第2章
|
|
|
- ゆゆこ やなぎしま
- 8 years ago
- Views:
Transcription
1 第 2 章 企業の行動 : 第二部 ここでは 短期の供給曲線がなぜ右上がりになるのか述べます 企業は利潤を最大化すると仮定します (1) π = TR TC π : 利潤 TR : 総収入 TC : 総費用 企業は自己の生産物の価格 P に影響をしない と仮定します このことは 生 産物市場が完全競争市場であるということを意味します 詳しくは 完全競争 市場の定義について教科書などを参考にしてください 1 すると式 (1) は (2) π = P q ( VC + FC) VC : 可変費用 ( 生産量と共に変化する費用 ) FC : 固定費用 ( 生産量に関係なく 生じる費用 または 生産量がゼロでも生じている費用 ) 生産物市場が完全競争市場の場合 価格 P の上に が付いている意味は 価格 P が一定であるということです 企業の生産物 q に対する需要は水平であることを意味します 企業は生産物市場の 価格についてプライステイカーである ともいいます 生産物市場が寡占市場の場合 企業の生産が市場の生産物価格 P に影響する 企業の生産物 q に対する需要は右下がりであることを意味します [ 寡占 ] 独占 : 市場に企業が一つだけ存在し 類似品がない 複占 : 二つの企業が市場に存在する 1 ミクロ経済学について日本語で丁寧に良く書かれていると思われる教科書に 西村和雄 ミクロ経済学入門 ( 第 2 版 ) 岩波書店,1995 年 があります
2 独占的競争 : 二つ以上の企業が存在する 式 (2) に戻ります 生産物 ( 量 ) q について考えてみます 企業は生産において 原料 中間財 電気 水などに労働 L と資本 K を投入して q を製造 ( 生産 ) することになります 生産関数で表すと (3) q = f ( raw materials, int ermideate goods, electricities, water, labor, capital) となります ここでは これらの生産要素の価格が企業にとって決められていている状態 を想定します ( このことは これらの生産要素市場が完全競争であるというこ とを意味します ) 便宜上 ここで原料 中間財 電気 水等については 企業は既にこれ らを購入して必要なだけあるとします 注意 : 少々混乱しますが 生産物 q といって 具体的に数量で考えればなにも問題は無いのですが 数量ではなく貨幣単位として 付加価値 (value added) として考えるときがよく分析上行われます つまり 生産関数を式 (3) のように書くのではなく (4) q = f ( labor, capital) このように表示にします この表現では 生産物 q は付加価値となるので 企業 の生産活動による総価値から原材料や中間財などの諸費用を差し引いた残りと解釈します つまり 価値の純生産 ( つまり 付加価値 )q は労働と資本によっ
3 て生産されることを意味します 2 式 (4) についていえば 生産量 q を決定する要素は労働 L と資本 K です そして 経済学の企業行動分析として 短期 と 長期 の分析とに区別され ます 短期の企業行動 生産要素のうち少なくとも一つの要素が固定されている状態をいいます 式 (4) を使って表現すれば (5) q = f ( labor, capital is fixed.) = f ( L, K ) となります 長期の企業行動 すべての生産要素 ここでは労働も資本 が固定されていない生産活動をさし ます 式 (4) を使って表現すれば (6) q = g( labor, capial) = g( L, K) となります 式 (5) を式 (2) に代入して 短期の企業の利潤式を次のように表すことができます (7) π = Pq( L, K ) ( VC + FC) = Pq( L, K ) ( w L + r K ) 式 (7) について 先ほどの生産要素市場が完全競争であるという仮定をつかいますと 賃金率 w や利子率 r は市場で決定されているので 個々の企業にとって定数ということになります 3 2 経済学では式 (4) の生産物 q は付加価値ですが q を生産量として考えると理解しやすいです 3 賃金率 といいますと 通常一時間当たりの賃金を意味します すると 労働 L はそう労働時間数と考えます その他 もし労働 L を時間で測るのではなく 労働 L を被雇用者
4 すると 式 (7) はさらに (8) π = Pq( L, K ) ( VC + FC) = Pq( L, K ) ( w L + r K ) となります 賃金率 w や利子率 r の上に が付いていることに注意してください 式 (8) の意味するところは もし生産物市場 ( 企業の生産物が売買される市場 ) と生産要素市場 ( 企業が生産要素である労働や資本を購買する市場 ) が共に完全競争市場と仮定するならば 企業にとって労働雇用量の調整のみが利潤を決定することになります すると 利潤を最大にするために労働者 ( もしくは労働時間数 ) をどれほど雇 用したらよいかという問題がでてきます この労働雇用量を決めるために重要な要因として 生産関数 ( 生産量 q と労働者 L の雇用量の関係 ) が挙げられます 式 (8) の総収入の部分について Pq( L, K ) は 労働 L を一単位増やすと 総収入が K ) だけ増加します 注意 : は変化分とします 一方 式 (8) の総費用の部分について ( w L + r K ) は 労働 L を一単位増やすと 費用が w だけ増えます すると 労働を一単位増加させることによって 収入の変化と費用の変化をみると K ) > w であれば 利潤は増加する K ) = w であれば 利潤は変化しない K ) < w であれば 利潤は減少する ということが分かります の数で測るとすれば w は労働者一人当たりの一日の労働賃金として考えます 考え方はどちらでもいいです もし労働 L を被雇用者の数と考えると理解しやすくなるかもしれませんね
