NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A

Size: px
Start display at page:

Download "NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A"

Transcription

1 NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, AstraZeneca KK

2 要旨 : NLMIXEDプロシジャの最尤推定の機能を用いて 指数分布 Weibull 加速モデル Cox 比例ハザードモデルの場合を例として 生存時間解析を試みた そして LIFEREGプロシジャやPHREGプロシジャと同等な解析結果を得ることが可能であることを示した このことを通して 生存時間解析の習得及び応用において NLMIXED プロシジャが強力な道具となり得ることを示した キーワード : 最尤法 指数分布 Weibull 加速モデル Cox 比例ハザードモデル 2

3 目的 生存時間解析のような複雑な統計解析でも SAS が全部やってくれる SAS の計算内容の詳細を必ずしも理解する必要がない その理論や計算アルゴリズムがなかなか身に付かない 自分で IML などを用いてプログラムを書くことが望ましい 発表の目的 : でも 最尤法のアルゴリズムを自分で書くのはかなり面倒 NLMIXED プロシジャが一般的な最尤推定の計算ルーチンを提供 幾つかのモデルを例として 生存時間解析のプログラムをNLMIXEDプロシジャを用いて書くことができることを示す NLMIXEDプロシジャが生存時間解析を含む統計計算において非常に強力な道具であることを理解してもらうこと 3

4 生存時間解析における最尤推定 指数分布 Weibull 分布 及びその別の形 Weibull 加速モデル 発表内容 Cox 比例ハザードモデル タイのない場合 ( タイのある場合は論文参照 ) まとめ 4

5 生存関数及び確率密度関数 生存時間 T が連続の場合のみを考える 確率密度関数 Probability density function: 生存関数 Survival function: ここで θ は分布のパラメタ f (t; θ ), t 0 St ( ; θ ) = PT ( > t ; θ ) = 1 fs ( ; θ ) ds 0 t 5

6 データ及び尤度 データ 生存時間 : t 1, t 2, t 3,,t n ( 打切り例の場合は最終生存確認時間 ) イベント情報 : δ 1, δ 2, δ 3,,δ n, イベントありなら δ i =1 打切りなら δ i = 0 i 番目の症例の尤度への寄与 L i イベント発現例 : 確率密度 : L i = f (t i ; θ ) 打ち切り例 : t i まで生存したという情報を利用 : L i = S (t i ; θ ) 尤度 : これらを全症例分かけ合わせて n n δi 1 δi L( θ) = [ f( t ; θ) S( t ; θ) ] 対数尤度 : これを対数変換して n i i i i= 1 i= 1 n l ( θ ) = log L ( θ ) = [ δ log f ( t ; θ ) + (1 δ )log S ( t θ )] i i i i i i= 1 i= 1 6

7 生存時間の 生存関数 最尤推定 確率密度関数の2つさえ定義されれば 対数尤度が定義され あとは最尤法を適用するだけ NLMIXEDプロシジャを利用できる 本来は非線形混合効果モデルのためのプロシジャ しかし 最尤推定のための一般的な機能が利用可能能 NLMIXEDプロシジャのMODELステートメントに MODEL dependent-variable ~ general(ll) を指定 ここで LL はユーザー定義の対数尤度関数 7

8 指数分布 Exponential distribution ハザード ( 定数 ): ht ()= λ 生存関数 : St () = e λt 確率密度関数 : ft () = λe λt ( 以下 関数の括弧の中のパラメタは省略 ) 8

9 PROC NLMIXED による指数分布の当てはめ df=1e8 は t 分布ではなく 正規分布に基づく推測をするために付加 λt ft () = λe St λ () = t 対数尤度 e9

10 指数分布 : PROC NLMIXED からの出力 10

11 Weibull 分布 ハザード関数 : ht () = λγ 1 t γ λ: scale parameter, γ : shape parameter 生存関数 : St () = exp( λt γ ) 確率密度関数 : ft t t γ 1 γ ( ) = λγ exp( λ ) γ =1の場合は h (t) = λ となり これは指数分布となる 11

