(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi
|
|
|
- はすな きせんばる
- 8 years ago
- Views:
Transcription
1 II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Law of Large Numbers) (Radom Walks) 6 2. (Markov Chais) d (d-dimesioal Radom Walks) (Oe-dimesioal Ati-symmetric Radom Walks) ( 2.2(iii)) (Applicatos of Probability Thoery; Other Topics) 8 4. (Rui problem) (Prisoer s Dilemma)
2 (Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-field); (2 Ω Ω ) (i) Ω F (ii) A F A c F (iii) A F ( =, 2,...) A F, A F (evet). P = P (dω) (Ω, F) (probability measure), i.e., ; P : F [0, ]. (i) P (Ω) = (ii) A F ( =, 2,...) P ( A ) = P (A ) (σ ). (Ω, F, P ),. (i) σ-., F σ- A, B, A F F, A B, A \ B, A B := (A \ B) (B \ A), A. lima lim sup A := A, lima lim if A := A F. N N N N (lim = if sup, lim = sup if.) = (ii) P ( ) = 0, A k F (k =, 2,..., ) P ( A k) = P (A k) ( ). (iii) A, B F; A B P (A) P (B) ( ). ( ) (iv) A F, A P A = lim P (A ). ( ) (v) A F, A P A = lim P (A ).. ( ) (vi) A F ( ) P A P (A ) ( ). (vii) (Borel-Catelli ) A F ( ), ( P (A ) < P ) lim sup A = 0, i.e., P ( ) lim if Ac =.
3 (Ω, F, P ) X = X(ω) : Ω R {X a} := {ω Ω; X(ω) a} F ( a R). (radom variable). X S = {a j } j R, {X = a j } F ( j ). X k (Ω, F, P ) (k =, 2,..., ). {X k } (idepedet) P (X a,, X a ) = P (X a ) P (X a ) ( a k R, k =,..., ). {X k } k N {X k } N. X k S = {a j } j, : P (X = b,, X = b ) = P (X = b ) P (X = b ) (b k S, k =,..., ). µ(a) = P (X A) X (distributio), F (x) = P (X x) X (distributio fuctio)..2, (Expectatios, Meas) X Z := Z {± }. X (expectatio) or (mea) EX = E[X] = XdP = X(ω)P (dω). () X 0 EX := P (X = ) + P (X = ). =0 (P (X = ) = 0 P (X = ) = 0. P (X = ) > 0 EX =.) (2) X X + := X 0, X := ( X) 0 ( X ± 0, X = X + X.) EX := EX + EX.,. EX = Z P (X = ), f : Z R, Ef(X) = f()p (X = ). (.) Z ;f()>0 ;f()<0 X, V (X) := E[(X EX) 2 ] = E[X 2 ] E[X] 2.. (Chebichev ) p. a > 0, P ( X a) E[ X p ] a p. [ ] P ( X a) = P ( X p a p ) p =. E X = P ( X = ) a P ( X = ) a a P ( X = ) = ap ( X a). Ω.2 X,..., X Z, E[Xk 2 ] < (k =,..., ). X,..., X, E[X j X k ] = E[X j ]E[X k ] (j k). 0 (E[X k ] = 0) ( ) 2 E X k = E[Xk]. 2 2