5 K ) について さらに q( L, K ) と労働 L の関係はどうなんだろうか? ここでは短期の企業行動を考えていますので 短期の生産関数の表現は式 (5) が それにあたりますので これについて調べる必要があります (9) 短期の生産関数 : q = f ( L, K ) この生産関数における生産物 ( または生産量 ) q と労働 L の関係について 限界性産力逓減の法則 (the law of diminishing marginal productivity) が成り立つと考えます この法則は経験法則といえます つまり 理論から導出されるのではなく 現実に観測されることです 限界生産力の逓減の法則 他の生産要素を固定して特定の生産要素の量を増加してゆくとき その限界 性産物が次第に減少してゆくという性質 ( 西村和雄 1995 年 447 ページ ) ( 下線部分は 付け加えました ) 生産量 q 図 1. 資本を一定にした場合における生産関数 q = f ( L, K ) E q L dq 点 Eにおける傾き= dl 0 L : 労働量 / 期間当たり
6 限界生産力 ( 限界性産物と同じ定義 ) 他の生産要素の投入量を一定にして特定の生産要素の量を一単位追加すると きの生産量の増加分 ( 西村和雄 1995 年 446 ページ ) 図 1で 限界生産物とは q 線上のある点における接線の傾きを意味します 接線 dq の傾き は 労働 L の増加につれてその傾きが次第に減少することが分かり dl ます 4 この関係を限界性産力逓減の法則といいます つまり 先ほどの K ) > w であれば 利潤は増加する K ) = w であれば 利潤は変化しない K ) < w であれば 利潤は減少する の関係において 労働量 L が増加するとそれにつれて生産量 q も増加するけれど も 追加労働一単位あたり増加分 つまり限界性産物 きます dq は次第に減少してゆ dl 労働雇用量が比較的に少ないときには限界性産物は大きかったのですが 雇用量が増加するにつれて次第に一人当たりの貢献度である q が次第に減少してゆくので K ) > w から K ) = w となります もし 雇用量が多すぎると K ) < w の現象が起きていれば 雇用量を減少させることが利潤を増加させることにつながります 以上の関係を式 (1) を使って表すと 利潤の最大化 : dπ dtr dtc (9) = = MR MC = 0 dq dq dq ここで dtr dtc = MR : 限界収入 = dq dq MC : 限界費用 と定義されるので 限界収入と 4 次第に減少する ことを 逓減 といいます
7 限界費用が等しい時に 利潤は最大になることが分かります 5 限界収入 6 生産量を 1 単位追加するときの総収入の増加分 限界費用 7 生産量を 1 単位追加することによって増加する費用 また 式 (2) をつかって表現すると次のようになります dπ dtr dtc dq dl 1 (10) = = P w = P w = 0 dq dq dq dq dq MP L MP L : 労働の限界生産力 ( 又は 限界生産物 ) P は 生産物市場が完全競争の企業にとっては限界収入であるから 式 (9) の関 w 係にならえばを限界費用と理解できます MP L 5 勿論 最大になるためには 2 階の条件 (the second order condition) は負になる必要があ d π d TR d TC dmr dmc ります : = = < dq dq dq dq dq 6 西村和雄 1995 年 446 ページ 7 西村和雄 1995 年 447 ページ
8 ここで 限界収入 ( つまり 生産物一単位あたりの価格 ) P と限界費用 MC を図に書いてみます 最初に 限界収入の P について この価格は生産物一単位あたり収入でから平 均収入ともいえます 生産物価格が企業の生産量に関係なく一定であるという ことは (X 軸に生産量 Y 軸に生産物価格をとる ) P 図 2. 限界収入 ( 及び平均収入 ) P 8 P となります 0 q w つぎに 限界費用のについてですが 図 1 から理解できるように 雇用量 MP L が増加するにつれて q が増加しますが 限界性産力 MP L は最初は増加するが次第 w に減少することから 限界費用 MC = は 最初に減少して 次第に増加す MP L ることがわかります 9 図では以下のようになります 8 この場合に 限界収入 P は一定なので 生産物価格である P は平均収入といえる w 9 つまり 限界費用の定義であるの 分子 w が一定であれば 分母 MPL の変化が MP L 限界費用に影響することになります
9 MC 図 3. 限界費用 MC 0 q 生産物市場が完全競争である場合に 企業は限界費用曲線をもとに自己の生産物の供給量を決定するのですが この限界費用曲線のすべてが供給曲線となるわけではありません 限界費用線の操業停止点より上の部分が 企業の供給曲線となります MC MC S 損益分岐点 操業停止点 S 0 q
産業組織論(企業経済論)
