MEMS INS/GPS 2004/11

Size: px
Start display at page:

Download "MEMS INS/GPS 2004/11"

Transcription

1 MEMS INS/GPS 4/11

2 INS/GPS Kalman Filter Kalman Filter Kalman Filter UD Kalman Filter System Design INS/GPS i

3 A Quaternion Algebra 44 A.1 Quaternion A. Quaternion A.3 Quaternion A.4 Quaternion A.5 Quaternion A.6 Quaternion A.7 Quaternion A.8 Quaternion A.9 Quaternion Direction Cosine Matrix B Coordinate Systems 51 B.1 Earth-Centered Inertial Frame i-frame B. Earth-Centered, Earth-Fixed Frame e-frame B.3 Local Geodetic Frame g-frame B.4 Navigation Frame Wander Azimuth Frame n-frame B.5 Body Frame b-frame B B.7 i-frame e-frame B.8 e-frame g-frame B.9 g-frame n-frame B.1 e-frame n-frame B.11 n-frame b-frame C Earth ModelWGS C C C C.4 WGS D Allan Variance 63 D.1 Allan Variance E 64 F 65 F F ii

4 F iii

5 Update Correct ADXRS15 Allan Variance Allan Variance Allan Variance B.1 e-frame g-frame B. g-frame n-frame B.3 n-frame b-frame C iv

6 A B C.1 WGS v

7 1 1.1 Unmanned Aero Vehicle UAV UAV g cm UAV R/C Radio Contorl UAV UAV 1 Inertial Navigation System INS kg UAV UAV UAV UAV 1

8 INS INS GPS DGPS GPS GPS GPS GPS m cm 1Hz 1Hz Hz Hz Hz 1. Inatial Navigation System INS Inatial Navigation System INS INS INS INS

9 INS INS INS INS.1 /hr Ring Laser GyroRLG RLG / Micro Electro Mechanical SystemsMEMS 1 RLG. GPS Global Positioning SystemGPS GPS GPS GPS m Hz 3

10 GPS DGPS GPS DGPS Differntial GPSDGPS cm GPS GPS 3. UAV 1.. UAV m m UAV 1m 1g W 1 D 1 H 1 cm 3 1 4

11 INS MEMS INS MEMS GPS INS GPS GPS 1.3 INS/GPS UAV INS GPS Kalman Filter INS/GPS Kalman Filter INS GPS Kalman Filter Loose Coupling INS GPS INS Loose Coupling GPS Tight Coupling INS GPS Tight Coupling Loose Coupling GPS GPS Loose Coupling

12 Kalman Filter INS/GPS INS GPS Kalman Filter Kalman Filter Kalman Filter.1 x z x z z = Hx + v.1.1 v R E[v] =, E [ vv T] = R.1. x z J LS J LS = z Hx T z Hx.1.3 x J LS x J LS = z T z z T Hx x T H T z + x T H T Hx.1.4 = T z T H H T z T + H T Hx T + x T H T H = z T H x T H T H.1.5 6

13 x J LS x = H T H.1.6 J LS x J LS x = x J LS x ˆx.1.5 z T H = ˆx T H T H.1.7 H T H ˆx = H T H 1 H T z.1.8 ˆx 1. ε ε x ˆx = x H T H 1 H T z = x H T H 1 H T Hx + v.1.9 = H T H 1 H T v. ν ν z ẑ = H x ˆx + v = Hε + v = I H H T H 1 H T v P [ E[ε] = E HH T ] 1 H T v = HH T 1 H T E[v] = P E [ εε T] = E [x ˆxx ˆx T] H = E[ T H 1 H H v T T H ] 1 T H T v = H T H 1 H T E [ vv T] H H T H 1 T = H T H 1 H H T RH T H 1 T

14 ..1.1 x z J WLS W W T = W J WLS = z Hx T W z Hx..1 x J LWS = z T Wz x T H T Wz x T WHx + x T H T WHx.. J x = zt WH z T WH + x T H T WH + x T H T WH = z T WH x T H T WH..3 J WLS x ˆx z T WH = ˆx T H T WH..4 ˆx = H T WH 1 H T Wz..5 W R 1 1. ε ε x ˆx = x H T R 1 H 1 H T R 1 z = x H T R 1 H 1 H T R 1 Hx + v..6 = H T R 1 H 1 H T R 1 v. P [ H P E T R 1 H 1 H H T R v 1 T R 1 H ] 1 T H T R 1 v [ H = E T R 1 H 1 H T R 1 v v T R 1 H H T R 1 H ] 1 = H T R 1 H 1 H T R 1 E [ vv T] R 1 H H T R 1 H 1 = H T R 1 H 1 H T R 1 RR 1 H H T R 1 H 1 = H T R 1 H 1 H T R 1 H H T R 1 H 1 = H T R 1 H

15 z 1 h 11 h 1... h 1n x 1 v 1 z.. = h 1 h... h n x v. z m h m1 h m... h mn x m v m.3.1 ˆx m..5 W R 1 P m..7 ˆx m = H T R 1 H 1 H T R 1 z.3. P m = H T R 1 H P m ˆx m ˆx m = P m H T R 1 z.3.4 z m+1 z = z m+1 [ H h T ] v x + v m ˆx m+1 ˆx m ˆx m+1 = ˆx m + x.3.6 ˆx m+1..1 J RWLS z J RWLS = z m+1 T [ ] H R 1 z h T x m+1 T r 1 z m+1 H x h T m [ ] R 1 T r 1..5 ˆx m+1 ˆx m+1 = H h T T [ R 1 T r 1 ] H h T 1 T [ ] H R 1 z h T T r 1 z m+1 = H T R 1 H + hr 1 h T 1 H T R 1 z + hr 1 z m