4 [ ] () j k P (X j = m, X k = ) = P (X j = m)p (X k = ) E[X j X k ] = m, mp (X j = m, X k = ) = m, mp (X j = m)p (X k = ) = E[X j ]E[X k ]. ( ) 2 (2) X k = X j X k () j k E[X j X k ] = E[X j ]E[X k ] = 0. X 2 k + j k.3 (Law of Large Numbers), /2.,., X =, X = 0. EX = /2 ( V (X ) = /2 )., X k,, /2..3 ( (Weak Law of Large Numbers)) X, X 2,... EX = m v := sup V (X ) < ϵ > 0, lim P ( ) X k m ϵ = 0, i.e., lim P ( ) X k m < ϵ =. [ ] {X } { X = X m} ( ). X k m = (X k m), X X m = 0, i.e., E[X ] = 0 V (X ) = E[X] 2, ( ) 2 E X k = E[Xk] 2 = V (X k ) sup V (X ) = v. ϵ > 0, ( P ) X k ϵ = P ( ) X k ϵ v ϵ 2 2 = v ϵ 2 0 E[( X k) 2 ] ϵ 2 2 ( ). X, X, ϵ > 0, P ( X X ϵ) 0 ( ), X X i pr., X X. P (X X) =, X X, P -a.s., X X. (a.s. almost surely ).2, i.e., X X, P -a.s. X X i pr.. 3
5 ( P (X X) = P { X X < } = P k k N N k N N k, lim P { X X } = P N k N N N ( = k, lim P X N X ) lim N k P N N (, /k ϵ > 0. ) { X X k } = 0 { X X k } = 0 { X X k } = 0.,.,.,,..3, i.e., X X i pr. { k }; X k X a.s.. (, (?) { k }; P ( X k X 2 ) k 2 k. Borel-Catelli P { X k X < 2 } k =..) N,.. k N.4 ( (Strog Law of Large Numbers)) X, X 2,... EX = m v := sup V (X ) < ( ) P lim X k = m =..2,,. ( ) P lim (X k EX k ) = 0 =. [ ] EX = 0, S = (X k /k), (i) Kolmogorov sup k S k S 0 ( ) i pr. (ii), {S } Cauchy,. (iii) Kroecker X k 0 P -a.s..,,. 4
6 [ sup E[X 4 ] < ] X X = X m m = 0, i.e., E[X ] = 0 ( ) 4 X k 0 E[Y 2 ] (E[Y 4 ]) /2 ( ; 0 V (X) = E[(X EX) 2 ] = E[X 2 ] (EX) 2.) ( ) 4 E X k = E[Xk] 4 + i j, i,j E[Xi 2 ]E[Xj 2 ] 2 sup E[Xk] 4 k Fubii ( ) 4 ( E ) 4 X k = 4 E X k 2 sup E[Xk] 4 < k P = ( = ( = ) ) ( X k < =,, P lim lim., δ > 0,. (X k EX k ) = 0 P -a.s. +δ = ) X k = 0 = δ 0 ( ).. R ( ) µ(dx) = g(x)dx g(x) = e (x m)2 2v 2πv, m, v (ormal dist.), (Gaussia dist.), N(m, v).. X, Y a R, P (X a) = P (Y a), X (d) = Y. (X = Y i the sese of distributio ).5 ( (Cetral Limit Theorem)) {X } (idepedet idetically distributed = i.i.d. ). EX = m, V (X ) = v (X k m) 0, v N(0, v), i.e., a < b,, v lim P ( a (X k m) b ) = b 2πv a e x2 2v dx. (X k m) 0, N(0, v),,, Fourier,. (. 5
7 2 (Radom Walks),,.,,. d, d. Z d ( j = (j,..., j d )) d (lattice). (X, P ) d (simple radom walk),, 2d,. Y = X X ( ) {X 0, Y, Y 2,...}, {Y }, P (Y = k) = /(2d) ( k = ), = 0 ( k = ). k = (k,..., k d ), k = k k2 d. {X 0, Y, Y 2,...}, k 0, k,..., k Z, P (X 0 = k 0, Y = k,..., Y = k ) = P (X 0 = k 0 )P (Y = k ) P (Y = k ). Z d {p k } k Z d (p k 0, p k = ), (X, P ), d. P (Y = k) = p k (, k Z d ). P j (X = k,..., X = k ) := P (X = k,..., X = k X 0 = j) P j (X, P j ) j d. 2. P (A B) := P (A B)/P (B) P (B) > 0. A, B F P (A B) = P (A). 2. (Markov Chais),,.. 2. S,,.,,,.,.,,,,.. S, (X, P ) = (X (ω), P (dω)) ( = 0,, 2,...) S (Stochastic Processes), 0, X, i.e., j S, {X h = j} F. (X, P ) (Markov Chai) : 6
