 (i j k) =(1 2 3) (2 3 1) (3 1 2) : ;1 (i j k) =(3 2 1) (2 1 3) (1 3 2) : 0. (2.16) " ijk = ;" ikj : (2.17) " ijk =1 (i j k) =(1 2 3), " ijk = ;1 (i j k) = (1 2 3).

11 2.5. Eddington 11 A = 0 B a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 1 C A, Eddington deta = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = " ijk a 1i a 2j a 3k : (2.18) A B.. A B = ra = e 1 e 2 e 3 A 1 A 2 A 3 B 1 B 2 B 3 = " ijk e i A j B k : (2.19) e 1 e 2 e A 1 A 2 A 3 = " ijk e i j A k (2.20) 1. (2.18). 2., ij " ijk., ij " ijk. (a) B A = ;A B, (b) A (B C) = B (C A) =C (A B) 3. " ijk " ilm = jl km ; jm kl.

12 Gauss S V, 2. 5 I: v : ZZZ ZZ rvdv = v ds (2.21) V S, ds n, ds. II: Q : ZZ S Qn i ds = ZZZ, n i n i. V Q x i dv (2.22) I Gauss. : (2.22). 2.7 Stokes v, : I C v dr = ZZ S (rv) ds: (2.23) S C., C, S., S. n S. S, C,. S, ZZ. v. 5,. S (r v) ds =0 (2.24)

13 2.7. Stokes 13 n S C 2.1: Stokes C, C S,. Stokes. Stokes C., (2.23).,. Stokes,., ( ), ( ). ( ), Stokes ( )., Stokes.. ( ), (2.24), Stokes. (, ( ).) ( ), (2.24) ZZ S ( x v ; y u)dx dy (2.25)., S, x y. (.)

14

15 15 3, ( ),. 3.1, (, ),,..,.,., P, P v., P r, P (r) Nm (3.1) v., m,, N v. N v t.,, 2. L (v) 1=3 1. L K = L (3.2), K 1. K Knudsen. 1.

16 16 3 P ρ (r,t) P 3.1:. P, P. T 2. :., 0 o C 10 ;7 m 10 ;10 s L =1 10 km T 12 h ( ) L 10 3 km T 10 day. (uid parcel/uid particle)., v.,,,.,,,. 3.2, Newton,,., 2,.

17 ,,,.,.. (body force).,, Coliois,. (surface force),,.,,.. (stress). MKS Nm ;2. \ ", N. P, P S, S P ( n ), Tn. Tn S, n.,. Tn 2 1., 2 (tensor), 9, ij (i j =1 2 3),., ij. x j, x j x i ij.,. T;n = ;Tn (3.3), (tangential stress), (shear stress), (normal stress)., (pressure), (tension). 3.3,,, : \

18 18 3 τ 33 Τn τ 13 P τ : P z., P T n ,.",.,,,.,,.. \, 0,.", 0,. {[ ] { [ :] P, PAB,. PA, PB, AB p 1, p 2, p 3,., PA= l 1 PB = l 2, 6 A = 1 6 B = 2. : AB, p 1 l 1 sin 1 ; p 2 l 2 sin 2 =0: sin 1 l 2 = sin 2 l 1

19 , p 1 = p 2 : P. : O(l 2 ),., l,.,. : D'Alembert.,. {[ ] { P p 1 p 2 A α α 1 2 B p 3 3.3: P. 3.4,.

20 , (viscosity). 3 (inviscid/perfect/ideal uid),.,., ij = ;p ij : (3.4),. (viscous uid).,. Newton (Newtonian uid).. Newton e ij ; 13 e kk ij ij = ;p ij +2 e ij = 1 ui + u j 2 x j x i (3.5) (3.6). (coecient of viscosity). Newton. (3.5) 0, (3.4). : (3.5),.,. (3.5),,. 4,,.,, 5,, 3,,,,.. 4,,, 2,. 5. 1, 1.