16 ..7 P m+1 P m+1 = H h T T [ R 1 ] 1 H T r 1 h T = H T R 1 H + hr 1 h T 1 = P m + hr 1 h T = P m P m h h T P m h + r 1 h T P m A 1 = B 1 +C T D 1 C D +CBC T 1 A = B BC T D +CBC T 1 CB.3.1 k m P m h h T P m h + r k m P m+1 = I k m h T P m ˆx m+1 = P m+1 H T R 1 z + hr 1 z m+1 = I k m h T P m H T R 1 z + hr 1 z m+1 = I k m h T ˆx m + I k m h T P m hr 1 z m+1 = I k m h T ˆx m + I P m h h T P m h + r 1 h T k m h T P m h + r r 1 z m+1 = I k m h T h T P m h + r I P m hh T ˆx m + h T k m h T P m h + r r 1 z m+1 P m h + r h T P m h + r.3.13 = I k m h T ˆx m + rk m r 1 z m+1 = I k m h T ˆx m + k m z m+1 = ˆx m + k m zm+1 h Tˆx m.3.6 ˆx z m+1 z m+1 h H.4 Kalman Filter x x k+1 = Φ k+1,k x k + Γ k w k.4.1 1

17 w k ˆx x ˆx x ˆε k x ε k+1 E[ ε k+1 ] x k+1 Γ k+1,kˆx k.4. ˆε k = ˆx k x k.4.3 ε k+1 = ˆx k+1 x k+1 = Φ k+1,kˆx k Φ k+1,k x k + Γ k w k = Φ k+1,k ˆε k Γ k w k.4.4 E[ ε k+1 ] = E[ x k+1 x k+1 ] = Φ k+1,k E[ˆε k ] Γ k E[w k ] =.4.5 P k+1 P k+1 E[ ε k+1 ε T k+1 ] = E[ Φ k+1,k ˆε k Γ k w k Φk+1,k ˆε k Γ k w k T] = Φ k+1,k E[ˆε k ˆε T k ]ΦT k+1,k Γ ke[w k ˆε T k ]ΦT k+1,k.4.6 Φ k+1,k E[ˆε k w T k ]ΓT k + Γ ke[w k w T k ]ΓT k w k ˆε k 1 w E[w k ε T k ] = E[w k Φk,k 1 ˆε k 1 Γ k 1 w k 1 T] = E[w k ˆε T k 1 ]ΦT k,k 1 E[w k wt k 1 ]ΓT k = P k+1 P k+1 = Φ k+1,k ˆP k Φ T k+1,k + Γ kq k Γ T k.4.8 x k+1 z k+1 x k+1 ˆ x k+1 ˆx k+1 = x k+1 + K k+1 [ zk+1 H k+1 x k+1 ].4.9 K k+1 = P k+1 H T k+1 Hk+1 P k+1 H T k+1 + R k

18 ˆ x k+1 x k+1 ˆε k+1 ˆx k+1 = x k+1 + ˆε k x k+1 + ˆε k+1 = Φ k+1,k x k + ˆε k + K k+1 [ zk+1 H k+1 Φ k+1,k x k + ˆε k ] = Φ k+1,k x k + Φ k+1,k ˆε k + K k+1 [ Hk+1 xk+1 Φ k+1,k x k + vk+1 H k+1 Φ k+1,k ˆε k ] ˆP k+1 ˆε k+1 = [I K k+1 H k+1 ]Φ k+1,k ˆε k [I K k+1 H k+1 ]Γ k w k + K k+1 v k ˆP k+1 = E[ˆε k+1 ˆε T k+1 ] = [I K k+1 H k+1 ]Φ k+1,k ˆP k Φ T k+1,k [I K k+1h k+1 ] T.4.14 [I K k+1 H k+1 ]Γ k Q k Γ T k [I K k+1h k+1 ] T + K k+1 R k+1 K T k ˆP k+1 = [I K k+1 H k+1 ] P k+1 [I K k+1 H k+1 ] T + K k+1 R k+1 Kk+1 T ˆP = [I KH] P[I KH] T + KRK T = P KH P PH T K T + KH PH T K T + KRK T = P PH T HPH T + R 1 HP PH T 1 HP + PH T 1 HPH T 1 HP + PH T 1 R 1 HP = P PH T 1 HP PH T 1 HP + PH T 1 1 HP.4.16 = P PH T HPH T + R 1 HP = [I KH] P Kalman Filter update x k+1 = Φ k+1,k x k + Γ k w k.4.1 P k+1 = Φ k+1,k ˆP k Φ T k+1,k + Γ kq k Γ T k.4.8 correct ˆx k+1 = x k+1 + K k+1 [ zk+1 H k+1 x k+1 ].4.9 K k+1 = P k+1 H T k+1 Hk+1 P k+1 H T k+1 + R k ˆP k+1 = [I K k+1 H k+1 ] P k

19 .5 Kalman Filter Kalman Filter.4.1 d x ẋ = Ax + Bw.5.1 dt t x x x A t x + B t w.5. x + x = I + A tx + B t w Φ k+1,k = I + A t.5.4 Γ k = B t.5.5 Kalman Filter.6 UD Kalman Filter.4.1,.4.17,.4.9,.4.17 Kalman Filter Kalman Filter Filter.4.9 Kalman Gain K Filter Filter 1 P, Q, R UD Kalman Filter.6.1 UD 13

20 3 System Design INS/GPS INS/GPS Kalman Filter INS/GPS Quaternion q q q 1 q q 3 3 x x 1 x x 3 A b-frame B 3.1 INS e-frame i-frame r e r i e-frame i-frame Quaternion { { = q ei q r e ri e i Quaternion q = 1 { q 3.1. q = q = 1 { q = 1 { q