12 Weibull 分布の当てはめ PROC NLMIXED γ 1 γ ft ( ) = λγ t exp( λt ) St () = exp( λ t γ ) Output 12

13 Weibull 分布の別の形 教科書によく載っているWeibull 分布の生存関数 : St ( ) = exp( λ t γ ) (1) この形では拡張性に乏しいので 変数およびパラメタの変換を行う : すなわち w = log( t), σ = 1/ γ, μ = (log λ) / σ t = exp( w ), γ = 1/ σ, λ = exp( μ / σ ) これらを (1) に代入し 対数生存時間 w を用いた生存関数は w μ SW ( w) = exp{ exp( μ / σ)[exp( w)] 1/ σ } = exp[ exp( )] σ これより w の確率密度関数は f W 1 w w ( w) exp( μ μ = )exp[ exp( )] σ σ σ 13

14 Weibull 分布の別の形の当てはめ PROC NLMIXED 1 w μ w μ fw w = σ σ σ w μ SW ( w) = exp[ exp( )] σ f ( ) exp( )exp[ exp( )] PROC LIFEREG 14

15 Weibull 分布の別の形 : 結果の比較 PROC NLMIXED からの Output PROC LIFEREG からの Output 15

16 加速モデル Accelerated failure time (AFT) model; 一般論 2 つの治療群があり それぞれの生存関数を S 0 (t) および S 1 (t) と表わすとする この 2 つの生存関数の間に S () t = S ( t a), a> という関係が成り立つと仮定する a は加速パラメタ 通常は a =exp( β ) とおき 先ほどの式は S () t = S ( t exp( - β )), - < β < 1 0 となり β が推定すべきパラメタとされる 治療群を表わす変数を z とし z =0は標準治療群 z =1 は新規治療群を表わすものとすると zが与えられた場合の生存関数は Stz ( ; ) = S ( t exp( - β z )) = S ( exp( log t - βz )), z= 0,

17 Weibull 分布を仮定した場合 Weibull 加速 (AFT) モデル 先ほどは w=log t によって変数変換した w についての生存関数 確率密度関数を考えたが その代わりに それに群の効果を線形の形で付加した w = log t β z, z =0,1 を用いると 先述のものと全く同じ生存関数 確率密度関数を用いることが できる 17

18 Weibull AFT model の数値例 18

19 Weibull AFT model の数値例 PROC NLMIXED PROC LIFEREG 先述のプログラムに 先述のプログラムのモデルに が追加されただけ 19

20 Weibull AFT model の結果の比較 PROC NLMIXED からの Output PROC LIFEREG からの Output 20

21 データ Cox 比例ハザード (PH) モデル r 人の死亡例における生存時間を小さい順に並べる 生存時間 t (1) t (2) t (3) t (r) 治療群を表わす変数 z (1) z (2) z (2) z (r) ここで z (i) = 0 は標準治療群 z (i) = 1 は新規治療群を表わす 生存時間に同順位 ( タイ ) は存在しないものと仮定する 21

22 部分尤度 partial likelihood ( 式の誘導等の詳細な説明は省略しますが ) PL r = = i = 1 j R t exp( β ) ( i ) z() i exp( βz ) ( ) j ここで r は全イベント数 t (i) は (i) 番目のイベント発現時点 z (i) は (i) 番目の時点にイベント発現した症例の群の情報 β は群の効果を表わすパラメタ R(t (i) ) は時点 t (i) におけるリスクセット ( 時点 t (i) においてリスクに曝されている症例の集合 ) 22

23 前出の数値例 Cox PH モデルの数値例 リスクセット z i t i δ i (i) z (i) t (i) δ (i) のサイズ t i の順に並べ替え

24 部分尤度の計算 t (1) =2の死亡例の部分尤度への寄与 β 0 (i) t (i) δ (i) z (i) e PL = e + e + e + e + e + e + e + e + e + e t (2) = 3 の死亡例の部分尤度への寄与 β e PL(2) = β 1 β 0 β 1 β 0 β 1 β 0 β 0 β 1 β 1 e + e + e + e + e + e + e + e + e PL (1) β 0 β 1 β 0 β 1 β 0 β 1 β 0 β 0 β 1 β t (3) =5ではイベント発現がないので無視 t (4) =6の死亡例の部分尤度への寄与 β 1 β e PL = e + e + e + e + e + e + e (4) β 1 β 0 β 1 β 0 β 0 β 1 β 1 24

25 事前のデータ加工 25

26 各行は各イベント発現時点に対応 加工後のデータセット z1~z10は各時点におけるリスクセットに含まれる各症例の群の情報 26

27 Cox PH モデルの PROC NLMIXED によるあてはめ PL r = i exp( β ) z() i exp( 1 β z ) ( ) = j R t リスクセットに含まれる例数分だけ回す ( i ) 部分尤度の分母部分 j 27