21 , ,,.,.,,.. 6,,,., (compressible uid). (incompressible uid).. 7,,. 8 : 1. p = RT, T ds = c v dt + p d( 1 ), p p = C (Poisson )., T S c v R C,,,,, c v c p = c v + R, = c p =c v. 2., 300 K c =. (a) r p S. 6 c entropy,. c p (p=) S. 7,. 8 Bussinesq.,.. r p S

22 22 3 (b) c v = 5R c 2 p = 7R R = 287 J 2 K;1 kg ;1, c. (,.) v, E, S,... p, T,,. 9,, 2.,, , 5, 5,. 5,,.,,,. 3., ,, ,,,,,.,,, v,, T, p.. 10 d, d

23 Lagrange (Lagrange ),,., t = t 0 (a b c) t (x y z). x y z a b c t, x = f 1 (a b c t) y = f 2 (a b c t) (3.7) z = f 3 (a b c t). f 1 f 2 f 3,. t 0 t 0 =0. (3.7) (a b c), (a b c) material coorinates. (a b c),,, (a b c).. 11 N, i (i =1 2 :::N) t (x i y i z i ). i ( ). 2. i, (a b c).., ( ). Lagrange,, Lagrange, material dierentiation D Dt. Lagrange, F Lagrange DF F Dt = t a b c (3.8) 11 Lagrange naive Hamilton Hamilton.

24 24 3 (Lagrange ) ( ) (a b c) : i D Dt d dt 3.1: Lagrange. d dt. Euler (Euler ) t, (x y z) v T p :::.,.,,..,. Euler Lagrange, x y z Lagrange, Euler. Lagrange Euler F Euler F (x y z t). Lagrange Euler. t r = (x y z), t +t r + vt =(x + ut y + vt z + wt). F F, F = F (x + ut y + vt z + wt t +t) ; F (x y z t) F = t + u F x + v F y + w F ; t + O 2 (t) z DF Dt F = lim t!0 t = F t + u F x + v F y + w F z (3.9). O ((t) 2 ) t. F

25 , Lagrange Euler D Dt = t + u x + v y + w z = t + v r (3.10). (3.10) 2. v r rv r.,. v r, ( v r ), rv. 2. Langrange Euler a b c t x y z t x y z p T ::: u v w p T ::: Lagrange, D Dt t t + v r : 1. f(a b c), f=a, b c, a f. (f=a) b c,,,. Lagrange =t Euler =t. 2. Lagrange Euler (3.10) v r ,.,

26 26 3,,. g, N=m 3, N=m 2 g.,,,,.. 3.4, ( ds, dz)., ( ) ( ). 12 p(x y z +dz)ds, p(x y z)ds. g ds dz.,, ;p(x y z +dz)ds ; g dz ds + p(x y z)ds =0 (3.11). dz, p(x y z +dz) p(x y z +dz) =p(x y z)+ p z dz + O(dz2 ) (3.12) Taylor., O(dz 2 ) dz 2. (3.11) 1, ; p z + O(dz2 ) ; g dz ds =0: (3.13) dz ds, dz ds! 0., O(dz 2 ), ; p ; g =0 (3.14) z. (3.14) (hydrostatic balance), :. 13., Coriolis (geostrophic balance).

27 (3.14), p., x y ; p ; p. x y, ;rp.,, (pressure gradient force). p(z+dz) ds z+dz z p(z) ρg ds dz ds ds 3.4: ds, z z +dz., ds, dz 0 (, )., (3.11), ;p(x y z +dz)ds ; 0 g dz ds + p(x y z)ds (3.15). 1 3 g ds dz., (3.15) ( ; 0 )gds dz (3.16)., > 0,,, (3.16) > 0,.,

28 [ ], : (buoyancy force) \ ( ),,.., ( )"., (3.15) ;p(x y z +dz)ds + p(x y z)ds (3.17). (3.17), ;p(x y z +dz)ds + p(x y z)ds = gdsdz (3.18),..

29 29 4 (1): 3.5.1, v 2,,,,.,,. (equation of continuity). Euler Euler., Lagrange Lagrange, Euler. 4.1 Euler S. 1 S V. V, ZZZ V dv. V, d dt ZZZ V dv. V S V. ds, ds v n., v n v v n = v n ( 4.1 )., 1 Euler,,.

30 30 4 (1): S V ; ZZ S v n ds = ; ZZZ V r(v) dv. S n,. Gauss (2.6 ). d dt ZZZ V dv = ; ZZZ V r(v) dv:, ZZZ V t + r(v) dv =0. V, 0., + r(v) =0 (4.1) t.. Lagrange D Dt., D + rv =0 (4.2) Dt : 1. (2.3 ), (4.1). 2. Lagrange D, (4.1) (4.2) Dt. :,, D Dt =0, rv =0 (4.3).