21 3.1.1 { r e e = d { q ei q dt ri e i { { { = q e i q e r i + q e i i r i q e i + q e i q e i r i i = 1 { { { qe i e/i i q e r i + q e i i r i q e i + 1 { { i qe i r i e/i i q e i { { = q e i r i q e i q e i i e/i i r q e i i { { = r i e q e i e/i i r q e i i r 1 1-Frame -Frame 3 1/ -Frame 1-Frame 3-Frame e/i { r e e = d { q e i dt r i i { = q e i = q e i { = { r e i r i i r i i { q e i q e i e/i i r q e i i { q e i q e i e/i i r i i q e i { { q e i q e i e/i i r i i q e i + q e i e/i i { + q e i q e i { q e i e/i i r i i {{ { { q e i e/i i r i i q e i q e i e/i i r i e/i i e/i i r q e i i {{ e-frame { { r e n = q n e r e e q e i e/i i e/i i r q e i i q n e { r e n = d { q n e dt r e q n e e { { = q n e r e q n e q n e e n/e e r e e q n e

22 3.1.5 { r n e = q n e { = { r n i r e i { { q e i e/i i r i i q e i + q e i { q ne { e/i e r i e { r e i = { e/i i e/i i r i { + e/i e e/i e r e r e e = { r e e + q e i { + q e i e n/e r e e q e i { q n e q n e n/e e q n e r e e q n e e/i i r i { e e/i r e { { e/i e r i e = e/i{ e r i e { = e/i[{ e { = e/i e r e e r e e { + + ] e/i e r e { e/i e e/i e r e { { { r e n = r i n q ne e/i e r e e { = { r n i q ne { + e/i e e/i e r e { e/i e r e e + { e/i e e/i e r e { + e n/e r e e q n e e/i e e/i e r e { + e n/e r e e q n e a b i-frame b-frame { { { a b = q b n r n q b n i g b {{ { { r i n = q n b a b = q n b { a b + { g b q n b q n b + { g n

23 n-frame { { d dt r e n r e n = q n b { a b { q n b + g n { q n e { { = q n b a b q n b + g n { e/i e e/i n { { = q n b a b q n b + g n { r n e r e e e/i n + n n/e { + { + { e/i e e/i e r + e n n/e r n e q ne { e n/e r e e q n e e/i e e/i e r q n e e { r e n q ne e/i e e/i e r q n e e e/i n { { e/i n = q n e e/i e q n e ω e/i Ω e/i e/i i = e e/i = Ω e/i n/e n { { n/e n = q n g g q n g n/e g n/e φ λ d dt φ v N φ = R meridian + h d dt λ λ = v E β = v E R normal + hcosφ R meridian R normal h v N v E WGS-84 C R meridian R normal R meridian = r e 1 ε 1 ε sin φ

24 r e R normal = 1 ε sin φ v N v E v D v N v E v D n/e { r g e { = q g n r n q g n 3.1. e g n/e east = φ g n/e down = n n/e down = λ sinφ e n/e z = λ { g n/e = g n/e east + q g e q g e g n/e down n/e e z e/i e e/i e r e 3.1 λ cosφ g n/e = φ = v E R normal v +h N R meridian +h e/i e e/i e r e = Ω e/i β cosλ sinλ = Ω e/i R normal + hcosφ cosλ sinλ B q n e e/i e e/i e r e = Ω e/i R normal + h qn e q n e + q n e 1 q n e 3 q n e 3 q n e q n e 1 q n e

25 Ze β re ϖe/i ϖe/i * ϖe/i * re λ φ Ye Xe φ λ h q n e h q n e Quaternion d dt qn e q n e = 1 { n/e e q n e = 1 { qe n n/e n q e n q n e { = 1 qn e n n/e n n/e h d dt h = v D ṙ n e Z q b n Quaternion d dt qb n q b n = 1 { b/n n q b n

26 n b/n = n b/i n n/i { = n b/i n e/i + n n/e n b/i { = q n b b/i b q n b e/i n n n/e b b/i i-frame b-frame b-frame q b n = 1 = 1 [ q n b { b b/i [ { q b n b b/i { q n b { n e/i n e/i { + { + n n/e n n/e ] q b n q b n ] INS/GPS INS GPS Kalman Filtering { d dt r e n = d { { dt r e n + r e n r e n [ { = q b n + q b { n a b + a b q b n + q n b + g n + g n { e/i n + n e/i + n/e n + n n/e r n e + r e n { ] q n e + q n e e/i e e/i e r q n e + r e e + q n e [ { { q b n a b q b n + g n { e/i n + n n/e r e n { q n e ] e/i e e/i e r q n e e 3..1

27 { { d dt r e n = q b n a b q b n + q b n { e/i n + n n/e r e n + { q n e e/i e e/i e r e { q n e e/i e e/i e r e { { { a b q b n + q b n a b q b n + g n e/i n + n n/e r e n q n e q n e q n e { e/i e e/i e r q n e e 3.. n e/i e/i { n e/i { { = q n e + q n e e/i i q n e + q n e q n e e/i i q n e 3..3 n/e n n n/e { n n/e = q n g { g n/e q n g v E = q n g R normal +h v N q n g q n g R meridian +h = 1 r e + h qn g q g n ṙn e Y ṙ e n X q g n q n g Z g Z n = 1 r e + h ṙn e Y ṙ e n X 1 r e +h v E v N n/e n = 1 ṙn e Y + ṙ n e Y ṙ n r e + h + h e X ṙe n X 1 ṙn e Y ṙ n r e + h e X = 1 ṙn e Y ṙ n r e + h e X 1 ṙn e Y r e + h ṙe n X h q n g

