Activation and Control of Electron-Transfer Reactions by Noncovalent Bond
|
|
|
- なごみ ひがき
- 6 years ago
- Views:
Transcription
1
2 2 + 4e hν 2 2 1
3 2
4 20 J. Am. Chem. oc. Angew. Chem. Int. Ed. umber of Papers Year : J. Am. Chem. oc. (Trost, B. M.; tanford University, UA) 3
5 π 1/2 k ET = V 2 ( G 0 ET + λ) 2 exp (1) λ k B T h 4 λk B T 4
6 (a) (b) mall λ Long-lived C tate * e D A G 0 C Charge eparation (C) e D A k C λ small λ large fast C hν G 0 CR Charge Recombination (CR) 1 lo g(k E T/s ) k CR slow CR D A G 0 C G 0 CR G 0 ET / ev λ π 0 5
7 l ogk e t, M s G 0 et, ev 6
8 Me Me Me 2 C M Me Et Me Me Me M Me Me 2 C Et Me Me Me Et M Me Me Me 2 C M = Zn (5, ZnCh C 60 ) M = Zn (1, ZnCh C 60 ) = 2 (3, 2 Ch C 60 ) M = Zn (2, ZnPor C 60 ) = 2 (4, 2 Por C 60 ) CR Me Me Me Me 2 C Me Et M Me l ogk 6 C 4 E Tor k BE T,s M = 2 (6, 2 BCh C 60 ) G 0 ET or G 0 BET, ev
9 (a) Me Me Me Me 2 C Zn Me exyl Et τ = 230 µs (298 K) Me Angew. Chem., Int. Ed., 2004, 45, 853 (b) Zn = C τ = 0.77 µs (298 K) JAC, 2001,, 2607 Me (c) Zn τ = 330 µs (278 K) Me (d) Zn ZnPQ AuPQ + τ = 10 µs (298 K) Au rg. Lett. 2003, 5, 2719 JAC, 2003, 125,
10 (a) (3) (2) (1) Fe C Zn C C C 3 (4) τ = 0.38 s Fc-ZnP- 2 P-C 60 = 3,5-di-t-butylphenyl (b) hν hν hν e e Fe C Zn Zn Zn C C 3 τ = 0.53 s Fc-(ZnP) 3 -C 60 9
11 1 * Fc- ZnP - 2 P-C 60 (2.04 ev) k E Fc-ZnP- 1 2 P * -C 60 (1.89 ev) k ET(C1) Fc-ZnP- 2 P + -C 60 (1.63 ev) k ET(C1) Fc-ZnP P-C 60 hν k ET(CR1) (1.34 ev) k ET(C2) Fc + -ZnP- 2 P-C 60 hν k ET(CR2) (1.11 ev) k ET(CR3) 0.4 s Fc-ZnP- 2 P-C 60 10
12 (C 2 ) n n = 3, 6, 10 Zn hν k CR = ~10 6 s 1 Control of a tructural caffold Control of Redox Reactivity of Quinone µ 11
13 12
14 λ λ Ph + Me λ = 0.34 ev Ph Me (AcrPh + ) (AcrPh ) EXP. 5 G G 1.00 g = C IM. J. Am. Chem. oc. 2001,123, 8459 msl = 0.22 G λ 13
15 14
16 Ph-Q Me 3 Ph-AQ Ph-AQ aph-aq An-AQ aph- 1 (AQ) * (2.85 ev) hυ 0.34 ps aph- 3 (AQ) * 1.7 ps (2.45 ev) 71 s at 263 K in Frozen DM aph + -AQ (1.97 ev) aph-aq 15
17 Bz C 2 BA 0.57 V BA + ZnP-C 60 h ZnP + -C V 0.67 V ZnP P-C V 0.67 V V + V V C (Cl 4 ) 2 + C 6 13 = C = V 2+ nv 2+ Au n BA + V + Au n 2 PC 11 AuMPC BA + BA V 2+ 2 PC 11 AuMPC/V 2+ hν BA 2 P + C 11 AuMPC 1 11AuMPC/V 2+ 2 P * C V + 16
18 2 2 hν Acr -Mes Acr + -Mes Acr + -Mes
19 TE e - e - n 2 TE: ptically Transparent Electrode e - e - e - e - hν e - e - I - / I 3 - Mes-Acr V Mes + -Acr + /(Mes-Acr + ) * Pt -0.2 V - C 60 /C V Mes-Acr + /Mes-Acr CB 0 V VB hν 1.8 V C * - 60 /C 60 Enhanced Photocurrent by upramolecular Charge eparation hν 2.0 V Mes + -Acr + /Mes-Acr V I - 3 /I - n 2 vs E 18
20 e - n 2 e - e - hν TE e - I - / I 3 - e - Pt Acridinium Dye C 60 Ti 2 anoparticle TE: ptically Transparent Electrode 19