産業組織論 ( 企業経済論 ) 第 6 回 井上智弘 2010/5/19 産業組織論第 6 回 1 完全競争市場の条件 前回の復習 1. 取引される財 サービスが同質的である. 2. 消費者と企業の数が十分に多く, 誰も価格に影響力を及ぼせない. 3. 情報が完全である. 4. 市場への参入と市場からの退出が自由である. 2010/5/19 産業組織論第 6 回 2 代替財と補完財 : 前回の復習»
ミクロ経済学Ⅰ
労働需要 労働力を雇う側の意思決定 労働力を雇うのは企業と仮定 企業は利潤を最大化する 利潤最大化する企業は どのように労働力を需要するか? まず 一定の生産量を生産する際の 費用最小化問題から考察する 企業の費用最小化 複数の生産要素を用いて生産活動を行なう企業を想定 min C( w, r; y) = wl + rk LK, subject to FKL (, ) y Cwr (, ; y) 費用関数
PowerPoint Presentation
3. 国民所得 : どこから来てどこへ行くのか (1) 基礎マクロ経済学 1 概要 1. 今回のねらい 2. 長期と短期 3. 経済諸部門の相互関係 4. 供給の決定 5. 生産関数の典型的仮定 6. 企業の利潤最大化行動 7. 完全競争市場における企業利潤 8. 確認問題 基礎マクロ経済学 2 1. 今回のねらい ここまでの講義では GDP 消費者物 価指数 失業とは何かについて学んだ 今回から数回を使って
Microsoft Word - ミクロ経済学02-01費用関数.doc
ミクロ経済学の シナリオ 講義の 3 分の 1 の時間で理解させる技術 国際派公務員養成所 第 2 章 生産者理論 生産者の利潤最大化行動について学び 供給曲線の導出プロセスを確認します 2-1. さまざまな費用曲線 (1) 総費用 (TC) 固定費用 (FC) 可変費用 (VC) 今回は さまざまな費用曲線を学んでいきましょう 費用曲線にはまず 総費用曲線があります 総費用 TC(Total Cost)
経済学 第1回 2010年4月7日
経済学 第 13 回 井上智弘 2010/7/7 経済学第 13 回 1 注意事項 次回 (7/14), 小テストを行う.» 企業の生産費用と完全競争市場における生産決定について 復習用に, 講義で使ったスライドをホームページにアップしている. http://tomoinoue.web.fc2.com/index.html 2010/7/7 経済学第 13 回 2 前回の復習 固定費用の水準を決めたときに導くことができる平均費用曲線のことを,
経済学 第1回 2010年4月7日
経済学 第 11 回 井上智弘 2010/6/23 経済学第 11 回 1 注意事項 復習用に, 講義で使ったスライドをホームページにアップしている. http://tomoinoue.web.fc2.com/index.html 2010/6/23 経済学第 11 回 2 前回の復習 企業の生産量は投入量に依存し, 投入量と生産量の関係は, 生産関数として表される. 投入量が固定される投入物のことを固定投入物と呼ぶ.
ミクロ経済学・基本講義 第2回
1 ミクロ経済学基本講義 第 2 回企業行動 Ⅱ りじゅんさいだいか Ⅰ. 利潤最大化生産量の決定 企業の利潤 (π) を式にすると以下のようになる 利潤 (π) = 収入 (R) - 費用 (TC) 費用関数は 生産量と最小費用との関係を表すものですから これを 前提に費用を考えるなら 費用最小化は実現されているといえます では 利潤 (π) はもはや最大化されているのでは? しゅうにゅうかんすうひよう
生産者行動の理論(1)
生産者行動の理論 (1) 生産者の行動 利潤最大化 生産の技術的制約のもとで 生産の技術的制約 生産関数, 費用関数 短期と長期 生産関数の基礎概念 投入物と産出物 規模に関する収穫 限界生産物, 平均生産物 等量曲線 費用関数の基礎概念 短期と長期 固定費用, 可変費用 平均費用, 限界費用 生産者行動の理論 利潤最大化 生産の技術的制約のもとで, 利潤 = 収入ー費用を最大にするように行動 消費者行動
Microsoft PowerPoint - 08economics4_2.ppt
経済学第 4 章資源配分と所得分配の決定 (2) 4.2 所得分配の決定 中村学園大学吉川卓也 1 所得を決定する要因 資源配分が変化する過程で 賃金などの生産要素価格が変化する 生産要素価格は ( 賃金を想定すればわかるように ) 人々の所得と密接な関係がある 人々の所得がどのように決まるかを考えるために 会社で働いている人を例にとる 2 (1) 賃金 会社で働いている人は 給与を得ている これは
Microsoft Word 国家2種経済.doc
NO.36 X 財と Y 財の 2 財について 所得変化及び価格変化が需要量に与える効果に関する次の記 述のうち妥当なのはどれか 1.X 財が下級財の場合には その財の需要の所得弾力性は1よりも小さくなり X 財と Y 財の間に描くことのできる所得 消費曲線は右上がりとなる 2.X 財 Y 財ともに上級財であり 両財が代替財の関係にある場合 X 財の価格が低下すると Y 財は代替効果によっても所得効果によっても需要量が減少するので
産業組織論(企業経済論)
産業組織論 ( 企業経済論 ) 第 8 回 井上智弘 2010/6/2 産業組織論第 8 回 1 注意事項 次回 (6/9) は, 講義のはじめに小テストを行う.» 内容は, 完全競争市場の均衡を求める問題と ( 本日講義を行う ) 独占市場の均衡を求める問題. 講義の資料は, 授業終了後にホームページにアップしている. http://tomoinoue.web.fc2.com/index.html
ミクロ マクロ経済学演習 冬休みの宿題 担当 : 河田 学籍番号 氏名 2014 年 1 月 6 日 ( 月 )17 時までに 河田研究室 (514) まで提出すること 途中の式や思考過程はそのままにしておくこと