31 4.2. Lagrange 31 n S ds V n ds v v.n 4.1: V ds. 4.2 Lagrange t = t 0 S 0 V 0,, t S V. Lagrange,. : ZZZ ZZZ 0 dx 0 dy 0 dz 0 = dx dy dz: V 0 V (a b c) t = t 0 (x 0 y 0 z 0 ), abc- : (x y z) (a b c),. = = ZZZ ZZZ V 0 0 dx 0 dy 0 dz 0 = V dx dy dz = ZZZ ZZZ V 0 0 da db dc V 0 (x y z) da db dc: (a b c), xyz abc Jacobian (x y z) (a b c) = 0 (4.4) Lagrange., 0 a b c. 2 2, 4.3.

32 32 4 (1): : = 0, (x y z) (a b c) =1 (4.5). 4.3 Euler Lagrange Euler Lagrange,. Lagrange (4.4) Jacobian, J (x y z) (a b c) (4.6)., (4.4) J = 0. (4.4) Lagrange, 2 chain rule DJ Dt ; = Dx y z Dt (a b c) = = ( ; Dx Dt y z (x y z) u x + v y + w z D Dt J + DJ Dt + ; x Dy Dt z (a b c) ; + x Dy z Dt (x y z) J =0: (4.7) ; + x y Dz Dt (a b c) ; + x y Dz Dt (x y z) ) (x y z) (a b c) = (rv) J (4.8). 3 (4.8) (4.7), Euler D + rv =0 Dt. Lagrange Lagrange Euler. 3 D=Dt Lagrange, a b c t (t ) a b c, x y z.

33 4.3. Euler Lagrange 33 Euler Lagrange, (4.2) Lagrange, Lagrange ( ) ( ). (4.8), rv = J ;1 DJ=Dt, (4.2) D Dt + J DJ Dt =0: D (J) =0 (4.9) Dt. J 0. Lagrange D=Dt =( t ) a b c, 0 a b c.

34

35 35 5 (2): \, ", Newton,. Euler Euler. Euler Lagrange, Euler (x y z) Lagrange (a b c), Lagrange. 5.1 Euler (2.3 ). S. R S V. V i v V i dv., V. d dt ZZZ V v i dv. i ij, ZZ S ij n j ds. i K i V i ZZZ V K i dv

36 36 5 (2):. S V. " ". Euler, ; ZZ S (v i ) v j n j ds. 1 V, V, S S., d dt ZZZ V v i dv = ZZZ V K i dv + ZZ S ij n j ds ; ZZ S (v i ) v j n j ds (5.1) 2.6 Gauss., ZZ ij n j ds ; S. ZZZ V ZZ S (v i ) v j n j ds = (5.1) t (v i) ; K i ; ZZZ x j ij + V x j ( ij ; v i v j )dv (v i v j ) dv =0 (5.2) x j. V,.,. t (v i)+ x j (v i v j )=K i +. (5.3) : t (v i) = v i t + v i t x j (v i v j ) = v j v i x j + v i x j ij (5.3) x j (v j ) : (4.1). (5.3) vi t + v j v i = ij + K i x j x j , V, v n ds., V, v n ds v.

37 5.1. Euler 37 v i t + v j v i x j = 1 ij + K i x j (5.4a).. Lagrange Dv i Dt = 1 ij + K i : x j (5.4b), ij = ;p ij (5.5), (5.4) v i t + v j v i x j. (5.6a) = ; 1 p x i + K i t + v r v = ; 1 rp + K (5.6b) (5.6a). (5.6) Euler (Euler's equation). Newton (5.4) v i t + v j v i x j (3.5) Newton, = ; 1 p + 2 v i + 1 x i x 2 j 3 vj + K i (5.7a) x i x j t + v r v = ; 1 rp + v + 1 r (rv)+k 3 (5.7b). = = (kinematic viscosity). (5.7) Navier-Stokes (Navier-Stokes equation),.