28 Cox PH モデルの結果の比較 PROC NLMIXEDからのOutput PROC PHREG からの Output 28

29 同順位 ( タイ ) のある場合 Cox 比例ハザードモデルにおいて同順位が存在する場合には幾つかの計算法がある Breslowの近似を用いる場合には 多少プログラムが複雑になるものの NLMIXEDプロシジャを用いて計算可能である ( 論文参照 ) 29

30 まとめ パラメトリックな生存時間解析においては 確率密度関数及び生存関数さえ定義すれば NLMIXED プロシジャを用いて最尤推定が可能 SAS のプロシジャを用いての生存時間解析もその計算内容を理解 確認することができ ブラック ボックスでなくすることができる LIFEREG プロシジャがサポートしていないような生存時間分布でも その確率密度関数及び生存関数さえ定義できれば 推定可能 更に 混合分布モデルや Piecewise exponential model などのより複雑なモデルにも応用可能 Cox 比例ハザードモデル解析で示されたように 事前のデータ加工等の工夫を加えることによって より複雑な計算アルゴリズムの最尤推定であっても 問題によっては計算できる可能性が示唆された このようにPROC NLMIXEDが生存時間解析において非常に強力な道具であり 更なる応用の可能性が示唆された 30

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

Microsoft PowerPoint - 【配布・WEB公開用】SAS発表資料.pptx

Microsoft PowerPoint - 【配布・WEB公開用】SAS発表資料.pptx 生存関数における信頼区間算出法の比較 佐藤聖士, 浜田知久馬東京理科大学工学研究科 Comparison of confidence intervals for survival rate Masashi Sato, Chikuma Hamada Graduate school of Engineering, Tokyo University of Science 要旨 : 生存割合の信頼区間算出の際に用いられる各変換関数の性能について被覆確率を評価指標として比較した.

More information

スライド 1

スライド 1 生存時間解析における Lakatos の症例数設計法の有用性の評価 魚住龍史, * 水澤純基 浜田知久馬 日本化薬株式会社医薬データセンター 東京理科大学工学部経営工学科 Evaluation of availability about sample size formula by Lakatos on survival analysis Ryuji Uozumi,, * Junki Mizusawa,

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

Statistical inference for one-sample proportion

Statistical inference for one-sample proportion RAND 関数による擬似乱数の生成 魚住龍史 * 浜田知久馬東京理科大学大学院工学研究科経営工学専攻 Generating pseudo-random numbers using RAND function Ryuji Uozumi * and Chikuma Hamada Department of Management Science, Graduate School of Engineering,

More information

日本製薬工業協会シンポジウム 生存時間解析の評価指標に関する最近の展開ー RMST (restricted mean survival time) を理解するー 2. RMST の定義と統計的推測 2018 年 6 月 13 日医薬品評価委員会データサイエンス部会タスクフォース 4 生存時間解析チー

日本製薬工業協会シンポジウム 生存時間解析の評価指標に関する最近の展開ー RMST (restricted mean survival time) を理解するー 2. RMST の定義と統計的推測 2018 年 6 月 13 日医薬品評価委員会データサイエンス部会タスクフォース 4 生存時間解析チー 日本製薬工業協会シンポジウム 生存時間解析の評価指標に関する最近の展開ー RMST (restricted mean survival time) を理解するー 2. RMST の定義と統計的推測 2018 年 6 月 13 日医薬品評価委員会データサイエンス部会タスクフォース 4 生存時間解析チーム 日本新薬 ( 株 ) 田中慎一 留意点 本発表は, 先日公開された 生存時間型応答の評価指標 -RMST(restricted

More information

講義「○○○○」

講義「○○○○」 講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

カイ二乗フィット検定、パラメータの誤差

カイ二乗フィット検定、パラメータの誤差 統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

Microsoft PowerPoint - R-stat-intro_12.ppt [互換モード]

Microsoft PowerPoint - R-stat-intro_12.ppt [互換モード] R で統計解析入門 (12) 生存時間解析 中篇 準備 : データ DEP の読み込み 1. データ DEP を以下からダウンロードする http://www.cwk.zaq.ne.jp/fkhud708/files/dep.csv /fkh /d 2. ダウンロードした場所を把握する ここでは c:/temp とする 3. R を起動し,2. 2 の場所に移動し, データを読み込む 4. データ