ミクロ マクロ経済学演習 冬休みの宿題 2013.12.18 担当 : 河田 学籍番号 氏名 2014 年 1 月 6 日 ( 月 )17 時までに 河田研究室 (514) まで提出すること 途中の式や思考過程はそのままにしておくこと < 需要の価格弾力性 > [ 解法の手順 ] 1 均衡点における需要の弾力性であれば 需要曲線と供給曲線の連立方程式を解き 均衡点の価格と需要量を求める 2 需要曲線上で
独占と不完全競争
独占と不完全競争 競争状態の分類 完全競争 perfect competition 多数の生産者, 同質の財を生産, 個々の生産者は価格支配力を持たない 独占 monopoly 生産者は一社 市場全体の需要曲線に直面 ( 価格をコントロールできる ) 不完全競争 imperfect competition 完全競争でも独占でもない状況 寡占 oligopoly 独占的競争 monopolistic
2004年度経済政策(第1回)
2018 年度前期 ミクロ経済学概論 ( 第 7 回 ) 萩原史朗 ( 地域文化学科地域社会講座 ) 研究室 : 教育文化学部 3 号館 3-330 E-mail:[email protected] ミクロ経済学概論 ( 第 7 回 ) 1 ミクロ経済学のフローチャート 経済主体が多数の場合 ミクロ経済学 価格理論 経済主体が少数の場合 消費者の効用最大化 需要曲線 企業の利潤最大化
Microsoft PowerPoint - 09macro3.ppt
マクロ経済学 [3] 第 3 章設備投資と在庫投資 何のために投資をするのか 中村学園大学吉川卓也 目次 3-1 企業の設備投資 3-2 投資の決定要因 3-3 3-4 資本の使用者費用 3-5 望ましい 1 2 投資とは 1. 消費とは ( 主として ) 家計による財 サービスの購入である 2. 投資とは ( 主として ) 企業が生産のためにおこなう財 サービスの購入である 3. 設備投資とは 民間企業が建物や機械
ミクロ経済学・基本講義 第1回
1 ミクロ経済学基本講義 第 1 回企業行動 Ⅰ イントロダクション 科目の性質と学習方法 経済学 理解 練習型 ( 暗記科目ではない!) [ 講義中 ] : 覚える ことよりも 分かる ことに注力する ( 話の流れを見失わないように注意すること!) [ 講義終了後 ] : 1 予習は不要 指示されたことをしっかりと復習する 2 グラフや用語を紙に 描 ( 書 ) きながら 話の展開を確認する 3
Ⅲ 特殊的要素モデル(Specific Factor Model)
特殊的要素モデル (Specific actor Model) 07 年 5 月 9 日 07 年度前期大学院 理論の背景 Jones,R.W. (97), A Three-actor Model in Theory, Trade, and History, in Bhagati,J., R.W.Jones, and J.Vanek (eds.), Trade, Balance of ayments
ミクロ マクロ経済学演習 冬休みの宿題 担当 : 河田 学籍番号 氏名 模範解答 2014 年 1 月 6 日 ( 月 )17 時までに 河田研究室 (514) まで提出すること 途中の式や思考過程はそのままにしておくこと
ミクロ マクロ経済学演習 冬休みの宿題 013.1.18 担当 : 河田 学籍番号 氏名 模範解答 014 年 1 月 6 日 ( 月 )17 時までに 河田研究室 (514) まで提出すること 途中の式や思考過程はそのままにしておくこと < 需要の価格弾力性 > [ 解法の手順 ] 1 均衡点における需要の弾力性であれば 需要曲線と供給曲線の連立方程式を解き 均衡点の価格と需要量を求める 需要曲線上で
7. 1 max max min f g h h(x) = max{f(x), g(x)} f g h l(x) l(x) = min{f(x), g(x)} f g 1 f g h(x) = max{f(x), g(x)} l(x) = min{f(x), g(x)} h(x) = 1 (f(x)
7. 1 ma ma min f g h h() = ma{f(), g()} f g h l() l() = min{f(), g()} f g 1 f g h() = ma{f(), g()} l() = min{f(), g()} h() = 1 (f() + g() + f() g() ) 2 1 1 l() = 1 (f() + g() f() g() ) 2 2 1 45 = 2 e 1
Microsoft PowerPoint - 15kiso-macro03.pptx
基礎マクロ経済学 (05 年前期 ) 3. 国民所得 担当 : 小塚匡文 3. 国民所得 3. 決定要因 教科書 66 頁の図 3-より 貨幣の流れを見てみよう これを踏まえ 基本的な古典派モデルで考察 < 生産要素 > 生産に必要なもの ( 原材料以外で ) 資本 ( 設備 ) と労働者 これらの生産性は分配にも影響する < 生産関数 > 生産要素の数量と産出量 ( 財 サービスの供給量
Microsoft PowerPoint - 08economics3_2.ppt
経済学第 3 章の決定とその変化 3.2 需要曲線のシフトと財のの変化 中村学園大学吉川卓也 1 代替財のの変化 みかんのが上昇 ( 低下 ) すると みかんの代替財であるりんごの需要曲線は右 ( 左 ) へシフトする ( 第 2 章 ) 図 3.2は みかんのが上昇したことによりりんごの需要曲線が右シフトしたとき りんごがどのように変化するかを示している みかんの上昇前 : りんごの供給曲線 とりんごの需要曲線