8 (M) [ ], j 0, j,..., j, j, k S, P (X + = k X 0 = j 0,..., X = j, X = j) = P (X + = k X = j).. (M2) [ ], j, k S, P (X + = k X = j) = P (X = k X 0 = j).,. 0, j, k S, q () j,k = P (X = k X 0 = j), Q () = (q () j,k ) ( ) (-step trasitio probability (trasitio matrix)),, Q () Q = (q j,k ),, ( ). 2.. (i) q () j,k 0, k q() j,k = (j S), (ii), j 0, j,..., j S. P (X = j,..., X = j X 0 = j 0 ) = P (X = j X = j )P (X = j X 2 = j 2 ) P (X = j X 0 = j 0 ) = q j0,j q j,j = P (X m+ = j,..., X m+ = j X m = j 0 ) (m 0) (iii) Q (0) = I := (δ jk ) ( ), Q () = Q ( ). (Q ) jk = q j,j q j,j 2 q j,k j,...,j X 0 µ = {µ j }; µ j = P (X 0 = j) (iitial distributio),, j S, P (X 0 = j) = P P j, (X, P j ) j. ( P (X 0 = j) > 0, P j ( ) := P ( X 0 = j),.) 2.2 P j0 : ( ) P j0 z(x + = k X 0 = j 0,..., X = j, X = j) = P j0 (X + = k X = j) = P j0 (X 2 = k X = j) = q j,k 2.2 P j0 ( ) := P ( X 0 = j 0 ) P j0 (X 2 = k X = j) = q j,k. 2.3 µ = {µ j },. (i) P (X 0 = j 0, X = j,..., X = j ) = µ j0 q j0,j q j,j, (ii) P (X = k) = j S µ j q () j,k. 2.4 (i) {B k }, A, C, P (A B k) = P (A C) ( k ). P (A B k ) = P (A C). (ii) m,, j,..., j m, k 0, k,..., k S P (X + = j,..., X +m = j m X 0 = k 0, X = k,..., X = k ) = q k,j q j,j 2 q jm,j m ( 2.3 (i)),. P (X + = j,..., X +m = j m X 0 = k 0, X = k,..., X = k ) = P (X + = j,..., X +m = j m X = k ). 7
9 , j S (recurrece time): T j : T j = if{ ; X = j} (= if { } = ). j (recurret) j (trasiet) def P j (T j < ) =, def P j (T j < ) <. j, T j, j (positive-recurret) def E j [T j ] < ( P j (T j < ) = ), j (ull-recurret) def E j [T j ] =, P j (T j < ) =. E j [T j ] T j P j, : E j [T j ] = mp j (T j = m) + P j (T j = ). m= j (or,, ) (X ) (or,, ). 2.5 E j [T j ] < P j (T j < ) =. {X } Q = (q j,k ) π = {π j } π (statioary distributio) def π k = j π jq j,k (k S), π (reversible distributio) def π k q k,j = π j q j,k (j, k S) (i) π,, X π. (ii) π, {X } :, j 0,..., j S, P (X 0 = j 0,..., X = j ) = P (X 0 = j,..., X = j 0 ). {X } Q = (q j,k ) (irreducible) j, k,, q () j,k > 0.,,. (,,.), : 2.2 j, k S. (i) j : a) q () j,j =. =0 b) P j ({X } j ) =. 8