28 e/i e e/i e r e e/i e e/i e r e = Ω e/i R normal + h + h q + q q + q + q 1 + q 1 q 3 + q 3 q 3 + q 3 q + q q 1 + q 1 q + q Ω e/i R normal + h q q + q 1 q 3 q 3 q q 1 q q n e = Ω e/i q q + q 1 q 3 q 3 q q 1 q h q n e +R normal + h q q 3 q q 1 q 1 q q 3 q q n e q n e q n e d dt qn e = 1 { qn e + q n e n/e n + 1 { n n/e qn e n/e n = 1 { qn e + 1 { 3..7 qn e n n/e 3..3 n n/e d dt h = ṙn e Z + ṙ n e Z ṙ n e Z = ṙ n e Z d dt qb n = 1 [ { q b n + q b n = 1 1 [ q b n b/i b + b b/i { { e/i n + + n e/i n/e n + n n/e [ { { { ] q b n + q b n { b b/i b b/i { n e/i { + q b n { + n e/i b b/i n n/e n n/e ] q b n + q b n { { ] q b n e/i n + n/e n q b n 3..9

29 d dt x = A x + B w 3..1 x w A B ṙ n e X ṙe n Y ṙ n e Z q n e q n e 1 x = q n e q n e 3 h q b n q b n 1 q b n q b n 3 a b X a b Y a b Z w = ωb/i b X ω b b/i Y ωb/i b Z g

30 A = n e/i + n n/e n e/i + n n/e Y Z e/i n + n n/e e/i n + n n/e ṙ e n Z re+h n e/i + n n/e X ṙ e n Z re+h Z ṙn e X Y re+h e/i n + n n/e ṙn e Y X re+h q n e re+h qn e1 re+h q n e3 q n e re+h re+h qn e q n e3 re+h re+h qn e1 qn re+h e re+h 1 q b n1 re+h qb n re+h q b n3 re+h qb n re+h q b n q b n3 re+h re+h qb n1 re+h qb n re+h 4Ω e/i q n e1ṙ ez n q n eṙ ey n 4Ω e/i q n eṙ ez n + q n e1ṙ ey n 4Ω e/i q n e3ṙ ez n + q n eṙ ey n 4Ω e/i q n eṙ ez n q n e3ṙ ey n 4Ω e/i q n eṙ ex n + q n eṙ ez n 4Ω e/i q n e1ṙ ex n q n e3ṙ ez n 4Ω e/i q n eṙ ex n + q n eṙ ez n 4Ω e/i q n e3ṙ ex n q n e1ṙ ez n 4Ω e/i q n eṙ ey n q n e1ṙ ex n 4Ω e/i q n e3ṙ ey n q n eṙ ex n 4Ω e/i q n eṙ ey n q n e3ṙ ex n 4Ω e/i q n e1ṙ ey n q n eṙ ex n / ω n/e e / X / ω e n/e Y / / ω e n/e Z / ω n/e e X / / ω e n/e Z ω e n/e Y / ω n/e e Y / ω e n/e Z / / ω e n/e X ω n/e e Z ω e n/e Y ω e n/e X { Ω e/i q b n 1q n e q b nq n e1 q b n3q n { e Ω e/i q b n 1q n e3 q b nq n e + q b n3q n { e1 Ω e/i q b n 1q n e q b nq n e3 + q b n3q n { e Ω e/i q b { n 1q n e1 q b nq n e q b n3q n e3 Ω e/i q b n q n e + q b n3q n e1 q b nq n { e Ω e/i q b n q n e3 + q b n3q n e + q b nq n { e1 Ω e/i q b n q n e + q b n3q n e3 + q b nq n { e Ωe/i +q b { n q n e1 + q b n3q n e q b nq n e3 Ω e/i q b n 3q n e + q b nq n e1 + q b n1q n { e Ω e/i q b n 3q n e3 + q b nq n e q b n1q n { e1 Ω e/i q b n 3q n e + q b nq n e3 q b n1q n { e Ω e/i q b { n 3q n e1 + q b nq n e + q b n1q n e3 Ω e/i q b n q n e q b n1q n e1 + q b nq n { e Ω e/i q b n q n e3 q b n1q n e q b nq n { e1 Ω e/i q b n q n e q b n1q n e3 q b nq n { e Ω e/i q b n q n e1 q b n1q n e + q b nq n e3 4 { a b Xq b n1 + a b Y q b n + a b Zq b n3 { a b Xq b n + a b Y q b n1 + a b Zq b n { a b Xq b n3 a b Y q b n + a b Zq b n1 ṙn e X ṙ e n Z { a b Xq b re+h n a b Y q b n3 + a b Zq b n { a b Xq b n a b Y q b n3 + a b Zq b n { a b Xq b re+h n3 + a b Y q b n a b Zq b n1 { a b Xq b n a b Y q b n1 a b Zq b n { a b Xq b n1 + a b Y q b n + a b Zq b n3 ṙ e n X +ṙn e Y { a b Xq b re+h n + a b Y q b n1 + a b Zq b { n a b Xq b n3 + a b Y q b n a b Zq b { n1 a b Xq b n + a b Y q b n3 a b Zq b n ṙn e Y ṙ n e Z { a b Xq b n1 + a b Y q b n + a b Zq b n3 q n eṙ n e X +q n e1ṙ n e Y re+h q n e3ṙ n e X q n eṙ n e Y re+h q n eṙ n e X q n e3ṙ n e Y re+h q n e1ṙ n e X +q n eṙ n e Y re+h { / { / / { / { { ω b/i b Z + ω e/i n + ωn n/e Z ω b/i b X + ω e/i n + ωn n/e X ω b/i b Y + ω e/i n + ωn n/e Y / { / ω ω b/i b Y ω e/i n + ωn n/e Y b/i b Z + ω e/i n + ωn n/e Z / { / / ω b/i b X + ω e/i n + ωn n/e X b n + ωn ω b/i b Z ω e/i n + ωn n/e Z / { / { ω b/i b Y + ω e/i n + ωn n/e Y / ω b/i b X ω e/i n + ωn n/e X q b nṙ e n X q b n1ṙ e n Y re+h q b n3ṙ e n X +q b nṙ e n Y re+h {ω b b/i X ω n e/i + ωn n/e X q b nṙ n e X q b n3ṙ n e Y re+h {ω b b/i Y ω n e/i + ωn n/e Y q b n1ṙ n e X +q b nṙ n e Y re+h {ω b b/i Z ω n e/i + ωn n/e Z