産業組織論(企業経済論)
産業組織論 ( 企業経済論 ) 第 12 回 井上智弘 2010/6/30 産業組織論第 12 回 1 注意事項 次回 (7/7) は小テストを行う.» 範囲は価格差別. 第 1 種 ~ 第 3 種の分類 単一の独占価格を設定する場合と比べて, 価格や利潤, 余剰がどう変わるのか. 講義の資料は, 授業終了後にホームページにアップしている. http://tomoinoue.web.fc2.com/index.html
Microsoft PowerPoint - 13economics5_2.pptx
経済学概論資料 5(2) 改訂版 吉川卓也 6.3 寡占 1. 寡占と複占 寡占とは ある産業で財 サービスを供給する企業の数が少数しかなく それぞれの企業が価格支配力をある程度もっており 他の企業の行動によって影響される状態をいう 寡占のなかで 企業数が2の場合を複占という たとえば 日本ではビール産業は事実上 4 社の寡占である 外国では多数の企業が生産をおこなっている 2 他方で 日本酒の市場は多くのメーカーが競合している
では もし企業が消費者によって異なった価格を提示できるとすれば どのような価格設定を行えば利潤が最大になるでしょうか その答えは 企業が消費者一人一人の留保価格に等しい価格を提示する です 留保価格とは消費者がその財に支払っても良いと考える最も高い価格で それはまさに需要曲線で表されています 再び図
産業組織 B 講義資料 (8) (8) 企業戦略 (ⅰ)- 価格差別 - 産業組織 A では主に寡占市場の構造について学びました ここからは企業の利潤最大化行動を詳しく分析していきましょう まず 価格差別 について学びます 映画館で映画を観るとき 大学生である皆さんは学生証を提示し 大学生料金 を支払いますよね? いわゆる 学割 というもので 普通の大人料金よりも安く映画を観ることが出来るわけです
<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63>
2. 厚生経済学の ( 第 ) 基本定理 2 203 年 4 月 7 日 ( 水曜 3 限 )/8 本章では 純粋交換経済において厚生経済学の ( 第 ) 基本定理 が成立することを示す なお より一般的な生産技術のケースについては 4.5 補論 2 で議論する 2. 予算集合と最適消費点 ( 完全 ) 競争市場で達成される資源配分がパレート効率的であることを示すための準備として 個人の最適化行動を検討する
ミクロ経済学・基本講義 第9回
1 ミクロ経済学基本講義 第 9 回不完全競争 Ⅰ ふかんぜんきょうそうりろんの体系 Ⅰ. 不完全競争理論 完全競争市場均衡はパレート最適である 厚生経済学の第 1 命題 不完全競争理論 完全競争ではないために パレート最適にならない 市場の失敗 完全競争市場が前提でも パレート最適にならない 完全競争市場の 4 要件 不完全競争理論 1. 多数の生産者 消費者の存在 ( 供給 ) 独占市場 価格差別
産業組織論(企業経済論)
産業組織論 ( 企業経済論 ) 第 9 回 井上智弘 2010/6/9 産業組織論第 9 回 1 注意事項 小テストを行う. 講義の資料は, 授業終了後にホームページにアップしている. http://tomoinoue.web.fc2.com/index.html 2010/6/9 産業組織論第 9 回 2 前回の復習 独占市場には, 他の企業の参入を防ぐ参入障壁が存在する. 1 生産要素の独占 2
Microsoft PowerPoint - 08macro6.ppt
マクロ経済学 [6] 第 6 章乗数理論と IS-LM 分析 目次 6- ケインズ経済学の登場 6- 有効需要の原理 6-3 乗数理論 中村学園大学吉川卓也 6- ケインズ経済学の登場 古典派経済学に代わるマクロ経済学の考え方. 一般理論 が生まれた背景 ケインズ経済学とは 総需要 ( 一国全体の需要 マクロの需要 ) に注目した経済学である ケインズJohn Maynard Keynes (883-946)
B 1 レヴィットミクロ経済学 ( 基礎編 ) 演習問題 ( 抜粋 ) の解答 第 2 章 2. a P C 5 I 10 Q D O 75 5P O P O 5P O 100 Q O D P O Q D O 価格 ( ドル ) 20 0 D 100 有機ニンジ
B レヴィットミクロ経済学 ( 基礎編 ) 演習問題 ( 抜粋 ) の解答 第 章. ap C 5I Q D O 75 5P O 5 5P O 5P O Q O D P O 5 Q D O 価格 D 有機ニンジンの数量 bp O Q D O 5 5 cp O 5 Q D O 55 75 Worth Publishers レヴィットミクロ経済学 ( 基礎編 ): 演習問題 ( 抜粋 ) の解答 B dp
ミクロ経済学入門
ミクロ経済学入門 1. ミクロ経済学とは何か ミクロ経済学とマクロ経済学 部分均衡分析と一般均衡分析 ミクロ経済学の方法論的特徴 応用分野 2. ミクロ経済学の基礎概念 需要曲線, 供給曲線 市場均衡, 消費者余剰 生産者余剰 3. 価格メカニズムの役割 ミクロ経済学とは何か マクロ経済学 経済全体の動きを大まかに捉える 簡単な連立方程式体系 (IS-LM 分析など ) 家計や企業 : 合理的な意思決定
短期均衡(2) IS-LMモデル
短期均衡 (2) IS-LM モデル 財市場 IS 曲線 財市場の均衡 政府支出の増加, 減税 貨幣市場 LM 曲線 貨幣需要, 貨幣市場の均衡 マネーサプライの増加 IS-LMモデル 財政政策の効果, 金融政策の効果 流動性の罠 実質利子率と名目利子率の区別 貨幣供給 財市場の均衡 財市場の均衡条件 Y=C(Y-T)+I(r)+G 貸付資金市場の均衡条件 S=Y-C(Y-T)-G S=I(r) 所得