More information

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の JMP によるオッズ比 リスク比 ( ハザード比 ) の算出と注意点 SAS Institute Japan 株式会社 JMP ジャパン事業部 2011 年 10 月改定 1. はじめに 本文書は JMP でロジスティック回帰モデルによるオッズ比 比例ハザードモデルによるリスク比 それぞれに対する信頼区間を求める操作方法と注意点を述べたものです 本文書は JMP 7 以降のバージョンに対応しております

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

解析センターを知っていただく キャンペーン

解析センターを知っていただく キャンペーン 005..5 SAS 問題設定 目的 PKパラメータ (AUC,Cmax,Tmaxなど) の推定 PKパラメータの群間比較 PKパラメータのバラツキの評価! データの特徴 非反復測定値 個体につき 個の測定値しか得られない plasma concentration 非反復測定値のイメージ図 測定時点間で個体の対応がない 着目する状況 plasma concentration 経時反復測定値のイメージ図

More information

JMP によるオッズ比 リスク比 ( ハザード比 ) の算出方法と注意点 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月改定 1. はじめに本文書は JMP でオッズ比 リスク比 それぞれに対する信頼区間を求める算出方法と注意点を述べたものです この後

JMP によるオッズ比 リスク比 ( ハザード比 ) の算出方法と注意点 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月改定 1. はじめに本文書は JMP でオッズ比 リスク比 それぞれに対する信頼区間を求める算出方法と注意点を述べたものです この後 JMP によるオッズ比 リスク比 ( ハザード比 ) の算出方法と注意点 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月改定 1. はじめに本文書は JMP でオッズ比 リスク比 それぞれに対する信頼区間を求める算出方法と注意点を述べたものです この後の 2 章では JMP でのオッズ比 オッズ比の信頼区間の算出方法について サンプルデータを用いて解説しております

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 復習 ) 時系列のモデリング ~a. 離散時間モデル ~ y k + a 1 z 1 y k + + a na z n ay k = b 0 u k + b 1 z 1 u k + + b nb z n bu k y k = G z 1 u k = B(z 1 ) A(z 1 u k ) ARMA モデル A z 1 B z 1 = 1 + a 1 z 1 + + a na z n a = b 0

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

基礎統計

基礎統計 基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t

More information

ベイズ統計入門

ベイズ統計入門 ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

統計学的画像再構成法である

統計学的画像再構成法である OSEM アルゴリズムの基礎論 第 1 章 確率 統計の基礎 1.13 最尤推定 やっと本命の最尤推定という言葉が出てきました. お待たせしました. この節はいままでの中で最も長く, 少し難しい内容も出てきます. がんばってください. これが終わるといよいよ本命の MLEM,OSEM の章です. ところで 尤 なる字はあまり見かけませんね. ゆう と読みます. いぬ ではありません!! この意味は

More information

Microsoft PowerPoint - R-stat-intro_13.ppt [互換モード]

Microsoft PowerPoint - R-stat-intro_13.ppt [互換モード] R で統計解析入門 (13) 生存時間解析 後篇 本日のメニュー 1. 競合リスクに関する解析 2. 再発事象の解析 2 復習 カプランマイヤー推定量 5 人のがん患者さんに薬物療法を行い, ガンの再発 をイベントと してカプランマイヤー推定量によりイベント発生割合を計算する 何らかの理由でイベントを発生せずに観察を終了した場合は打ち切り 時間リスクイベントイベントイベント打ち切り ( 日 ) 集合無発生割合累積発生割合

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推

7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推 7. フィリップス曲線 経済統計分析 ( 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推定結果に基づく予測シミュレーション 物価と失業の関係......... -. -. -........ 失業率

More information

Microsoft Word - Stattext12.doc

Microsoft Word - Stattext12.doc 章対応のない 群間の量的データの検定. 検定手順 この章ではデータ間に 対 の対応のないつの標本から推定される母集団間の平均値や中央値の比較を行ないます 検定手法は 図. のようにまず正規に従うかどうかを調べます 但し この場合はつの群が共に正規に従うことを調べる必要があります 次に 群とも正規ならば F 検定を用いて等分散であるかどうかを調べます 等分散の場合は t 検定 等分散でない場合はウェルチ