31 3..14 q b q b n1q b q b nq b q b n1q b + q b nq b n + q b n1 q b n q b n3 n n3 q b n1q b n + q b nq b n3 q b n q b n1 + q b n q b n3 n3 n q b nq b n3 q b nq b n1 q b n1q b n3 q b nq b n q b nq b n3 + q b nq b n1 q b n q b n1 q b n + q b n3 1 / q b n1 b n b n 3 / q / q / / / n q b n 3 / q b / q b n / n3 q b n / q b / q b n 1 n q b n 1 / q b q b n B = 5

32 3.3 INS/GPS GPS INS GPS φ λ h 3..1 INS GPS INS GPS GPS φ λ INS Azimuth α GPS q n egps INS q n eins 1 GPS h GPS INS h INS GPS INS Azimuth α n-frame ṙe n GPS X ṙe n GPS Y ṙe n INS X ṙe n INS Y 3 z = Hx + v x 3..4 v z ṙe n GPS X ṙ n e INS X ṙe n GPS Y ṙe n INS Y q n egps q n eins z = q n egps 1 q n eins 1 q n egps q n eins q n egps 3 q n eins 3 h GPS h INS 3.3. H H =

33 3.4 INS/GPS INS/GPS Initialize Flight Flight Flight INS GPS Update Correct Initialize Initialize INS r e n q n e q b n r e n = r e n GPS GPS m 3 1 Initialize Filight GPS INS/GPS Kalman Filter INS P 3.4. Flight :Update INS Update INS r n e q n e q b n INS/GPS Kalman Filter P INS r n e qb n qb n INS INS P INS.4.8 P Φ Γ

34 n g h Strap-down a r b & r b ϖ b/ i q ~b * n n r &r e n q ~ e h r b ϖ b/ n r b ϖ n/ i ΦPΦ +ΓQ Γ T T Pk k k P k Update Flight :Correct GPS GPS Kalman Filter Correct GPS INS P INS r n e q n e q b n P P.4.17 GPS INS 3.3 INS r e n qb n qb n GPS INS P.4.9 INS 8

35 r &r n e q ~ n e h b q ~ n r &r n e q ~ n e h b q ~ n z K P k+1 ˆ +1 P k H K 3.3 Correct 9

36 4 4.1 INS MEMS GPS 1m 1 1 1[m] π/1 [sec] 5[m/s] UAV INS Flight Initialize GPS GPS 1Hz m 3m 1m/s 5 3

37 1 INS/GPS Kalman Filter Q R INS/GPS Kalman Filter Q R GPS 1 INS INS/GPS GPS : Kalman Filter σ WN σ WN = σ f 1Hz σ 1Hz 1Hz f Analog Device MEMS ADXL13 MEMS ADXRS15 σ 1Hz ADXL13 = 11[µg] 1 3 [m/s ] σ 1Hz ADXRS15 =.5[ /s] 1 3 [rad/s] 1 31

38 : 1 x drift d dt x drift = βx drift t + wt 4.1. β wt E[wtwτ] = Nδt τ β x driftk+1 = βx drift t + Nu k+1 t u k MEMS Analog Devices MEMS ADXRS15 β N Hz. Allan Variance 3. β N 1Hz 3

39 Allan Variance 5. 4 Allan Variance 3 4 Allan Variance D β Gyro N Gyro β Gyro =.16 NGyro =.8 / SF ADXRS15 [rad/s] SF ADXRS15 = 1.5 [mv/deg/s] SF ADXRS15 ADXRS15 Scale Factor ADXRS15 Allan Variance Allan Variance Low Pass Filter Allan Variance 4. 33

40 ADXRS15 Allan STD DEV ADEV Line Fit Lower Bound Upper Bound.1 στ τ Produced by AlaVar ADXRS15 Allan Variance ADXRS_SIM Allan STD DEV ADEV Line Fit Lower Bound Upper Bound.1 στ τ Produced by AlaVar Allan Variance 34

41 ADXRS_SIM1 Allan STD DEV ADEV Line Fit Lower Bound Upper Bound.1 στ.1 1E τ Produced by AlaVar Allan Variance MEMS INS/GPS 1 INS/GPS 3/4 GPS 3m INS/GPS 35

42 3m ] [m 度 高 - -4 高度 [m] 真値 高度 [m]ins のみ モデル 1 高度 [m]ins/gps モデル 1 高度 [m]ins のみ モデル 高度 [m]ins/gps モデル GPS 高度 時間 [ 秒 ]

43 8 6 4 s ] / [m - 度速向 -4 方北 北方向速度 [m/s] 真値 北方向速度 [m/s]ins のみ モデル 1 北方向速度 [m/s]ins/gps モデル 1 北方向速度 [m/s]ins のみ モデル 北方向速度 [m/s]ins/gps モデル 時間 [ 秒 ] s ] / [m 度速向 方東 東方向速度 [m/s] 真値 東方向速度 [m/s]ins のみ モデル 1 東方向速度 [m/s]ins/gps モデル 1 東方向速度 [m/s]ins のみ モデル 東方向速度 [m/s]ins/gps モデル 時間 [ 秒 ]

44 s ] / [m 度.6.4 速. 向方力 重 重力方向速度 [m/s] 真値 重力方向速度 [m/s]ins のみ モデル 1 重力方向速度 [m/s]ins/gps モデル 1 重力方向速度 [m/s]ins のみ モデル 重力方向速度 [m/s]ins/gps モデル 時間 [ 秒 ] INS/GPS INS 1 INS/GPS Kalman Filter INS/GPS 1 INS/GPS 1/4 Kalman Filter 38