21 D 4 P 4 = 2 P-ref D 8 P 8 D 16 P 16 η 20
22 18 a IPCE, % 12 6 b d c Wavelength, nm 21
23 Primary Molecule econdary rganization C (C 2 ) n (n = 5, 11, 15) Toluene C 60 Au Tertiary rganization C11 2 PC15MPC (n=15) 2 PC11MPC (n=11) 2 PC5MPC (n=5) 300 nm C11 Quaternary rganization Au MeC/Tol = 3/1 ( 2 PCnMPC+C 60 ) m η 22
24 e - Pt e TE I - / I 3 - TE: ptically Transparent Electrode e - - Porphyrin C 60 Gold anoparticle e - hν 23
25 λ D 2 D + 2 D 2 D + 2 M n+ M n+ D + 2 D 2 M n+ D + 2 D + 2 M n+ 24
26 hν + Lewis acid hν f Lewis acid Me Me (2) 25
27 g = M n+ Fc Q ET Fc Q Fc + Q /M n+ First Example 6 G Fc + Q /c 3+ Fe + Fc-Q Angew. Chem. Int. Ed. 2002, 41, 620. (C 2 ) 5 ² msl = 0.35 G a(c) = 2.57 G c 3+ a(1) = 1.80 G 1.73 G 0.60 G 0.20 G 0.10 G a(3) = 0.70 G a(2) = 0.09 G a(2) = 0.04 G 26
28 c 3+ Ir(ppy) Q -nc [Ir(ppy) 3 ] + + -Q Q (a) Exp. (Q) 298 K (c) 203 K g = Exp. (n = 2, 3) g = (b) im. 5 G (d) 5 G im. c 3+ a(2c 3+ ) = 1.12 G c 3+ a(8) = 1.12 G Η msl = 0.90 G a(2c 3+ ) = 1.50 G a(c 3+ ) = 0.75 G c 3+ c 3+ c 3+ a(8) = 1.50 G Η msl = 0.75 G 27
29 Fc-Q Fe Fe Fc-Q Me + +M n+ Fe + +M n+ Fe Me M n+ M n+ Fc-(Me)Q 28
30 no alt hυ hυ in DM P* Q 2 P + Q /( 4 + ) 2 in C 2 Cl 2 4 PF 6 no alt Bu 4PF 6 2 P P + + Q Q tabilization tabilization 2 P* Q 2 P + + Q + /Bu 4 29
31 π ππ 30
32 µ µ 1 ZnP*-Im 431 nm hν 2.5 ns (2.12 ev) 0.29 ns ZnP + -Im Š (1.33 ev) Zn ZnP-Im c 3+ nc µs ZnP + -Im Š /c 3+ (0.80 ev) ZnP-Im [c 3+ ] = 1 mm 14 µs 31
33 Fc- 1 AQ* Fc- 1 AQ* Y(Tf) 3 < 500 fs < 500 fs Fe Fc-AQ hυ Fc + -AQ hυ Fc + -AQ Y(Tf) 3 Y(Tf) 3 12 ps 83 µs Fc-AQ Fc-AQ Y(Tf) 3 µ µ 32
34 µµ 33
35 Cu(II)-Zn(II) 2 2 Cu(I)-Zn(II) Cu(I)-Zn(II)
36
37 C 2 Ph C 2 + M n+ Electron Transfer C 2 Ph C 2 (a) M n+ M n+ BA + Q 2M n+ (b) M n+ C 2 M n+ C 2 Ph C 2 Ph M n+ M n+ C 2 M n+ + C 2 M n+ C Ph BA Q M n+ BA + + M n+ g = C 2 Ph keto form tautomerization 2 C 2 Ph enol form C 2 Ph g = D D C 2 Ph 40 G msl = 1.8 G a (2) = 1.0 G a (4) = 53.0 G a (5) = 7.6 G a (6) = 1.8 G a (1) = 8.0 G a (C2Ph) = 7.4 G 40 G msl = 1.8 G a (2) = 1.0 G a (D4) = 8.1 G a (5) = 7.6 G a (6) = 1.8 G a (1) = 8.0 G a (C 2 Ph) = 7.4 G 36
38 C2 C 2 Ph BA e - C2 C 2 Ph Keto Form + + Ru(bpy) 3+ 3 C 2 C 2 + C 2 Ph Ru(bpy) 2+* C 2 Ph BA 3 BA + hν BA + 3 C C 2 Ph Pr i 2 + c 3+ ET without c 3+ 3 C 5 6 g = C 2 Ph Pr i 2 5G K 3 C C 2 Ph msl = 0.21 G c 3+ Pr i 2 k et Fe(Cp * ) 2 Fe(Cp * ) 2 + g = G 3 C c 3+ C 2 Ph 3 C C 2 Ph Pr i 2 c 3+ Pr i 2 a (C 3 ) = 1.03 G a (2) = 0.90 G a (5) = 0.82 G a (6) = 1.11 G a (C 2 Ph) = 2.31 G a (1) = 2.63 G a (c) = 1.24 G 37
39 Bn 2 C C 2 + Bn [(BA) 2 ] Me (Acr + ) Bn + 2 C + Acr C 2 Bn DA Cleavage Bn C BA + Bn (BA + ) C 2 38