い最適消費点 ) を E 1 と記入しなさい 接点の位置は任意でよい (7)E 0 と E 1 を結んだ曲線の名前は, ( 価格消費 ) 曲線という 問 3.( 1) 下表のカッコ内に 増加 か 減少 の言葉を入れなさい (2) ギッフェン財は上の表では ( 3 ) 番のケースにあたる - 2 -
ミクロ経済学入門 新版 吉田良生 / 角本伸晃 / 青木芳将 / 久下沼仁笥 / 水野英雄著成文堂 2014 年 第 1 章 練習問題 解答 問 1. 次の文章のカッコ内に適切な言葉を入れなさい 海外旅行のようなぜいたく品は価格が下がると需要量が大きく増える ので, 需要の価格弾力性の値が 1 より ( 大き ) く, 米やトイレット ペーパーなどの必需品は価格が下がっても需要量はあまり増えないの
これは を 1 増やすと, はどうなるか という文章になっています. 微分とい う計算は, この問題を解くときに使われます. 微分の式は, d d のように記述します.d は (differetial: 微分 ) の頭文字です. この式は, を で 微分する という記号です. この式は つに分解する
微分っていったい何なのさ ミクロ経済学では, 必ずといっていいほど 微分 が出てきます. 数学は嫌いだという気持ちは良く分かるのですが ( 私もそうですから ), 微分とケンカをしてもいいことは何もありません. 微分は 頭で考えるものではなく, 体で覚えるもの と割り切って, できるだけ早いうちにマスターしてしまいましょう 1.. 例えばこんなときに微分を使う ゆーちょこぼ自動車 ( 株 ) のガーン社長は,
数学の学び方のヒント
数学 Ⅱ における微分単元の 指導法の改善に関する研究 2017 年 10 月北数教旭川大会で発表した内容です 北海道札幌国際情報高等学校和田文興 1 Ⅰ. 研究の動機と背景 高校では極限を厳密に定義できず, 曖昧でわかりにくい. 私自身は, はじめて微分と出会ったとき, 極限の考え方等が納得できなかった. y () a h 接線 a 傾き (a) 2 Ⅰ. 研究の動機と背景 微分の指導改善に関する優れた先行研究がいくつかあるが,
Microsoft PowerPoint - 15kiso-macro09.pptx
基礎マクロマクロ経済学 (2015 年度前期 ) 9. 総需要 :IS-LM 分析の応用担当 : 小塚匡文 9.1 IS-LM 分析の応用 : 短期均衡の変化 < 政府購入の変更 > 政府購入が ΔG だけ増えた場合 ( 拡張的財政政策 ) IS 曲線は右シフトし 仮に金利が一定であるとすれば 所得 生産は 1 = G 1 ( MPC) だけ増加 ( : ケインジアン クロスと乗数効果 ) LM 曲線との交点
様々なミクロ計量モデル†
担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル
第11回
第 11 回水産資源の経済学 I: 水産資源管理の経済理論 12 月 19 日有賀健高 今回の内容 水産資源に関する以下の二つの経済モデルを理解する 1 誰でも自由に漁業ができるオープンアクセスな漁場における経済モデル 2 私的所有権が設定されており 漁業権を持った業者だけが漁業を行う漁場における経済モデル 講義で扱う項目 水産資源の特徴 水産資源の成長関数 漁業者の生産関数 オープンアクセスな漁場における経済モデル
<4D F736F F D208CF68BA48C6F8DCF8A C31312C CC295CA8FC194EF90C582C697988E718F8A93BE90C52E646F63>
年 月 4 日 ( 水曜 3 限 )/6. 個別消費税と利子所得課税. 一括固定税と超過負担 財 と財 に関する個人の消費選択のモデルを用いて 一括固定税の効果と超過負担について検討しよう なお 一括固定税とは 個人が行動を変化させても税額が変化しない税 であり 人頭税がその例である < 税の存在しない場合の予算制約式 > 財 i の量を x i 税が存在しないもとでの財 i の価格を pi とする
<4D F736F F F696E74202D20837E834E838D2D91E6428FCD EF97708DC58FAC89BB96E291E E707074>
B.3 費用最小化問題 生産要素価格 生産量所与 生産費用を最小化する生産要素投入量の決定 利潤最大化問題より まずは費用最小化問題 1 利潤最大化の必要条件 2 利潤最大化問題 = 生産財価格の受容者としての 利潤最大化問題 収穫一定 規模の経済の下で不適 1 B.3.1. 生産費用の概念 定義 B.26 固定費用 -fied cost 生産計画期間中に投入量変更不可な生産要素費用 1 埋没費用
切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (
統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない
<4D F736F F D E937897FB8F4B96E291E882CC914F94BC959495AA82CC89F0939A>
練習問題 1 章練習問題 1. 名目 GD 実質 GD GD デフレータに関して以下の問いに答えなさい 1-1: 1974 年の日本の名目 GD は対前年比で 20% の上昇を示したのに 実質 GD は 1% の下落であった このとき GD デフレータは対前年比で何 % 変化したか (21%) 1-2: 1997 年の日本の名目 GD は対前年比で 2% の下落を示したが GD デフレータも 4%