45 ] Ψ[deg] 真値 e g re Ψ[deg]INSのみ モデル1 e Ψ[deg]INS/GPS モデル1 [d ー Ψ[deg]INSのみ モデル ヨ -5 Ψ[deg]INS/GPS モデル 時間 [ 秒 ] ] -1 e Θ[deg] 真値 g re Θ[deg]INSのみ モデル1 e [d - Θ[deg]INS/GPS モデル1 チッ Θ[deg]INSのみ モデル ピ -3 Θ[deg]INS/GPS モデル 時間 [ 秒 ]

46 ] e -1 Φ[deg] 真値 g re Φ[deg]INSのみ モデル1 e [d - Φ[deg]INS/GPS モデル1 ルー Φ[deg]INSのみ モデル ロ-3 Φ[deg]INS/GPS モデル 時間 [ 秒 ] INS/GPS Kalman Filter INS/GPS MEMS INS/GPS 4

47 ] 秒 557 [3 緯北 真値 INS のみ モデル INS/GPS モデル 東経 [139 秒 ] ] e g re e [d ル ーロ - Φ[deg] 真値 Φ[deg]INS のみ モデル Φ[deg]INS/GPS モデル 時間 [ 秒 ]

48

49 6 INS/GPS MEMS MEMS 43

50 A Quaternion Algebra 3 1. Euler. Direction Cosine MatrixDCM 3. Quaternion A.1 1. Euler. DCM 3. Quaternion ?? Kalman Filtering Quaternion Quaternion 44

51 Quaternion q x x 1 x x 3 q q 1 q q 3 3 q p 1 p p Quaternion p p 1 p p 3 3 { q p 3 A.1 Quaternion Quaternion 1 1, i, j, k q q q 1 1 q q + i q 1 + j q + k q 3 q 3 A.1.1 1, i, j, k 1 1 = 1 A.1. i i = j j = k k = 1 A.1.3 i j = j i = k A.1.4 j k = k j = i A.1.5 k i = i k = j A.1.6 A. Quaternion Quaternion q q q q 1 q q 3 = q q 1 q q 3 A..1 45

52 A.3 Quaternion Quarternion Quarternion q q q 1 q q 3 a q a q q a a q 1 a A.3.1 q a q 3 a A.4 Quaternion Quaternion Quaternion q a q q a a1, q q b a q a3 q b q b1 q b q b3 A.4.1 q a + q b = 1 q a + i q a1 + j q a + k q a3 + 1 q b + i q b1 + j q b + k q b3 = 1 q a + q b + i q a1 + q b1 + j q a + q b + k q a3 + q b3 q a + q b q a1 + q b1 q a + q b q a3 + q b3 A.4. q b + q a = q a + q b A.4.3 A.5 Quaternion Quaternion Quaternion q a q q a a1, q q b a q a3 q b q b1 q b q b3 A

53 q a q b = 1 q a + i q a1 + j q a + k q a3 1 q b + i q b1 + j q b + k q b3 = 1 q a q b q a1 q b1 q a q b q a3 q b3 + i q a q b1 + q a1 q b + q a q b3 q a3 q b + j q a q b q a1 q b + q a q b + q a3 q b1 + k q a q b3 + q a1 q b q a q b1 + q a3 q b q a q b q a1 q b1 q a q b q a3 q b3 q a q b1 + q a1 q b + q a q b3 q a3 q b q a q b q a1 q b + q a q b + q a3 q b1 q a q b3 + q a1 q b q a q b1 + q a3 q b A.5. 3 Quaternion q a q a q b = q q b a1 q a q b1 q b q a3 q b3 q a q b q a1 q a q b1 q b q a3 q b3 q a q b1 q b + q b q a1 q a + q a1 q a q b1 q b q b3 q a3 q a3 q b3 A.5.3 q b q a q b1 q b q b1 q b q q b q a = b3 q b3 q b q a1 q a + q a q b1 q b + q b1 q b q a1 q a q a3 q b3 q b3 q a3 q a q b q a1 q a q b1 q b q = a3 q b3 q a q b1 q b + q b q a1 q a q a1 q a q b1 q b q b3 q a3 q a3 q b3 A.5.4 q a q b A.6 Quaternion 3 Quaternion Quaternion 3 47

54 3 p 3 r r r = 1 θ 3 p p = cosθ p + sinθ q + p A.6.1 p p p r p p p, p r p r A.6. q p r 9 q p r A.6.3 p p r p { p p = cosθ p + sinθ q + p q { cos θ sin θ r = cosθ p + sinθ p r + p = cosθ p p + sinθ p p r + p = cosθ p + 1 cosθ r p p + sinθ p r A.6.4 { { { q cos θ p q cos θ sin θ r p sin θ { r sin θ { = r p cos θ cos θ p sin θ r p sin θ { r sin θ = cos θ r p cos θ p sin θ r p sin θ r sin θ r p r + cos θ cos θ p sin θ r p cos θ p + sin θ r p sin θ { r = sin θ r p r + cos θ p sin θ cos θ r p sin θ r p r r p r = { = sin θ r p r + cos θ p sin θ cos θ r p sin θ r r p r p r r p r = r r p r p r { = sin θ r p r + cos θ sin θ p sin θ cos θ { r p = cosθ p + 1 cosθ r p r + sinθ p r { p A

55 Quaternion p q p p 3 Quaternion q { cos θ sin θ r r r = 1 A.6.6 Quaternion q Quaternion Quaternion Quaternion q Quarternion q q { cos θ sin θ r { cos θ = sin θ { r cos θ = sin θ r A.6.7 A.7 Quaternion A.6 Quaternion 3 Quaternion { Quaternion q 1 q q 1 p { q p { { p = q q 1 q p 1 q { = q 1 q q p 1 q { = q 1 q q p 1 q { q 1 q p 1 q 1 q 1 q q 1 q 1 q Quaternion A

