IBM-Mode1 Q: A: cash money It is fine today 2

Size: px
Start display at page:

Download "IBM-Mode1 Q: A: cash money It is fine today 2"

Transcription

1 8. IBM 1

2 IBM-Mode1 Q: A: cash money It is fine today 2

3 e f a P (f, a e) â : â = arg max a P (f, a e) â P (f, a e) 3

4 θ P (f e, θ) θ f d = { f, e } L(θ d) = log f,e d P (f e, θ) θ f ˆθ = arg max θ L(θ d) ˆθ 4

5 ( ) 5

6 IBM model-1 P (f, a e) = P (m e) m P (a j a j 1 1, f1 j 1, m, e) j=1 P (f j a j 1, f j 1 1, m, e) (1) P (m e) = ( ) m = ɛ P (a j a j 1 1, f j 1 1, m, e) = j a j = = 1 l + 1 P (f j a j 1, f1 j 1, m, e) = j f j = f j e aj = t(f j e aj ) P (f, a e) = ɛ (l + 1) m m j=1 t(f j e aj ) (2) 6

7 a P (f e) = a = a = = P (f, a e) ɛ m (l + 1) t(f j e m aj ) j=1 ɛ m (l + 1) t(f j e m aj ) a j=1 ɛ (l + 1) m a 1 =0 a m =0 m j=1 t(f j e aj ) (3) a = a 1...a m a j f j e aj e = e 1...e l e 0 = NULL 0 a j l 1 j m 7

8 3 t(f e) max P (f e) t( ) e f t(f e) = 1 e f 1 8

9 3 h(t, λ) = ɛ (l + 1) m t(f j e m aj ) a 1 =0 a m =0 j=1 λ e( t(f e) 1) (4) e f 2 λ e h = ( t(f e) 1) = 0 (5) λ e f λ e 0 t(f e) 4 2 t(f e) λ e( t(f e) 1) = λ e (6) e f 4 1 m j=1 t(f j e aj ) 9

10 m t(f e) t(f j e aj ) j=1 = = 1 k m f k f e ak e 1 k m f k f e ak e = n(e, f)t(f e) 1 t(f k e ak ) t(f k e ak ) = n(e, f)t(f e) 1 m t(f e) t(f e)m j=1 δ(f,f j )δ(e,e aj ) n(e, f)t(f e) n(e,f) 1 1 k m f k f e ak e 1 k m t(f k e ak ) t(f e) n(e,f) t(f k e ak ) (7) n(e, f) = δ(f, f j)δ(e, e aj ) j=1 = f j a j 1 t(f e) 2 t(f e) 3,4 t(f e) 1 1 k m t(f k e ak ) 10

11 h(t, λ) t(f e) ɛ = (l + 1) m m δ(f, f j)δ(e, e aj ) t(f e) 1 a 1 =0 a m =0 j=1 t(f k e ak ) λ e (8) 1 k m 0 t(f e) = λ 1 e l a 1 =0 ɛ (l + 1) m a m =0 m j=1 δ(f, f j)δ(e, e aj ) 1 k m t(f k e ak ) λ e 4 f t(f e) = 1 t(f e) = λe 1 A(f e) λ e = f A(f e) f t(f e) = 1 λ e (9) 11

12 9 t(f e) t(f e) t( ) EM t( ) 1. t( ) 2. 9 t( ) 3. 2 t(e f) 9 12

13 9 t(f e) = λ 1 ɛ e (l + 1) m l a 1 =0 a m =0 3 P (f e) = a P (f, a e) = ɛ m j=1 δ(f, f j)δ(e, e aj ) (l + 1) m a 1 =0 a m =0 1 k m m t(f k e ak ) j=1 t(f j e aj ) t(f e) = λ 1 e P (f, a e) m δ(f, f j)δ(e, e aj ) (10) a j=1 C(f e; f, e) = a P (a f, e) m j=1 δ(f, f j)δ(e, e aj ) (11) m j=1 δ(f, f j )δ(e, e aj ) a f e P (a f, e) a C(f e; f, e) f e t(f e) f e C(f e, f, e) 13