10 (ii) j : a) q () j,j <. (iii) =0 b) P j ({X } j ) = 0. {X },,,,,. (π j ) [ k, j π jq j,k = π k ], π j = /E j [T j ] ( ). (i), (ii) b), a), (iii). (iii). 2. (i) j S P j ({X } j ) =. (ii) j S P j ({X } j ) = 0..,,,., 0. m j T (m) j. P j (T (m) j T () j = T j, T (m) j = mi{ > T (m ) j ; X = j} (= if { } = ). < ) = P j (T j < ) m. s, t,, P j (T (m) j = s + t T (m ) j = s) = P j (T j = t). (, [ ]= P j (X s+t = j, X s+u j ( u t ) T (m ) j = s), {T (m ) j = s} {X,..., X s } ( 2.4), ( 2. (ii)) [ ]= P j (X s+t = j, X s+u j ( u t ) X s = j) =[ ].)., P j (T (m) j P j (T (m ) j = s, T (m) j P j (T (m) j < ) = P j (T (m ) j = = s + t) = P j (T (m ) j = s)p j (T j = t) s=m t= < T (m) j < ) P j (T (m ) j = P j (T (m ) j < )P j (T j < ) < ) = P j (T j < ) m. P j ({X } j ) = P j ( m P j (T j < ) =, 0. = s, T (m) j = s + t) {T (m) j < }) = lim m P j(t (m) j < ) = lim m P j(t j < ) m. 9
11 ,. j, k S, f (m) j,k := P j(t k = m) (m ) Q jk (s) := =0 q () j,k s ( s < ), F jk (s) := m= f (m) j,k s ( s ). {q () j,k } 0, {f (m) j,k } m (geeratig fuctios). F jk () = P j (T k < ). 2. j, k S, : q () j,k = m= f (m) j,k q m k,k ( ), Q jk (s) = δ jk + F jk (s)q kk (s) ( s < ). {T k = m} = {X m = k, X s k ( s m )} m= f (m) j,k q( m) k,k = = = P j (T k = m)p j (X = k X m = k) m= P j (T k = m)p j (X = k T k = m) m= P j (X = k, T k = m) m= = P j (X = k) = q () j,k. Q jk (s) = δ jk + = δ jk + = q () j,k s f (m) j,k q( m) k,k s = m= = δ jk + F jk (s)q kk (s). 2.2 j S =0 q () j,j =. Q jj (s)( F jj (s)) = ( s < ) F jj () = P j (T j < ) lim Q jj (s) = s =0 q () j,j s. : =0 q () j,j ( P j(t j < )) =. 0
12 2.8 j k j S =0 q () k,j < ( k S), k S; =0 q () k,j = j :. ( q() k,j = F kj() q() j,j.) 2.2 j j k [i.e., ; q () j,k > 0] P k(t j < ) =., i, j S P i (T j < ) = q i,j +. (, k S;k j q i,k P k (T j < ) P i (X = k, T j = ) = q i,k P k (T j = ) P i (T j < ) = P i (X = k, T j = ) = k S.) i = j j, k ; q j,k > 0, P k (T j < ) =., k 2 ; q k,k 2 > 0, i.e, q (2) j,k 2 > 0, P k2 (T j < ) =., q () j,k > 0 (k,..., k ); q j,k q k,k 2 q k2,k 3 q k,k > 0, : j, j k =0 q () k,j =. j, k S j k k j j k. 2.3 j, k S; j k, j,, k.,,,. l, m 0; q (l) j,k > 0, q(m) k,j > 0. j, =0 q (l+m+) j,j q (l) j,k q() k,k q(m) k,j ( 0) Q jj (s) s l+m q (l) j,k q(m) k,j Q kk(s). lim Q jj (s) = s =0 q () j,j < q () k,k <, k. j, k.