More information

Microsoft Word doc

Microsoft Word doc . 正規線形モデルのベイズ推定翠川 大竹距離減衰式 (PGA(Midorikawa, S., and Ohtake, Y. (, Attenuation relationships of peak ground acceleration and velocity considering attenuation characteristics for shallow and deeper earthquakes,

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

スライド 1

スライド 1 非線形混合効果モデルにおける Visual Predictive Check (VPC)) の性能に関する検討 寺内理絵 新城博子 笠井英史株式会社ベルシステム 24 医薬関連サービス本部臨床管理 1 局 Examination of the performance of visual predictive check (VPC) in nonlinear mixed-effect model Rie

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 第 6 回基礎ゼミ資料 Practice NL&MXL from R 平成 30 年 5 月 18 日 ( 金 ) 朝倉研究室修士 1 年小池卓武 使用データ 1 ~ 横浜プローブパーソンデータ ~ 主なデータの中身 トリップ ID 目的 出発, 到着時刻 総所要時間 移動距離 交通機関別の時間, 距離 アクセス, イグレス時間, 距離 費用 代表交通手段 代替手段生成可否 性別, 年齢等の個人属性

More information

2 値データの Intraclass Correlation Coefficient の推定マクロプログラム 稲葉洋介 1 田中紀子 1 1 国立国際医療研究センターデータサイエンス部生物統計研究室 Macro program for calculating Intraclass Correlati

2 値データの Intraclass Correlation Coefficient の推定マクロプログラム 稲葉洋介 1 田中紀子 1 1 国立国際医療研究センターデータサイエンス部生物統計研究室 Macro program for calculating Intraclass Correlati 2 値データの Intraclass Correlation Coefficient の推定マクロプログラム 稲葉洋介 1 田中紀子 1 1 国立国際医療研究センターデータサイエンス部生物統計研究室 Macro program for calculating Intraclass Correlation Coefficient for binary data Yosuke Inaba, Noriko

More information

スライド 1

スライド 1 Model-based meta-analysis を用いた経時の試験結果の統合 乙黒俊也日本たばこ産業株式会社 荒野俊平株式会社データフォーシーズ Combination of longitudinal results from different studies by model-based meta-analysis Toshiya Otoguro Japan Tobacco Inc. Shumpei

More information

untitled

untitled に, 月次モデルの場合でも四半期モデルの場合でも, シミュレーション期間とは無関係に一様に RMSPE を最小にするバンドの設定法は存在しないということである 第 2 は, 表で与えた 2 つの期間及びすべての内生変数を見渡して, 全般的にパフォーマンスのよいバンドの設定法は, 最適固定バンドと最適可変バンドのうちの M 2, Q2 である いずれにしても, 以上述べた 3 つのバンド設定法は若干便宜的なものと言わざるを得ない

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

<4D F736F F D2091E63489F190B691B68E9E8AD489F090CD2E646F6378>

<4D F736F F D2091E63489F190B691B68E9E8AD489F090CD2E646F6378> 医学統計勉強会 東北大学病院循環器内科 東北大学臨床研究推進センター共催 東北大学大学院医学系研究科 EBM 開発学寄附講座 宮田敏 Daa! daa! daa! he cried impaienly. I can' mae brics wihou clay. From The Advenure of he Copper Beeches, The Advenure of Sherloc Holmes.

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅 周期時系列の統計解析 3 移動平均とフーリエ変換 io 07 年 月 8 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ノイズ の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分のがどのように変化するのか等について検討する. また, 気温の実測値に移動平均を適用した結果についてフーリエ変換も併用して考察する. 単純移動平均の計算式移動平均には,

More information

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx) 6 章スペクトルの平滑化 スペクトルの平滑化とはフーリエスペクトルやパワ スペクトルのギザギザを取り除き 滑らかにする操作のことをいう ただし 波のもっている本質的なものをゆがめてはいけない 図 6-7 パワ スペクトルの平滑化 6. 合積のフーリエ変換スペクトルの平滑化を学ぶ前に 合積とそのフーリエ変換について説明する 6. データ ウィンドウデータ ウィンドウの定義と特徴について説明する 6.3