14 t(f e) = λ 1 e P (f, a e) m δ(f, f j)δ(e, e aj ) a j=1 = λ 1 e a P (f e)p (a f, e) m j=1 δ(f, f j)δ(e, e aj ) = λ 1 e P (f e) P (a f, e) m δ(f, f j)δ(e, e aj ) a j=1 = λ 1 e P (f e)c(f e; f, e) = λ e 1 C(f e; f, e) (12) λ e = λ e P (f e) 1 λ e = f C(f e; f, e) f t(f e) = 1 e f s e (s) f (s) t(f e) = λ 1 e C(f e; f (s), e (s) ) s 14

15 t(f e) = λ 1 e, e (s) ) s (13) λ e =, e (s) ) f s (14) C(f e; f, e) = a P (a f, e) m j=1 δ(f, f j)δ(e, e aj ) (15) 1. f e t(f e) 2. s C(f e; f (s), e (s) ) 3. e λ e 4. f t(f e) 5. goto 2 or exit 15

16 C(f e; f, e) = P (a f, e) m δ(f, f j)δ(e, e aj ) a j=1 = λ e P (f e) 1 t(f e) ( 12 ) (16) 4 h(t, λ) = ɛ (l + 1) m t(f j e m aj ) a 1 =0 a m =0 j=1 λ e( t(f e) 1) e f (l + 1) m m 16

17 a 1 =0 a m =0 m j=1 t(f j e aj ) = m j=1 i=0 t(f j e i ) (l + 1) m m m(l + 1) m = 3,l = 1 t(f j e i ) = t ji = 1 t(f j e aj ) a 1 =0 a 2 =0 a 3 =0 j=1 = t 10 t 20 t 30 + t 11 t 20 t t 11 t 21 t 30 + t 11 t 21 t 31 1 = 3 t(f j e i ) j=1 i=0 = (t 10 + t 11 )(t 20 + t 21 )(t 30 + t 31 ) 17

18 4 ɛ m h(t, λ) = (l + 1) t(f j e m i ) λ e( j=1 i=0 e f 2 t(f e) λ e t(f e) 1) n f = m δ(f, f j) = (f = f j ) f j j=1 n e = l m j=1 = = i=0 t(f j e i ) 1 j m f j f 1 j m f j f δ(e, e i) = (e = e i ) e i i=0 i=0 t(f j e i ) i=0 t(f j e i ) 2 t(f e) = n f n e = n f n e = 0 i l e i e 0 i l n f n e 0 i l t(f e i ) i=0 t(f e i) 0 i l e i e n f t(f e i ) + n e t(f e) t(f e i ) + n e t(f e) t(f e i ) 0 i l 18 n f 1 n f 1 n f (17) f t(f e i ) n (18)

19 t(f e) m j=1 i=0 t(f j e i ) = n f n e 0 i l t(f e i ) m j=1 i=0 t(f j e i ) (19) h(t, λ) t(f e) n f n e ɛ m = l i=0 t(f e i )(l + 1) t(f j e m i ) λ e j=1 i=0 n f n e = l i=0 t(f e i ) P (f e) λ e (20) h(t,λ) t(f e) = 0 λ e P (f e) 1 = n f n e l i=0 t(f e i ) 16 C(f e; f, e) = λ e P (f e) 1 t(f e) t(f e) = l i=0 t(f e i ) n fn e (21) t(f e) l i=0 t(f e i ) f e n f n e 19

20 C(f e; f, e) = t(f e) l i=0 t(f e i ) n fn e (22) λ e =, e (s) ) f s (23) t(f e) = λ 1 e, e (s) ) s (24) t( ) 1. t(f e) 2. s C(f e; f (s), e (s) ) 3. e λ e 4. f t(f e) 5. goto 2 or exit. Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. (1993) The Mathematics of Statistical Machine Translation: Parameter Estimation. 20

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

2

2 2 6 7 9 4 6 7 2 3 4 5 6 7 8-0 - G G G G G G f f 9 e f - e f 0 5 e fe e c c cc B FD F 5 2 5 D F C e e e b 3 f f 5 ff ff f f f f b b bb b b b c c c ee ee e ee ee e f f 4 e e 7 5 5 e bb 6 7 f GE 8 f 9 5 F