40 (a) g // = G g = (b) (BA) 2 + Acr + + Fe 4 Form II Form III Form I Cat. 4 Fe 4 Fe Fe(C 5 4 Me) Catalyst p Co Co p DPA DPB DPX DPD 39
41 2Fe(C 5 5 ) Co(III) + Fe(C5 5) 2 2Fe(C 5 5 ) Co(III) + k et(1) Fe(C 5 5 ) 2 + Fe(C 5 Me 5 ) 2 Co(III) + 2 Co(IV) Co(II) Co(III) + r.d.s - bond cleavage Co(III) Co(III) + Fe(C 5 5 ) 2 Fe(C 5 4 Me) 2 r.d.s Co(III) + Co(III) + + Co(III) + 2 Fe(C 5 5 ) 2 Co(II) Fe(C 5 5 )
42 R R Cat. Me Me Dehydrogenation p Co Co R Me xygenation 41
43 42
44 43
45 44
46 45
47 46
48 47
49 48
50 49
51 µ 50
52 µ 51
53 µ 52
54 µη η µ µ µ 53
55 γ µ 54
56 π 55
57 α 56
58 57
59 π 58
60 π π 59
61 α α π 60
62 é 61
63 62
64 γ 63
65 64
66 µ 65
67 ü ü 66
68 67
69 π é 68
70 69
71 µ 70
72 µ 71
73 γ 72
74 73
75 74
76 75
77 76
78 π 77
79 78
80 79
81 π π 80
82 81
83 82
84 π π 83
85 84
86 85
87 π 86
88 µ 87
89 88
90 α 89
91 π 90
92 91
93 92
94 93
95 ü 94
96 95
97 96
98 π 97
99 98
100 99
101 100
102 101
103 102
104 I 103
105 ü 104
106 105
107 106
物理化学I-第12回(13).ppt
I- 12-1 11 11.1 2Mg(s) + O 2 (g) 2MgO(s) [Mg 2+ O 2 ] Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) - 2Mg(s) 2Mg 2+ (s) + 4e +) O 2 (g) + 4e 2O 2 (s) 2Mg(s) + O 2 (g) 2MgO(s) Zn(s) Zn 2+ (aq) + 2e +) Cu 2+ (aq)
006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n
003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
36 th IChO : - 3 ( ) , G O O D L U C K final 1
36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic
ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +
2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j
m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)
2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ
= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds
42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =
3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u
2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a
[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
linearal1.dvi
19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352
C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B
I [email protected] 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld
Microsoft Word - 11問題表紙(選択).docx
A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx
1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります
The Physics of Atmospheres CAPTER :
The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(
AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive
AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数
2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1
Mg-LPSO 2566 2016 3 2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 1,.,,., 1 C 8, 2 A 9.., Zn,Y,.