38 38 5 (2): 5.2,.. (5.4a) v i,, t v i v i t + v iv j v i x j = v i x j ij + v i K i 1 2 v iv i + x j 1 2 v iv i v j ; 1 2 v iv i., t + v j x j {z } ij v i = ( ijv i ) v i ; ij x j x j x j = ( ijv i ) ; ij e ij (5.8) x j ij ( ij = ji )., e ij = 1 ui + u i 2 x j x j (5.9)., T = 1 2 v iv i, (T ) t + (T v j) x j = ( ijv i ) x j + v i K i ; ij e ij (5.10).,, ( ) K ( ),.,. (5.10),., ij.

39 , ij = ;p ij, (5.8) ; (pv j) x j + pe jj., (5.10) (T ) t + (T + p) v j x j = v i K i + pe kk (5.11a). (T ) t + rf(t + p) vg = v K + prv (5.11b) Newton (3.5) Newton, (5.8), ;pv j +2 x j.,, (5.10) e ij v i ; 13 e kkv j ; ;pe jj +2 e ij e ij ; 13 e kke jj (e ij ; 1 3 e kk ij ) 2 = e ij e ij ; 2 3 e kk ij e kke kk ij {z} ij =3 (T ) t = e ij e ij ; 1 3 e kke jj : (5.12) + (T + p) v j ; 2 e ij v i ; 13 x e kkv j j = v i K i + pe kk ; (5.13) =2(e ij ; 1 3 e kk ij ) 2 (5.14) (dissipation function),....

40 40 5 (2): 5.3 Lagrange 5.1 Euler (5.6) Lagrange. (5.6) Lagrange, Dv Dt = ;1 rp + K (5.15). Euler, K p. Lagrange 2 r. ;rp Lagrange t a b c 2 (a b c). (5.6) x- a x, (5.6) y- a y, (5.6) z- a z rp : x p a x + y p a y + z p a z = a p,. Lagrange a-, (5.6) x- a x, (5.6) y- a y,(5.6) z- a z : ; 2 t x ;K x a x + ; 2 t y ;K y a y + ; 2 t z ;K z a z = ; 1 ap: b-, (5.6) x- b x, (5.6) y- b y, (5.6) z- b z, c-, (5.6) x- c x, (5.6) y- c y, (5.6) z- c z. : 2 x x t ;K 2 x a + 2 y y t ;K 2 y a + 2 z z t ;K 2 z a = ;1 p a (5.16) 2 x x y z p t ;K 2 x b + 2 y t ;K 2 y 2 x x t ;K 2 x c + 2 y t ;K 2 y b + 2 z t ;K 2 z y c + 2 z t ;K 2 z b z c = ; 1 = ; 1 b (5.17) p c : (5.18)

41 41 6 (3) \,,,,, ",., Euler. 6.1 S. S V. R V ( ) (T + U) dv V., T U. V d dt ZZZ V (T + U) dv.. V, ZZZ V v i K i dv + ZZ S v i ij n j ds. 1 S V, Euler, ; ZZ S f (T + U)g v j n j ds (6.1).,,. (thermal diusivity), 1 F, r, F r.

42 42 6 (3). S V. ZZ ; j n j ds (6.2) S. 2, J. V, V, S, S V,, d dt ZZZ V (T + U) dv = ZZZ ; + ZZ V S ZZZ v i K i dv + ZZ S v i ij n j ds [f (T + U)g v j + j ] n j ds, 2.6 Gauss ; ZZZ V V J dv (6.4) x j (T v j + Uv j ; v i ij + j )dv (6.5). V, t f (T + U)g + f (T + U) v j g = (v i ij ) ; j + v i K i + J (6.6) x j x j x j. (5.10) (6.6), t (U)+ f(u) v j g = ij e ij ; j + J (6.7) x j x j., (6.7) Lagrang. DU Dt = 1 ije ij ; 1 j x j + J (6.8) 2, Fourier. Fourier.. = ;rt (6.3)

43 , ij = ;p ij, (6.8). ij e ij = ;pe jj = ;p v j x j (6.9) 1 D Dt = ; v j x j (6.8) DU Dt + p D Dt 1 = ; 1 r + J (6.10)., (6.10), U + p( 1 )=Q, Lagrange D. Dt Newton Newton, (6.8). (6.8) DU Dt + p D Dt ij e ij = ;pe jj + (6.11) 1 =; 1 r + J (6.12),,,. (5.13).