<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A>
第 3 章 GDP の決定 練習問題の解説 1. 下表はある国の家計所得と消費支出です 下記の設問に答えなさい 年 所得 (Y) 消費支出 (C) 1 年目 25 15 2 年目 3 174 (1) 1 年目の平均消費性向と平均貯蓄性向を求めなさい (2) 1 年面から 2 年目にかけての限界消費性向を求めなさい 解答 (1).6 と.4 (2).48 解説 (3 頁参照 ) (1) 所得に対する消費の割合が平均消費性向です
Microsoft PowerPoint - 15InMacro4.pptx
第 4 章貨幣とインフレーション 初級マクロ経済学 1(2015 年度 ) 担当 : 中川竜一 第 4 章のテーマ (1/2) 価格 : 貨幣が財 サービスと交換される比率 インフレーション : 言い換えれば インフレーション : 激しいインフレ 2 : 逆の現象 インフレの原因 影響 社会的コストを学ぶ 古典派の理論 ( 価格伸縮的な長期の経済 ) 日本のインフレーション 3 25 年率 (%)
Microsoft Word - microeconomics_2017_social_welfare11
2017 春経済原論 ( ミクロ経済学 ) 2017 年 6 月 20 日 3 なぜ市場均衡が望ましいのか ( つづき ) 価格, 限界費用, 限界効用 B D 需要曲線 K F = 限界効用曲線 E C G A 供給曲線 = 限界費用曲線 O X 1 X * X 2 需要量, 供給量 ケース 1 X * ( 市場均衡 ) まで生産して消費する場合限界効用の合計 (= 総効用 )= OX * EB
Microsoft Word - t30_西_修正__ doc
反応速度と化学平衡 金沢工業大学基礎教育部西誠 ねらい 化学反応とは分子を構成している原子が組み換り 新しい分子構造を持つことといえます この化学反応がどのように起こるのか どのような速さでどの程度の分子が組み換るのかは 反応の種類や 濃度 温度などの条件で決まってきます そして このような反応の進行方向や速度を正確に予測するために いろいろな数学 物理的な考え方を取り入れて化学反応の理論体系が作られています
経済学b 第1回
経済学 b 第 9 回 講義について 暫定版の講義資料を できる限り 講義当日の午前 0 時までにホームページにアップするので 必要に応じてダウンロードすること URL: http://tomoinoue.web.fc2.com/index.html 補講は 1/14( 金 ) 2 時限 E-202 教室 2010/12/1 2 前回の復習 投資資本ストック資本減耗率 I = K K + dk t
Excelを用いた行列演算
を用いた行列演算 ( 統計専門課程国民 県民経済計算の受講に向けて ) 総務省統計研究研修所 この教材の内容について計量経済学における多くの経済モデルは連立方程式を用いて記述されています この教材は こうした科目の演習においてそうした連立方程式の計算をExcelで行う際の技能を補足するものです 冒頭 そもそもどういう場面で連立方程式が登場するのかについて概括的に触れ なぜ この教材で連立方程式の解法について事前に学んでおく必要があるのか理解していただこうと思います
Microsoft Word - 演習問題解答(第1から第12)最終修正済.docx
吉田真理子 荒田映子著 ミクロ経済学の理論と演習 中央経済社, 03 年 演習問題の解答 解説 第 章ミクロ経済学と消費者 () 右下がりの曲線であることは 選好順序の単調性の仮定から図表 を用いて説明する () 右上方の無差別曲線ほど効用が高くなることは () と同様に選好順序の単調性の仮定から図表 を用いて説明する (3) 原点に対して凸の曲線であることは 選好順序の凸性の仮定の下では無差別曲線が図表
ゲーム理論
初歩から学ぶクールノー競争とベルトラン競争 渡辺隆裕首都大学東京 Dec 5, 015 1 構成 ベンチマーク独占企業の行動同質財の市場とクールノー競争クールノー競争下でのコストダウン製品差別化とベルトラン競争ベルトラン競争下でのコストダウン戦略的代替と戦略的補完 Dec 5, 015 ベンチマーク : 独占企業の行動 線形モデルによる分析 Dec 5, 015 市場構造の分類とゲーム理論 完全競争市場
数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期
数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学
曲線 = f () は を媒介変数とする自然な媒介変数表示 =,= f () をもつので, これを利用して説明する 以下,f () は定義域で連続であると仮定する 例えば, 直線 =c が曲線 = f () の漸近線になるとする 曲線 = f () 上の点 P(,f ()) が直線 =c に近づくこ
伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 漸近線の求め方に関する考察 たまい玉井 かつき克樹 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊. 漸近線についての生徒からの質問 数学において図を使って直感的な説明を与えることは, 理解を深めるのに大いに役立つ
特殊なケースでの定式化技法