56 A.8 Quaternion Quaternion q d dt q q = 1 ω 1 ω q ω 3 ω 1 ω ω 3 3 A.8.1 A.9 Quaternion Direction Cosine Matrix A.6 Quaternion 3 Direction Cosine MatrixDCM 3 Quaternion q q q 1 q q 3 DCM C q + q 1 q q 3 q 1 q + q q 3 q 1 q 3 q q C = q 1 q q q 3 q q 1 + q q 3 q q 3 + q q 1 q 1 q 3 + q q q q 3 q q 1 q q 1 q + q 3 A.9.1 { { p = q q p A.9. p = C p A.9.3 5

57 B Coordinate Systems 5 1. Earth-Centered Inetial Frame i-frame. Earth-Centered, Earth-Fixed Frame e-frame 3. Body Frame b-frame 4. Local Geodetic Frame g-frame 5. Navigation Frame Wander Azimuth Frame n-frame?? X - Y - Z X i i-frame X B.1 Earth-Centered Inertial Frame i-frame Newton Z i Earth-Centered Inertial Framei-Frame B. Earth-Centered, Earth-Fixed Frame e-frame X e Z e Eeath-Centered, Earth-Fixed Framee-Frame B.3 Local Geodetic Frame g-frame X g Z g Local Geodetic Frameg-Frame Y g X g - Y g - Z g North-East-Down 51

58 B.1 e-frame g-frame N - E - D N E B.4 Navigation Frame Wander Azimuth Frame n-frame Z n Navigation Frameg- Frame g-frame Z g D α rad n-frame Azimuth α = λ sinφ B.4.1 λ φ B.5 Body Frame b-frame X b Z b Body Frameb-Frame b-frame X b Y b Z b 5

59 B. g-frame n-frame B.3 n-frame b-frame B.6 A Quaternion B.1 A.6.7 Quaternion q e i = q i e B.6.1 A.7.1 q b i = q e i q b e = q e i q n e q b n B.6. 53

60 B.1 i-frame e-frame g-frame n-frame b-frame i-frame q e i q g i q n i q b i e-frame q i e q g e q n e q b e g-frame q i g q e g q n g q b g n-frame q i n q e n q g n q b n b-frame q i b q g b q n b q e b B.7 i-frame e-frame i-frame e-frame e-frame i-frame Z i Earth Rate Ω e/i A.8.1 q e i = 1 Ω i/e q n i B.7.1 i-frame e-frame Z i Z e i/e e = i i/e = Ω i/e B.7. B.8 e-frame g-frame e-frame g-frame e-frame g-frame B.1 1. n-frame λ rad λ rad Z e X e - Y e - Z e X e - Y e - Z e X e - Y e - Z e. g-frame φ rad φ rad Y e X e - Y e - Z e X e - Y e - Z e X e - Y e - Z e 3. Y e X e Z e 9 X e - Y e - Z e N - E - D 54

61 Quaternion q g e 1 1 Quaternion cos λ q g e 1 = sin λ 1 cos φ q g e = sin φ q g e 3 = 1 cos 9 sin 9 cos λ = sin λ cos φ = sin φ 1 = A.7.1 Quaternion q g e 1 1 B.8.1 B.8. B.8.3 q g e = q g e 1 q g e q g e 3 cos λ cos φ = sin φ sin λ 1 1 = 1 cos λ cos φ φ + sin sin λ cos φ φ sin cos λ cos φ φ sin sin λ cos φ φ + sin B.8.4 B.9 g-frame n-frame g-frame D α rad n-frame g-frame n-frame B. cos α q n g = sin α B

62 B.1 e-frame n-frame e-frame n-frame q n e = q g e q n g cos λ cos φ φ + sin = 1 sin λ cos φ cos φ sin α cos λ cos φ φ sin sin λ cos φ sin φ + sin α cos λ+α cos φ φ + sin = 1 sin λ α cos φ φ sin cos λ α cos φ φ sin sin λ+α cos φ φ + sin φ = arcsin { q n e + q n e 1 + q n e q n e 3 = arcsin { 1 q n e + q n e 3 B.1.1 B.1. λ = arctan qn e 3 q n e arctan qn e 1 q n e B.1.3 α = arctan qn e 3 q n e + arctan qn e 1 q n e B.1.4 q n e φ λ Azimuth α φ sinφ = 1 q n e + q n e 3 B.1.5 cos φ = 1 sin φ = 1 1 q n e + q n e 3 = 4 q n e + q n e 3 4 q n e + q n e 3 = 4 q n e + q n e 3 1 q n e + q n e 3 = 4 q n e + q n e 3 q n e 1 + q n e B.1.6 cosφ = q n e + q n e 3 q n e 1 + q n e B

63 λ tanλ = tan arctan qn e 3 q n arctan qn e 1 e q n e tan arctan qn e 3 q = n tan arctan qn e 1 e q n e 1 + tan arctan qn e 3 q tan n arctan qn e 1 e q n e = q n e 3 q n e qn e 1 q n e 1 + qn e 3 q n e q n e 1 q n e = qn e 3 q n e q n e 1 q n e q n e q n e + q n e 3 q n e 1 B.1.8 cos λ = = tan λ {qn e 3 q n e q n e 1 q n e {q n e q n e +q n e 3 q n e 1 {q n = e q n e + q n e 3 q n e 1 {q n e q n e + q n e 3 q n e 1 + {q n e 3 q n e q n e 1 q n e {q n = e q n e + q n e 3 q n e 1 {q n e q n e + {q n e 3 q n e 1 + {q n e 3 q n e + {q n e 1 q n e {q n = e q n e + q n e 3 q n e 1 {q n e + q n e 3 {q n e 1 + q n e q n cosλ = e q n e + q n e 3 q n e 1 q n e + q n e 3 q n e 1 + q n e B.1.9 B.1.1 sin λ = tan λ 1 + tan λ {q n = e 3 q n e q n e 1 q n e {q n e + q n e 3 {q n e 1 + q n e sinλ = q n e q n e 1 q n e q n e 3 q n e + q n e 3 q n e 1 + q n e B.1.11 B.1.1 α tanα = tan arctan qn e 3 q n + arctan qn e 1 e q n e = cosα = q n e 3 q n e + qn e 1 q n e 1 qn e 3 q n e q n e 1 q n e = qn e q n e 1 + q n e q n e 3 q n e q n e q n e 1 q n e 3 q n e 1 q n e 3 q n e q n e q n e + q n e 3 q n e 1 + q n e B.1.13 B