44

45 ,, 3, 5,,, v, p, U 6. 1,. ( ), 2, 5., , : p = RT: (7.1) (7.1). n kmol PV = nr T (7.2)., R (R =8:314times10 ;3 JK ;1 kmol ;1 ). V m kg, M 1 Fourier T, 7. 2, Boussinesq.

46 46 7, (7.2) P = m V R M T (7.3). = m=v, (7.1) (7.3) R = R M (7.4). ( 28) 75.5 %, ( 32) 23.1 %, ( 40) 1.3 % 3, M =28 0: : :013 = 28:96. R = R =28:96 = 287J K ;1 kg ;1.,, R Boussinesq = f(p T ) T 0, p 0 Taylor, 1 f f = f(p T ) = f(p 0 T 0 )+ p, 1 0 = 0 + ( = 0 p T T p p T (p ; p 0 )+ T (p ; p 0 )+ T =0,, p T p (T ; T 0 ) (p ; p 0 )+ 1 0 T (T ; T 0 ) p (T ; T 0 ) = 0 [1 ; (T ; T 0 )] (7.5) ; 1 (7.6) 0 T 3 80 km. p )

47 (7.5) Boussinesq,,.,,. 4,, = 0 [1 ; (T ; T 0 )+(s ; s 0 )] (7.7) ; 1 (7.8) 0 s p T., s (salinity). s, 1kg.,,, (coecient of saline contraction). 7.3, v., p.,, = F(p) (7.9) f(p ) =0 (7.10),,,. (7.9) (7.10) (barotropic uid). (7.10).,. (baroclinic uid).,, barotropic uid ( ( ) ),, baroclinic (7.6),,., < 0.,,. 0. T p

48 D =0, (incompressible homogeneous Dt uid), = const: (7.11),. Newton,, P = p=. Dv Dt = ;rp + r2 v + K (7.12) rv =0 (7.13).,, Navier-Stokes ,. 1. T =const. p / (7.14) 7.3.3,. p,, S p = p 0 0 exp S ; S0 C v (7.15)

49 ,. C v C p = C p =C v. (S = S 0 ), (7.15). p p 0 = 0 (7.16) du = TdS; pd( ;1 ), p = RT, du = C v dt, (7.15). (7.16) Poisson. Poisson, T p, R=Cp T 0 T = p0 (7.17) p., T 0 p (7.17) p R=C p T = const (7.18), T 0, p 0,, T 0 (potential temperature),., z p(z), T (z) p 0 ( p 0 = 1000hPa ),, T 0, z.,., (z),.

50 50 7 S S = C p ln +const (7.19) , K, K = ;gk. 5, (5.7b), 1 rp = ;g k: (7.21), 0,., dp(z) dz = ;g: (7.22) (7.22) (7.1). 6 z, (geopotential), Z =g 0 (geopotential hight) (z) Z z 0 gdz: (7.23), g 0 g 0 =9:81ms ;2. z. 5, g. g g = GM (a + z) 2 : (7.20), G, M, a, z. 6 (7.22) z,.

51 (7.23) z p., (7.22) p T. Z p(z) (z) ; (0) = ;R Tdln p: (7.24) p(0) (7.24) (hypsometric equation). (7.24), p 1 p 2 (, (thickness)) 7 Z T Z(p 2 ) ; Z(p 1 )=; R g 0 Z p2 p 1 Tdln p (7.25). ( ),, (7.25),., p 1 p 2 ht i ht i R p2 p R 1 p2 p 1 Tdln p d ln p (7.26). Z T = ;H ln(p 2 =p 1 ) (7.27) H R ht i g 0 (7.28)., p(z) =p(0) e ;Z=H (7.29),. H (scale hight), e ;1. 255K 7km. 7 p 1 >p 2, p 1 p 2.

52

53 n, n., t =0,., k m, m d2 x dt 2 = ;kx (8.1) x(t) = A cos(!t)+b sin(!t)! = k=m: (8.2), A B t =0 x(0) _x(0).,. 1, 2 t 2 (x t) =c 2 2 x 2 (x t) (8.3) (x t) =G(x ; ct) +H(x + ct) (8.4). G H. 1,. 0 x L, (0 t)= (L t) =0, Fourier. Fourier, G(x ; ct), H(x + ct). 2, 2, 2, 2 ( (x 0) t (x 0)), 2 ( ). 3, 1979:,, 223 pp.