特殊なケースでの定式化技法 株式会社数理システム. はじめに 本稿は, 特殊な数理計画問題を線形計画問題 (Lear Programmg:LP) ないしは混合整数計画問題 (Med Ieger Programmg:MIP) に置き換える為の, 幾つかの代表的な手法についてまとめたものである. 具体的には以下の話題を扱った. LP による定式化 絶対値最小化問題 最大値最小化問題 ノルム最小化問題 MIP
(2) 出題分析のポイントミクロは 5 問とも得点しやすい典型的なパターンの計算問題ミクロ経済学 5 問はすべて計算でした 5 問共にⅥ 計算マスター編に出ている典型的な問題であり 計算問題をある程度練習すれば全問正解も可能な出題でした 内容的には Ⅱミクロ編の範囲が 4 問 Ⅳ 上級ミクロ編の範囲
国家公務員 Ⅱ 種の経済学 2007 年 7 月 26 日 経済学入門塾講師 : 石川秀樹 国家公務員 Ⅱ 種は 通称 国 Ⅱ: こくに と呼ばれますので ここでも国 Ⅱ ( こくに ) と呼ぶこととしましょう 1. 国 Ⅱ 試験の概要 受験資格 受験科目など試験概要は人事院のサイトをご覧ください http://www.jinji.go.jp/saiyo/shiken.htm 2.2007 年国 Ⅱ
7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推
7. フィリップス曲線 経済統計分析 ( 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推定結果に基づく予測シミュレーション 物価と失業の関係......... -. -. -........ 失業率
3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考
3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる
<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>
力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を
PowerPoint プレゼンテーション
製品競争下での インストア広告サービスの 戦略的効果 慶應義塾大学大学院松林研究室 M2 小林春輝 目次 1. はじめに 2. モデルの定式化 3. 分析 考察 4. 結論 はじめに ICT の著しい発展 多様な消費者ニーズを把握しやすくなり 製品開発に活用 メーカー企業に製品ラインナップを拡大させるインセンティブを与え熾烈な品揃え競争 市場に存在する過剰な製品数 はじめに このメーカー内のそれぞれの製品を比較検討
木村の理論化学小ネタ 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお
緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 酸と塩基 弱酸 HA の水溶液中での電離平衡と酸 塩基 弱酸 HA の電離平衡 HA H 3 A において, O H O ( HA H A ) HA H O H 3O A の反応に注目すれば, HA が放出した H を H O が受け取るから,HA は酸,H O は塩基である HA H O H 3O A
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
Microsoft Word - 1B2011.doc
第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を
2017年度 金沢大・理系数学
07 金沢大学 ( 理系 前期日程問題 解答解説のページへ 次の問いに答えよ ( 6 z + 7 = 0 を満たす複素数 z をすべて求め, それらを表す点を複素数平面上に図 示せよ ( ( で求めた複素数 z を偏角が小さい方から順に z, z, とするとき, z, z と 積 zz を表す 点が複素数平面上で一直線上にあることを示せ ただし, 偏角は 0 以上 未満とする -- 07 金沢大学
ヘクシャー=オリーン・モデル
ヘクシャー = オリーン モデル 07 年度前期大学院 07 年 5 月 6 日 6 月 日 理論の背景 師弟関係にある 人のスウェーデンの学者 エリ ヘクシャー (Eli Hecksche,879-95) バーティル オリーン (Betil Ohlin,899-979) が完成させた理論で オリーンは 977 年にノーベル経済学賞を受賞 ヘクシャーの論文は 99 年に発表されていたが スウェーデン語で書かれたために普及せしたかった
Microsoft Word - 8章(CI).doc
8 章配置間相互作用法 : Configuration Interaction () etho [] 化学的精度化学反応の精密な解析をするためには エネルギー誤差は数 ~ kcal/mol 程度に抑えたいものである この程度の誤差内に治まる精度を 化学的精度 と呼ぶことがある He 原子のエネルギーをシュレーディンガー方程式と分子軌道法で計算した結果を示そう He 原子のエネルギー Hartree-Fock
第1章 財務諸表
企業財務論 2010( 太田浩司 ) Lecture Note 22 1 第 22 章債券分析 Part 2 1. スポット レートとフォワード レート 1.1 スポット レートスポット レートとは 現在から一定期間後に満期となる割引債の利回り ( 複利利回り ) のことである 例えば 1 年物スポット レート (r 1 ) 6% 2 年物スポット レート (r 2 ) 7% 3 年物スポット レート
横浜市環境科学研究所
周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.