64 q n sinα = e q n e 1 + q n e q n e 3 q n e + q n e 3 q n e 1 + q n e B.1.15 B.11 n-frame b-frame n-frame b-frame n-frame yawing Ψ pitching Θ rolling Φ b-frame B.3 cos Ψ q b n = sin Ψ cos Θ sin Θ cos Φ 1 sin Φ 1 1 cos Ψ cos Θ cos Φ + sin Ψ sin Θ sin Φ cos Ψ = cos Θ sin Φ sin Ψ sin Θ cos Φ cos Ψ sin Θ cos Φ + sin Ψ cos Θ sin Φ sin Ψ cos Θ cos Φ cos Ψ sin Θ sin Φ B.11.1 q b n q b Ψ = arctan n 1 q b n + q b n q b n 3 q b n + q b n 1 q b n q b B.11. n 3 Θ = arcsin q b n q b n q b n 1 q b n 3 B.11.3 q b Φ = arctan n q b n 3 + q b n q b n 1 q b n q b n 1 q b n + q b B.11.4 n 3 58

65 C Earth ModelWGS-84 INS WGS-84 WGS-84 C.1 C.1 β r e + z r = 1 C.1.1 p 59

66 βdβ re + zdz r = C.1. p φ dz dβ dz dβ = br p zr e dz π dβ = tan + φ = 1 tanφ 1 tanφ = βr p zr e C.1.3 C.1.4 C.1.5 ε ε = 1 r p r e 1 C.1.6 r p r e = ε 1 C.1.7 z β = 1 ε tanφ C.1.8 C.1.1 z β = r e cosφ 1 ε sin φ 1 C.1.9 β z = r e 1 ε sinφ 1 ε sin φ 1 C.1.1 C dz dβ R meridian = d z dβ C..1 C.1.3 β d z dβ = r4 p r ez 3 6 C..

67 C.1.3 C.1.8 C ε r e R meridian = 1 ε sin φ 3 C..3 C.1.9 R normal = β cosφ r e R normal = 1 ε sin φ 1 C..4 C..5 C.3 Earth RateΩ i/e i-frame G i 1 µ + 3 R J rer 1 5 z xr R + G i = 1 µ + 3 R J rer 1 5 z y R R + 1 µ + 3 R J rer 3 5 z y R R + C.3.1 R = x + y + z i-frame g CF g i g CF = Ω e/i Ω e/i r i g i = G i Ω e/i Ω e/i r i C.3. C.3.3 C.4 WGS-84 WGS-84 C.1 WGS-84 C..3 C..5 WGS-84 g = g WGS 1 + gwgs1 sin φ 1 ε sin φ 1 C

68 C.1 WGS-84 r e m Earth Rate Ω e/i rad/s µ m 3 /s J f r p m ε g WGS m/s g WGS

69 D Allan Variance Allan Variance Allan Variance D.1 Allan Variance Allan Variance MEMS MEMS Allan Variance AVARτ = 1 n 1 n forward y backward y τ D

70 E 64

71 F F.1 F. F.3 65

72 [1] Robert M. Rogers. Applied Mathematics in Integrated Navigation System, Second Edition. AIAA Education Series, 3. ISBN [], 3. ISBN [3] CQ, ISBN

73 MEMS 4/11 67

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 : 2016 4 1 1 2 1.1......................................... 2 1.2................................... 2 2 2 2.1........................................ 2 2.2......................................... 3 2.3.........................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

35

35 D: 0.BUN 7 8 4 B5 6 36 6....................................... 36 6.................................... 37 6.3................................... 38 6.3....................................... 38 6.4..........................................

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O : 2014 4 10 1 2 2 3 2.1...................................... 3 2.2....................................... 4 2.3....................................... 4 2.4................................ 5 2.5 Free-Body

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2 1.500 m X Y 0.200 m 0.200 m 0.200 m 0.200 m 0.200 m 0.000 m 1.200 m m 0.150 m 0.150 m m m 2 24.5 N/ 3 18.0 N/ 3 30.0 0.60 ( ) qa 50.79 N/ 2 0.0 N/ 2 20.000 20.000 15.000 15.000 X(m) Y(m) (kn/m 2 ) 10.000

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

main.dvi

main.dvi B 15 0150023 16 3 1 1 1 6 2 7 2.1.......................... 7 2.1.1................. 7 2.1.2..................... 7 2.2........................ 8 2.2.1...................... 8 2.2.2 INS................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

RIMS98R2.dvi

RIMS98R2.dvi RIMS Kokyuroku, vol.084, (999), 45 59. Euler Fourier Euler Fourier S = ( ) n f(n) = e in f(n) (.) I = 0 e ix f(x) dx (.2) Euler Fourier Fourier Euler Euler Fourier Euler Euler Fourier Fourier [5], [6]

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

第1章

第1章 8 INS/GPS 74 ...3 GPS. GPS.. GPS.. GPS..3..4..5..6..7 UC.......3 DOPDiluion of Peciion..4..5.3.3. WGS-84.3. GPS/INS 3. Ineil Nigion SemINS 3. GPS/INS 3.3 GPS Klmn File 3.3. Klmn File 3.3. 3.3.3 3.3.4 3.3.5

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information