13 . 2. Q jj (s)( F jj (s)) = F jj (s) = Q jj (s)/q jj(s) 2. j. lim s Q jj (s) Q jj (s) 2 = F jj( ) = E j [T j ] <. Q kk (s) s l+m q (m) k,j q(l) j,k Q jj(s), Q jj(s) (l + m + )s l+m+ q (l+m+) =0 s l+m q (l) j,k q(m) k,j Q kk(s) Q kk (s) Q kk (s) 2 Q jj (s) s 3(l+m) (q (l) j,k )3 (q (m) k,j )3 Q jj (s) 2. j,j E k [T k ] = F kk( ) Q kk = lim (s) s Q kk (s) 2 < k. j, k. 2.0 k S E k [T k ] = F kk ( ) , 2.9 j, k S, q() j,k =. j, k S, q() j,k <., j, k S, q() j,k,. 2.2 d (d-dimesioal Radom Walks) (X, P ) d., {p k } k Z d Z d, {X 0, X X 0, X 2 X,...}, P (X X = k) = p k (, k Z d ). ( p k = /(2d).), d. Q = (q j,k ) q j,k = p k j [,,, ] 2. (X, P ) d. (i) X + X (X 0, X,..., X ), i.e., P (X + X = j, X 0 = k 0, X = k,..., X = k ) = P (X + X = j)p (X 0 = k 0, X = k,..., X = k ). k 0, k,..., k Z d, X + X X. (ii) P (X + = j X 0 = k 0, X = k,..., X = k ) = P (X + = j X = k ) = p j k {X }, q j,k = p k j.. 2
14 (iii). ( j k := j k + + j d k d j k, j = k.), Q = (q j,k ) = (p k j ),,,., : 2.3 d (i) d =, 2 (i.e., E j [T j ] = P j (T j < )), (ii) d ( ), q () 0,0. q (2+) 0,0 = 0, q (2) 0,0.. ( 2.2.) 2.4 d Q = (q j,k ) (i) d =, 2 q (2) 0,0 { / π (d = ) /(π) (d = 2) (ii) d = 3 C q (2) 0,0 C 3/2. 2.4,, : (d = 3 (3/π) 3 /4) q (2) 0,0 2 d d d/2 (π) d/2 ( ). a b ( ) def a /b ( ). 2.2 {a }, {b }, a b ( ) c, c 2 > 0; c b a c 2 b ( ).. [ (Stirlig s formula)]! 2π +/2 e ( ). 2.4 d =, : ( ) q (2) 2 0,0 = 2 2. d = 2 q (2) 0,0 = j,k 0;j+k= (2)! (j!k!) = ( 2 ) j=0 ( ) k 3
15 , j=0 d = 3 ( ) 2 = k, 3 ( ) 2. q (2) 0,0 = j,k,m 0;j+k+m= (2)! (j!k!m!) q (2) (2)! 0,0 c 3 6 2!. c = max j,k,m 0;j+k+m= (j!k!m!). c,,. c c3 +3/2 3/2 e (c > 0 ). (), 3 (m!) 3 ( = 3m) c (m!) 2 ((m + )!) ( = 3m + ) (m!) ((m + )!) 2 ( = 3m + 2) (2),, c, c 2 > 0 c +/2 e! c 2 +/2 e (2), (), d = 3 ( ). d =, 2,. 2.5 d =, 2 Z d (i.e., E 0 [T 0 ] = ). 2.3 (i) α > α s Γ(α + ) ( s) α+ (s ). = (ii) α = s = log s. = α > log(/s) s (s ) : α = log x α s x dx = ( log s ) α Γ(α + ). 4