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

(1)2004年度 日本地理

(1)2004年度 日本地理 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12-5.0-5.1-1.4 4.2 8.6 12.4 16.9 19.5 16.6 10.8 3.3-2.0 6.6 16.6 16.6 18.6 21.3 23.8 26.6 28.5 28.2 27.2 24.9 21.7 18.4 22.7 5 1 2 3 4 5 6 7 8 9 10 11 12 2.2 3.5 7.7 11.1

More information

(1) 2000 ( ) ( ) 1000 2000 1000 0 http://www.spacepark.city.koriyama.fukushima.jp/ http://www.miraikan.jst.go.jp/ http://www.nasda.go.jp/ 3000 1 1 http://www.city.nara.nara.jp/citizen/jyugsidu/jgy/jsj/

More information

EP7000取扱説明書

EP7000取扱説明書 EP7000 S0109-3012 3 47 811 1213 1419 2021 53 54 5560 61 6263 66 2223 2427 2830 3133 3436 3740 4142 4344 45 46 4750 5152 2 4 5 6 7 1 3 4 5 6 7 8 9 15 16 17 18 13 EP7000 2 10 11 12 13 14 19 20 21 22 23 24

More information

301-A2.pdf

301-A2.pdf 301 21 1 (1),, (3), (4) 2 (1),, (3), (4), (5), (6), 3,?,?,??,?? 4 (1)!?, , 6 5 2 5 6 1205 22 1 (1) 60 (3) (4) (5) 2 (1) (3) (4) 3 (1) (3) (4) (5) (6) 4 (1) 5 (1) 6 331 331 7 A B A B A B A 23 1 2 (1) (3)

More information

No. 1261 2003. 4. 9 14 14 14 14 15 30 21 19 150 35 464 37 38 40 20 970 90 80 90 181130 a 151731 48 11 151731 42 44 47 63 12 a 151731 47 10 11 16 2001 11000 11 2002 10 151731 46 5810 2795195261998 151731

More information

r

r 73 29 2008 200 4 416 2008 20 042 0932 10 1977 200 1 2 3 4 5 7 8 9 11 12 14 15 16 17 18 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 200r 11 1 1 1 1 700200 200

More information

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ .3.2 3.3.2 Spherical Coorinates.5: Laplace 2 V = r 2 r 2 x = r cos φ sin θ, y = r sin φ sin θ, z = r cos θ.93 r 2 sin θ sin θ θ θ r 2 sin 2 θ 2 V =.94 2.94 z V φ Laplace r 2 r 2 r 2 sin θ.96.95 V r 2 R

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

<4D F736F F D2095BD90AC E E838B8C6E8EBE8AB382CC93AE8CFC82C98AD682B782E9838A837C815B83675F2E646F6378>

<4D F736F F D2095BD90AC E E838B8C6E8EBE8AB382CC93AE8CFC82C98AD682B782E9838A837C815B83675F2E646F6378> 29 4 IT 1,234 1,447 1 2 3 F20-F29 F20,F21,F22 F23,F24,F25, F28F29 F30-F39 F30,F31,F32 F33,F34,F38 F39 F40-F48 F40,F41,F42 F43,F44,F45 F48 1,234 14,472,130 75,784,748 9,748,194 47,735,762 4,723,984 28,048,986

More information

untitled

untitled -- -- -3- % % % 6% % % 9 66 95 96 35 9 6 6 9 9 5 77 6 6 5 3 9 5 9 9 55 6 5 9 5 59 () 3 5 6 7 5 7 5 5 6 6 7 77 69 39 3 6 3 7 % % % 6% % % (: ) 6 65 79 7 3 36 33 9 9 5 6 7 3 5 3 -- 3 5 6 76 7 77 3 9 6 5

More information

untitled

untitled NO. 2007 10 10 34 10 10 0570-058-669 http://www.i-nouryoku.com/index.html (40 ) () 1 NO. 2007 10 10 2.2 2.2 130 70 20 80 30 () () 9 10 () 78 8 9 () 2 NO. 2007 10 10 4 7 3 NO. 2007 10 10 40 20 50 2 4 NO.