54 54 8 (8.4) (8.3). 4 (, ),,. Euler, Euler 1, t =0 v p.,. 8.2,. P v, P n.,,, v n =0 (8.5). 5 z = h(x y), r(h;z), (8.5). v r(h ; z) = Dh Dt ; Dz Dt =0 w = Dz Dt = Dh Dt (8.6) 8.3 2, ( 2 ). 4 : = x ; ct = x + ct,. t x 5 v 0, v 0, (8.5)., (v ; v 0 ) n =0.

55 F (x y z t) =0 (8.7). 2.,., P t v t, F (x + u t y + v t z + w t t +t) =0. F (x + u t y + v t z + w t t +t) = F (x y z t) {z } =0 DF Dt + DF Dt t +O(t2 )=0 = 0: (8.8) 8.4

56

57 57 9 (4) 9.1, 5.1 (5.6).,. 1??,, ( Coriolis )., dv dt d 0 rv, dt Coriolis ((??) )., d dt Lagrange D Dt. Euler v Lagrange : Dv Dt ;! Dv Dt +2 v + ( r): (9.1)??, prime,, r., Euler, Lagrange Euler v t + v rv +2 v = ;1 rp + K ; ( r) (9.2).,, (9.2). 1 Newton, K,., Landau, L. D. & Lifshitz, E. M., Fluid Mechanics. 2 nd. Ed. Pergamon Press p.48 { 49..,.

58 58 9 (4) r: () r: : () :, ( + = ) 2 : () : 9.1: ,,,,,.,. ( r), 3 (r ),., r,,,. r, a, z = r ;a.. e r (e ϕ)e λ e ϕ r (e (θ) θ ) ϕ (ϕ)λ 9.1:..

59 a, M., z (eective gravity) g. 3 a2 g ; (a + z) 2 g e r + 2 (a + z) cos e : (9.3) e r ( r), e ( z). e. g G. Ω e = cos e r ; sin e (9.4) g = GM a 2 (9.5) e ϕ g* ϕ δ g e r eρ - Ω XΩX r tangential plan 9.2:,,,. 9.2, (;e r ),, (, e r ) 2 Coriolis,. 3 gravitational force,, gravity force, gravity.

60 60 9 (4).., z =0. e r = cos ;1 g (;g e r ) g jgj g ; = cos ;1 2 a cos 2 p (g ; 2 a cos 2 ) 2 +( 2 a cos sin ) 2! (9.6). 4 a =6: m =7:3 10 ;5 s ;1 g =9:8ms ;2 (9.6), 45 =9:9 10 ;2 ( 6 ). 1km 1.7 m,.,,,, (gioid),,.,. 6 jgj (9.3),. 7, z a jgj. 8, 4 g (;g e r ) = ; ;g e r + 2 a cos e (;g e r ) = g 2 ; 2 a cos (cos e r ; sin e ) g e r = g 2 ; g 2 a cos 2 jgj = p (g ; 2 a cos 2 ) 2 +( 2 a cos sin ) 2 5 6: m, 6: m. 6,,. 7 (9.3) jgj 3:4 10 ;2 ms ;2. 9:78 m s ;2, 9:83ms ;2. (, M.L. Salby. Fundamentals of Atmospheric Physics. Academic Press, 1996,,,,, , O(10 2 )km. O(10)km., 6400 km.

61 , (g ' g 0 =9:806ms ;2 ). (9.6), sin cos O(10 ;1 ), 2 a=g 1, 2 a sin(2)=(2g ).. (Taylor.) 9.4,.,,. ( ),, g = ; a2 (a + z) 2 g 0 e r (9.7). ( ),, Coriolis. Euler (9.2) v t + v v t + v v r t + v 1 v r cos + v 1 v r cos + v 1 v r r cos + v 1 v r + v v r v v r + r r ; v v tan r {z } 1 ; 2 sin v +2 cos v {z } r = ; 1 y1 1 v r + v v r + 2 sin v = ; 1 1 v r r + v v r r v rv r + r 1 r r ; v2 1 r cos + v2 tan r {z } 2 p + K (9.8) p + K (9.9) + v2 {z r } 3 ;2 cos v {z } y2 = ; 1 p r ; g + K r (9.10). K =(K K K r ) K K. *, r,