More information

Problem P5

Problem P5 問題 P5 メンシュトキン反応 三級アミンとハロゲン化アルキルの間の求核置換反応はメンシュトキン反応として知られている この実験では DABCO(1,4 ジアザビシクロ [2.2.2] オクタン というアミンと臭化ベンジルの間の反応速度式を調べる N N Ph Br N N Br DABCO Ph DABCO 分子に含まれるもう片方の窒素も さらに他の臭化ベンジルと反応する可能性がある しかし この実験では

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

<4D F736F F D208EF596BD8E8E8CB B835E82CC939D8C7689F090CD5F F30345F3130>

<4D F736F F D208EF596BD8E8E8CB B835E82CC939D8C7689F090CD5F F30345F3130> 第 4 回続高橋セミナー 寿命試験データの統計解析 015 年 4 月 10 日高橋行雄 BoStat 研究所 ( 株 ) 要約 : 工業製品の通常の環境下での寿命を予測することは, 長い時間かかるために過酷な条件下で製品が故障するまでの時間から, 通常の使用状況下での製品寿命を推定することになる. 加速 ( 過酷 ) 寿命試験では, 事前に設定した試験期間になった場合に, 対象製品が故障していなくとも試験を終了することになる.

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

スライド 1

スライド 1 全国消費実態調査の匿名データを用いた 人以上世帯の保険需要の分析 宇野慧 アステラス製薬株式会社開発本部データサイエンス部 要旨 : 貯蓄型保険と非貯蓄型保険両方の需要に対して 世帯属性の中でも特に就業状況が与える影響に着目した データは平成 6 年度の総務省全国消費実態調査の匿名データを用いた SUR(Seemingl Unrelated Regression) Tobit モデル推定の結果 就業状況が保険需要に与える影響は貯蓄型と非貯蓄型で大きく異なることが確認できた

More information

Microsoft PowerPoint - H17-5時限(パターン認識).ppt

Microsoft PowerPoint - H17-5時限(パターン認識).ppt パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を

More information

要旨 : データステップ及び SGPLOT プロシジャにおける POLYGON/TEXT ステートメントを利用した SAS プログラムステップフローチャートを生成する SAS プログラムを紹介する キーワード :SGPLOT, フローチャート, 可視化 2

要旨 : データステップ及び SGPLOT プロシジャにおける POLYGON/TEXT ステートメントを利用した SAS プログラムステップフローチャートを生成する SAS プログラムを紹介する キーワード :SGPLOT, フローチャート, 可視化 2 SAS プログラムの可視化 - SAS プログラムステップフローチャート生成プログラムの紹介 - 福田裕章 1 ( 1 MSD 株式会社 ) Visualization of SAS programs Hiroaki Fukuda MSD K.K. 要旨 : データステップ及び SGPLOT プロシジャにおける POLYGON/TEXT ステートメントを利用した SAS プログラムステップフローチャートを生成する

More information

Microsoft PowerPoint - SASユーザ総会2016_MRCT_送付用.pptx

Microsoft PowerPoint - SASユーザ総会2016_MRCT_送付用.pptx Multi Regional Clinical Trial の生存時間解析における地域ごとのイベント発現数の予測 淀康秀 1 浜田知久馬 2 ( 1 大日本住友製薬株式会社 2 東京理科大学 ) The prediction of the number of survival event occurrence by region in Multi-Regional Clinical Trial Yasuhide

More information

スライド 1

スライド 1 第 13 章系列データ 2015/9/20 夏合宿 PRML 輪読ゼミ B4 三木真理子 目次 2 1. 系列データと状態空間モデル 2. 隠れマルコフモデル 2.1 定式化とその性質 2.2 最尤推定法 2.3 潜在変数の系列を知るには 3. 線形動的システム この章の目標 : 系列データを扱う際に有効な状態空間モデルのうち 代表的な 2 例である隠れマルコフモデルと線形動的システムの性質を知り

More information

青焼 1章[15-52].indd

青焼 1章[15-52].indd 1 第 1 章統計の基礎知識 1 1 なぜ統計解析が必要なのか? 人間は自分自身の経験にもとづいて 感覚的にものごとを判断しがちである 例えばある疾患に対する標準治療薬の有効率が 50% であったとする そこに新薬が登場し ある医師がその新薬を 5 人の患者に使ったところ 4 人が有効と判定されたとしたら 多くの医師はこれまでの標準治療薬よりも新薬のほうが有効性が高そうだと感じることだろう しかし