X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)
1001 µµ 1.... 2 2.... 7 3.... 9 4. InGaAs/GaAs PIN... 10 5. InGaAs... 17 6. PbS/PbSe... 18 7. InSb... 22 8. InAs/InSb... 23 9. MCT (HgCdTe)... 25 10.... 28 11.... 29 12. (Si)... 30 13.... 33 14.... 37
03J_sources.key
Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E
JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =
JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz
Mott散乱によるParity対称性の破れを検証
Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ
( ) ( )
20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))
128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds
127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds
II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3
II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )
2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
From Evans Application Notes
3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2
c 2009 i
I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................
B
B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i
1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [
1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2
1.500 m X Y 0.200 m 0.200 m 0.200 m 0.200 m 0.200 m 0.000 m 1.200 m m 0.150 m 0.150 m m m 2 24.5 N/ 3 18.0 N/ 3 30.0 0.60 ( ) qa 50.79 N/ 2 0.0 N/ 2 20.000 20.000 15.000 15.000 X(m) Y(m) (kn/m 2 ) 10.000
Jacobson Prime Avoidance
2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t
7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±
7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α
dvipsj.8449.dvi
9 1 9 9.1 9 2 (1) 9.1 9.2 σ a = σ Y FS σ a : σ Y : σ b = M I c = M W FS : M : I : c : = σ b
2
Rb Rb Rb :10256010 2 3 1 5 1.1....................................... 5 1.2............................................. 5 1.3........................................ 6 2 7 2.1.........................................
PowerPoint Presentation
/ 2008/04/04 Ferran Salleras 1 2 40Gb/s 40Gb/s PC QD PC: QD: e.g. PCQD PC/QD 3 CP-ON SP T CP-OFF PC/QD-SMZ T ~ps, 40Gb/s ~100fJ T CP-ON CP-OFF 500µm500µm Photonic Crystal SMZ K. Tajima, JJAP, 1993. Control
80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0
79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t
1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (
August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
Microsoft Word - 演習5_蒸発装置
1-4) q T sat T w T S E D.N.B.(Departure from Nucleate Boiling)h(=q/ T sat ) F q B q D 3) 1 5-7) 4) T W [K] T B [K]T BPR [K] B.P.E.Boiling Pressure Rising T B T W T BPR (3.1) Dühring T BPR T W T W T B T
OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P
4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e
1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)
1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
ダイアライザー性能評価表
メーカー 品名 膜面積 膜素材 内径 膜厚 充填量 滅菌法 Dry (μm) (ml) Wet 旭化成クラレ APS-08SA 0.8 PS 185 45 48 γ W メディカル APS-11SA 1.1 PS 185 45 59 γ W APS-13SA 1.3 PS 185 45 71 γ W APS-15SA 1.5 PS 185 45 82 γ W APS-18SA 1.8 PS 185
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i
解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ