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

lecture

lecture 5 3 3. 9. 4. x, x. 4, f(x, ) :=x x + =4,x,.. 4 (, 3) (, 5) (3, 5), (4, 9) 95 9 (g) 4 6 8 (cm).9 3.8 6. 8. 9.9 Phsics 85 8 75 7 65 7 75 8 85 9 95 Mathematics = ax + b 6 3 (, 3) 3 ( a + b). f(a, b) ={3 (a

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

untitled

untitled 186 17 100160250 1 10.1 55 2 18.5 6.9 100 38 17 3.2 17 8.4 45 3.9 53 1.6 22 7.3 100 2.3 31 3.4 47 OR OR 3 1.20.76 63.4 2.16 4 38,937101,118 17 17 17 5 1,765 1,424 854 794 108 839 628 173 389 339 57 6 18613

More information

untitled

untitled 1. 3 14 2. 1 12 9 7.1 3. 5 10 17 8 5500 4. 6 11 5. 1 12 101977 1 21 45.31982.9.4 79.71996 / 1997 89.21983 41.01902 6. 7 5 10 2004 30 16.8 37.5 3.3 2004 10.0 7.5 37.0 2004 8. 2 7 9. 6 11 46 37 25 55 10.

More information

ct_root.dvi

ct_root.dvi 7 1 1 3 ( ) (i) ( ) (ii) ( ) (iii) 1.1 2 1.2 1.3 1.4 1.3 1.4 1.1 1.1.1 ( ) ( ) 1) 1 x x X R X =[0, x] x b(x) b( ) 2 b(0) = 0 x 0 b (0) = + b (x) =0 x 0 b (x) < 0 x 2 ( ) Θ Θ ={θ 0,θ 1 } 0

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

第3章

第3章 5 5.. Maxwell Maxwell-Ampere E H D P J D roth = J+ = J+ E+ P ( ε P = σe+ εe + (5. ( NL P= ε χe+ P NL, J = σe (5. Faraday rot = µ H E (5. (5. (5. ( E ( roth rot rot = µ NL µσ E µε µ P E (5.4 = ( = grad

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Excel97関数編

Excel97関数編 Excel97 SUM Microsoft Excel 97... 1... 1... 1... 2... 3... 3... 4... 5... 6... 6... 7 SUM... 8... 11 Microsoft Excel 97 AVERAGE MIN MAX SUM IF 2 RANK TODAY ROUND COUNT INT VLOOKUP 1/15 Excel A B C A B

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

B B 10 7 581 10 8 582 10 9 583 B B 10 11 585 10 12 586 B 10 10 584 B

B B 10 7 581 10 8 582 10 9 583 B B 10 11 585 10 12 586 B 10 10 584 B 10 1 575 10 12 586 B B 10 1 575 10 2 576 B B 10 4 578 10 5 579 10 3 577 B 10 6 580 B B B 10 7 581 10 8 582 10 9 583 B B 10 11 585 10 12 586 B 10 10 584 B 11 1 587 11 12 598 B B 11 1 587 11 2 588 11 3 589

More information

(資料2)第7回資料その1(ヒアリング概要)

(資料2)第7回資料その1(ヒアリング概要) 2 3 4 5 6 7 8 9 10 11 12 13 1 1 1 1 5 1 6 533 4 505 722 13 3325 475 1 2 3 13 10 31 1 1 1 (1) 1 (2) 2 (3) 3 (4) 4 5 5 6 7 8 8 8 9 11 11 12 13 14 15 16 19 (1) (2) (3) (1) (5 ) 1 (10 ) ( ) (2) 2 4 (3) 3 3,100

More information

IT 180 181 1) 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 (a) (b) (c) (d) (e) (f) (a) (a) (b) 214 215 216 (a) (a) (a)

More information

-------------------------- ----------------------------------------------------- -------------------------------------------------------------- ----------------------------------------------------- --------------------------------------------------------------

More information

<4D F736F F D DEC8BC A95BD90AC E A982BA81698AB A B B4790DF90AB8EBE8AB FC89408A4F816A82CC93AE8CFC82C98AD682B782E9838C837C815B D

<4D F736F F D DEC8BC A95BD90AC E A982BA81698AB A B B4790DF90AB8EBE8AB FC89408A4F816A82CC93AE8CFC82C98AD682B782E9838C837C815B D 27 29 2 IT 1,234 1,447 2,130 1,200 3,043 4 3 75 75 70-74 -10 J00 J101 J110 J111 J118 J300 J302-304 J301 26,475,118 155,290,311 1,234 14,472,130 75,784,748 12,003,043 79,505,563 1 1.00% 0.62% 1.31% 9 12