More information

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht kubo2015ngt6 p.1 2015 (6 MCMC [email protected], @KuboBook http://goo.gl/m8hsbm 1 ( 2 3 4 5 JAGS : 2015 05 18 16:48 kubo (http://goo.gl/m8hsbm 2015 (6 1 / 70 kubo (http://goo.gl/m8hsbm 2015 (6 2 /

More information

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation : kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)

More information

ファーマコメトリクス研究に 要求されるスキル及び そのための教育 (Sun) 第 1 回ファーマコメトリクス研究会 株式会社ベルシステム 24 医薬関連サービス事業本部生物統計局薬物動態解析グループ笠井英史

ファーマコメトリクス研究に 要求されるスキル及び そのための教育 (Sun) 第 1 回ファーマコメトリクス研究会 株式会社ベルシステム 24 医薬関連サービス事業本部生物統計局薬物動態解析グループ笠井英史 ファーマコメトリクス研究に 要求されるスキル及び そのための教育 2008.11.16 (Sun) 第 1 回ファーマコメトリクス研究会 株式会社ベルシステム 24 医薬関連サービス事業本部生物統計局薬物動態解析グループ笠井英史 今日の内容 ファーマコメトリクス研究のゴール 必要なスキル 教育 教育講演 ではなく 現状の問題点認識 2008 BELLSYSTEM24, Inc. 2 ゴール 有効かつ安全な薬を早く市場に出し

More information

曲線 = f () は を媒介変数とする自然な媒介変数表示 =,= f () をもつので, これを利用して説明する 以下,f () は定義域で連続であると仮定する 例えば, 直線 =c が曲線 = f () の漸近線になるとする 曲線 = f () 上の点 P(,f ()) が直線 =c に近づくこ

曲線 = f () は を媒介変数とする自然な媒介変数表示 =,= f () をもつので, これを利用して説明する 以下,f () は定義域で連続であると仮定する 例えば, 直線 =c が曲線 = f () の漸近線になるとする 曲線 = f () 上の点 P(,f ()) が直線 =c に近づくこ 伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 漸近線の求め方に関する考察 たまい玉井 かつき克樹 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊. 漸近線についての生徒からの質問 数学において図を使って直感的な説明を与えることは, 理解を深めるのに大いに役立つ

More information

OpRisk VaR3.2 Presentation

OpRisk VaR3.2 Presentation オペレーショナル リスク VaR 計量の実施例 2009 年 5 月 SAS Institute Japan 株式会社 RI ビジネス開発部羽柴利明 オペレーショナル リスク計量の枠組み SAS OpRisk VaR の例 損失情報スケーリング計量単位の設定分布推定各種調整 VaR 計量 内部損失データ スケーリング 頻度分布 規模分布 分布の補正相関調整外部データによる分布の補正 損失シナリオ 分布の統合モンテカルロシミュレーション

More information

Microsoft PowerPoint - SPECTPETの原理2012.ppt [互換モード]

Microsoft PowerPoint - SPECTPETの原理2012.ppt [互換モード] 22 年国家試験解答 1,5 フーリエ変換は線形変換 FFT はデータ数に 2 の累乗数を要求するが DFT は任意のデータ数に対応 123I-IMP Brain SPECT FBP with Ramp filter 123I-IMP Brain SPECT FBP with Shepp&Logan filter 99mTc-MIBI Myocardial SPECT における ストリークアーチファクト

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit [email protected] http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

「国債の金利推定モデルに関する研究会」報告書

「国債の金利推定モデルに関する研究会」報告書 : LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: [email protected], E-mail: [email protected] 1 L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t)

More information

4 段階推定法とは 予測に使うモデルの紹介 4 段階推定法の課題 2

4 段階推定法とは 予測に使うモデルの紹介 4 段階推定法の課題 2 4 段階推定法 羽藤研 4 芝原貴史 1 4 段階推定法とは 予測に使うモデルの紹介 4 段階推定法の課題 2 4 段階推定法とは 交通需要予測の実用的な予測手法 1950 年代のアメリカで開発 シカゴで高速道路の需要予測に利用 日本では 1967 年の広島都市圏での適用が初 その後 1968 年の東京都市圏など 人口 30 万人以上の 56 都市圏に適用 3 ゾーニング ゾーニングとネットワークゾーン間のトリップはゾーン内の中心点

More information