62 62 9 (4) (curvature term) ,.,,. 0, 0. 10, (9.8) (9.10). 1.,,, x y z, x y z u v w.,, x = r cos( 0 )( ; 0 ) y = r( ; 0 ) z = r ; a (9.11) x = 1 r cos y = 1 r z = r (9.12) u = v v = v w = v r (9.13).,. 2.,, (9.8) (9.10) 1=r, 1=a., y1. z (, r ),., y1,, y2.,, Coriolis. y1 y2, y1 y2, Coriolis. 3., 11 (9.8) (9.10) (* ). 4. Coriolis 2 sin, Coriolis, f., 0 9 (9.8) (9.10),,. 10,. 11

63 , f 0 Taylor y 1. f = 2 sin ' 2 sin( 0 + y=a) ' f 0 + y (9.14) f 0 2 sin 0 (9.15) 2 cos 0 : (9.16) a, =0, f. 12,,., f = f k. u t + u u x + v u y + w u z ; p fv= ;1 x + K x (9.17) v t + u v x + v v y + w v p z + fu= ;1 y + K y (9.18) w t + u w x + v w y + w w p z = ;1 z + K z ; g (9.19) v t + v rv + f v = ;1 rp + g + K (9.20),, Coriolis (9.20).,, Coriolis (y ), (9.20) Coriolis f (9.14) (9.16). 2 4,,,.,,,.,,., 12 f 2 f = f 0 + y; 1 2 y2 2 sin 0 = a 2, [Yang, H., Wave Packets and Their Bifurcations in Geophysical Fluid Dynamics, Springer, 1990, 247pp.]

64 64 9 (4) L 1000 km = 10 6 m H 10 km = 10 4 m U 10 m s ;1 W 10 ;2 ms ;1 T 1day 10 5 s P 10 3 Pa 1kgm ;3 9.2:.,.,,,.,,.,,. 9.2,, (9.8) Coriolis 2 sin v, 2 cos v r. (9.9) Coriolis,.

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

A 99% MS-Free Presentation

A 99% MS-Free Presentation A 99% MS-Free Presentation 2 Galactic Dynamics (Binney & Tremaine 1987, 2008) Dynamics of Galaxies (Bertin 2000) Dynamical Evolution of Globular Clusters (Spitzer 1987) The Gravitational Million-Body Problem

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

A

A A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O : 2014 4 10 1 2 2 3 2.1...................................... 3 2.2....................................... 4 2.3....................................... 4 2.4................................ 5 2.5 Free-Body

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 : 2016 4 1 1 2 1.1......................................... 2 1.2................................... 2 2 2 2.1........................................ 2 2.2......................................... 3 2.3.........................................

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

difgeo1.dvi

difgeo1.dvi 1 http://matlab0.hwe.oita-u.ac.jp/ matsuo/difgeo.pdf ver.1 8//001 1 1.1 a A. O 1 e 1 ; e ; e e 1 ; e ; e x 1 ;x ;x e 1 ; e ; e X x x x 1 ;x ;x X (x 1 ;x ;x ) 1 1 x x X e e 1 O e x x 1 x x = x 1 e 1 + x

More information

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J 26 1 22 10 1 2 3 4 5 6 30.0 cm 1.59 kg 110kPa, 42.1 C, 18.0m/s 107kPa c p =1.02kJ/kgK 278J/kgK 30.0 C, 250kPa (c p = 1.02kJ/kgK, R = 287J/kgK) 18.0 C m/s 16.9 C 320kPa 270 m/s C c p = 1.02kJ/kgK, R = 292J/kgK

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

Korteweg-de Vries

Korteweg-de Vries Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c 29 2 1 2.1 2.1.1.,., 5.,. 2.1.1,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c v., V = (u, w), = ( / x, / z). 30 2.1.1: 31., U p(z),

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

4 14 4 14 4 1 1 4 1.1................................................ 4 1............................................. 4 1.3................................................ 5 1.4 1............................................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information