More information

, , ,210 9, ,

, , ,210 9, , 2006 5 642 7 2,671 35 732 1,727 602 489 386 74 373 533 305 1,210 9,786 2004 1,024 43.7 16.4 2004 978.6 40.2 2003 1 2006 5 1997 1998 1999 774 3,492 11 2,603 35 843 5,118 1,686 476 358 2000 738 3,534 11

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

建築設備学_07(熱負荷計算).ppt

建築設備学_07(熱負荷計算).ppt p. p. p.7 p. q w q w q GT q IT =q IS +q IL () () q HT = q HS + q HL q ET =q ES +q EL 1 () q s [W]C p ρ m /h Δt 1000/00 [W]0.4 m /h Δt q L [W]γ γ [m /h] Δx[g/kg(DA)] 1000/00 [W]4 [m /h] Δx[g/kg(DA)] C p

More information

? (EM),, EM? (, 2004/ 2002) von Mises-Fisher ( 2004) HMM (MacKay 1997) LDA (Blei et al. 2001) PCFG ( 2004)... Variational Bayesian methods for Natural

? (EM),, EM? (, 2004/ 2002) von Mises-Fisher ( 2004) HMM (MacKay 1997) LDA (Blei et al. 2001) PCFG ( 2004)... Variational Bayesian methods for Natural SLC Internal tutorial Daichi Mochihashi daichi.mochihashi@atr.jp ATR SLC 2005.6.21 (Tue) 13:15 15:00@Meeting Room 1 Variational Bayesian methods for Natural Language Processing p.1/30 ? (EM),, EM? (, 2004/

More information

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2005 1 1991 1996 5 i 1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2 13 *3 *4 200 1 14 2 250m :64.3km 457mm :76.4km 200 1 548mm 16 9 12 589 13 8 50m

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

Microsoft Word - 01_.doc

Microsoft Word - 01_.doc 287 293 295 296 297 298 299 300301 303 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 ÁÁÁ 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 () 1 (4757

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

21 1 1 1 2 2 5 7 9 11 13 13 14 18 18 20 28 28 29 31 31 34 35 35 36 37 37 38 39 40 56 66 74 89 99 - ------ ------ -------------- ---------------- 1 10 2-2 8 5 26 ( ) 15 3 4 19 62 2,000 26 26 5 3 30 1 13

More information

ITの経済分析に関する調査

ITの経済分析に関する調査 14 IT IT 1. 1 2. 12 3. 15 1. 19 2. 19 3. 27 1. 29 2. 31 3. 32 4. 33 5. 42 6. TFP GDP 46 1. 49 2. 50 3. 54 4. 55 5. 69 1. toc 81 2. tob 82 1 1 IT 1. 1.1. 1.2. 1 vintage model Perpetual inventory method

More information

5 IT 1,280 1, , ICD -10 <1> <2> <3> F20-F29 F20,F21,F22 F23,F24,F25, F28F29 F30-F39 F30,F31,F32 F33,F34,F38 F39 F40-F48 F40,F41,F42 F43,F

5 IT 1,280 1, , ICD -10 <1> <2> <3> F20-F29 F20,F21,F22 F23,F24,F25, F28F29 F30-F39 F30,F31,F32 F33,F34,F38 F39 F40-F48 F40,F41,F42 F43,F 5 IT 1,280 1,568 1 3,862 2 3 ICD -10 F20-F29 F20,F21,F22 F23,F24,F25, F28F29 F30-F39 F30,F31,F32 F33,F34,F38 F39 F40-F48 F40,F41,F42 F43,F44,F45 F48 15,680,980 138,623,755 1,280 10,284,893

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

No ( FAX ) (

No ( FAX ) ( 13-1 03-3862-9111 ( FAX03-3862- ) 9140 13-2 03-3219-8080 13-3 03-3293-1711 250 13-4 03-3292-2051 1-8 8111 13-5 8 11 28 ( 8 111 03-3261-5511 2 18 41 9 91 15 41 15 41 47 13-6 47 9 4 4 03-5343-5611 F 47 47

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

Vol.58 No (Sep. 2017) 1 2,a) 3 1,b) , A EM A Latent Class Model to Analyze the Relationship Between Companies Appeal Poi

Vol.58 No (Sep. 2017) 1 2,a) 3 1,b) , A EM A Latent Class Model to Analyze the Relationship Between Companies Appeal Poi 1 2,a) 3 1,b) 2017 1 17, 2017 6 6 A EM A Latent Class Model to Analyze the Relationship Between Companies Appeal Points and Students Reasons for Application Teppei Sakamoto 1 Haruka Yamashita 2,a) Tairiku

More information

Cisco SMARTnet & SAS/ SASU CA J a n u a r y 3 1, V e r s i o n S M A R T n e t S A S / S A S U C i s c o S y s t e m s, I n c.

Cisco SMARTnet & SAS/ SASU CA J a n u a r y 3 1, V e r s i o n S M A R T n e t S A S / S A S U C i s c o S y s t e m s, I n c. Cisco SMARTnet & SAS/ SASU CA J a n u a r y 3 1, 2 0 0 8 V e r s i o n 1. 0 2 S M A R T n e t S A S / S A S U 2 0 0 6 C i s c o S y s t e m s, I n c. A l l r i g h t s r e s e r v e d. C i s c o P u b

More information

a a b a b c d e R c d e A a b e a b a b c d a b c d e f a M a b f d a M b a b a M b a M b M M M R M a M b M c a M a R b A a b b a CF a b c a b a M b a b M a M b c a A b a b M b a A b a M b C a M C a M

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

10 1 1 (1) (2) (3) 3 3 1 3 1 3 (4) 2 32 2 (1) 1 1

10 1 1 (1) (2) (3) 3 3 1 3 1 3 (4) 2 32 2 (1) 1 1 10 10 1 1 (1) (2) (3) 3 3 1 3 1 3 (4) 2 32 2 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (2) 1 (3) JI S JI S JI S JI S 25 175 J AS 3 (1) 3 70 (2) (3) 100 4 (1)69 (2) (3) (4) (5) (6) (7) (8)70 (9) (10)2 (11)

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

dvi

dvi 2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

第3章 非線形計画法の基礎

第3章 非線形計画法の基礎 3 February 25, 2009 1 Armijo Wolfe Newton 2 Newton Lagrange Newton 2 SQP 2 1 2.1 ( ) S R n (n N) f (x) : R n x f R x S f (x ) = min x S R n f (x) (nonlinear programming) x 0 S k = 0, 1, 2, h k R n ɛ k

More information

. p.1/34

. p.1/34 . p.1/34 (Optimization) (Mathematical Programming),,. p.2/34 1 1.1 1.2 1.3 2 2.1 2.2 2.3 2.4 2.5 3 4 5. p.3/34 1 1.1 1.2 1.3 2 2.1 2.2 2.3 2.4 2.5 3 4 5. p.4/34 4x + 2y 6, 2x + y 6, x 0, y 0 x, yx + yx,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

離散最適化基礎論 第 11回 組合せ最適化と半正定値計画法

離散最適化基礎論 第 11回  組合せ最適化と半正定値計画法 11 okamotoy@uec.ac.jp 2019 1 25 2019 1 25 10:59 ( ) (11) 2019 1 25 1 / 38 1 (10/5) 2 (1) (10/12) 3 (2) (10/19) 4 (3) (10/26) (11/2) 5 (1) (11/9) 6 (11/16) 7 (11/23) (11/30) (12/7) ( ) (11) 2019 1 25 2

More information

BLEU Kishore Papineni, Salim Roukos, Todd Ward and Wei-Jing Zhu. (2002) BLEU: a method for Automatic Evaluation of Machine Translation. ACL. MT ( ) MT

BLEU Kishore Papineni, Salim Roukos, Todd Ward and Wei-Jing Zhu. (2002) BLEU: a method for Automatic Evaluation of Machine Translation. ACL. MT ( ) MT 4. BLEU @NICT mutiyama@nict.go.jp 1 BLEU Kishore Papineni, Salim Roukos, Todd Ward and Wei-Jing Zhu. (2002) BLEU: a method for Automatic Evaluation of Machine Translation. ACL. MT ( ) MT ( ) BLEU 2 BLEU

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information