16 2.3 F 00(s) = Q 00(s)/Q 00 (s) 2, d =, q (2) 0,0 / π ( ), s Q 00 (s) = + Q 00(s) = = = s 2 q (2) 0,0 + 2s 2 q (2) 0,0 = = s 2 Γ(/2) π π ( s 2 ), /2 2s 2 2 Γ(3/2) π π ( s 2 ). 3/2 F 00(s) = Q 00(s) Q 00 (s) 2 2 πγ(3/2) Γ(/2) 2 s (s ). s 2 E 0 [T 0 ] = lim s F 00(s) =. d = 2 q (2) 0,0 /(π) ( ), s Q 00(s) E 0 [T 0 ] = lim s 2 Q 00 (s) π log s 2, [ 2 πs( s 2 ) 2 π( s 2 ) π( s 2 ) ( ) ] 2 log s 2 =. 2.3 (Oe-dimesioal Ati-symmetric Radom Walks) Z {X } p (0 < p < ), p. p /2, {X = X (p) }. d, d, ( 0 ). q j,j+ = q 0, = p, q j,j = q 0, = p, q () j,k = ( ) +j k p ( j+k)/2 ( p) (+j k)/2 ( + j k 2Z) 2 0 ( + j k 2Z + ) [ + l, m, l + m =. l m = k j.] 5
17 q (2) 0,0 = ( ) 2 (p( p)) (4p( p)) ( ) π 2.6. p /2 4p( p) < : 2.4 {X = X (p) } (0 < p <, p /2)., Y := X X EY = 2p, : ( ) X P lim = 2p =.,, ε > 0, N, N, (2p ε) < X < (2p +ε). 2.7 p > /2 j, u j (s) := F j0 (s) = m sm P j (T 0 = m) (0 < s < ) u (s) = psu 2 (s) + ( p)s u j (s) = psu j+ (s) + ( p)su j (s) (j 2) lim j u j(s) = 0,,.. ( ) j 4p( p)s F j0 (s) = 2 (0 < s < ) 2ps ( ) j p P j (T 0 < ) = (j ) p [ {X = j + }, {X = j }., P j (T 0 = m) = P j (T 0 = m X = j + )P j (X = j + ) + P j (T 0 = m X = j )P j (X = j ), P j (T 0 = m X = j ) j 2 P j (T 0 = m ), j = P (T 0 = m X = 0) = δ m., P j (T 0 = m) = { pp j+ (T 0 = m ) + ( p)p j (T 0 = m ) (j 2) pp 2 (T 0 = m ) + ( p)δ m (j = ) lim j P j (T 0 = m) = 0 ( m ). psx 2 x + ( p)s = 0 x = α, β (α < β), 0 < α < < β ( 2ps < 4p( p)s 2 ) u 2 αu = β(u α), u 2 βu = α(u β) u j+ αu j = β(u j αu j ), u j+ βu j = α(u j βu j ) (j 2), u j = (β j (u α) α j (u β))/(β α) j u = α. ] 2.8 u j := P j (T 0 < ) (j Z). p > /2 j, u j = P j (T 0 < ) =, j = 0 u 0 = pu + ( p), P 0 (T 0 < ) = u 0 = 2( p) <. 6
18 3.,. 3. ( 2.2 (iii)) 3.. π = (π j ) π j = /E j [T j ] > 0,. i, j S, 2. Q ij (s) = δ ij + F ij (s)q jj (s) i j s lim( s)q jj (s) = lim s s F jj (s) = F jj ( ) = E j [T j ]. lim( s)q ij (s) = F ij() s E j [T j ]., 2.2 F ij () = P i (T j < ) = i, j S, lim( s)q ij (s) = s E j [T j ] (=: π j ). E j [T j ] < 0 < π j. j S ( s)q ij (s) = Fatou j S π j, k S, j S π j q j,k lim if s ( s)q ij (s)q j,k j S lim( s) s =0 s q (+) i,k = lim s ( s)s (Q ik (s) δ ik ) = π k, k π j q j,k = π k (k S) j S. π j ( s)q jk (s) = ( s) j S =0 s j S π j q () j,k = π k. (3) s Lebesgue j π j π k = π k j π j =. π = (π j ). π = (π j ), (3) s π k = F jk () π j E k [T k ] + π k E k [T k ] E k [T k ] j k 7
19 . k; π k > 0 E k [T k ] <,. k S E k [T k ] <, 2.2 F jk () = P j (T k < ) = ( j, k S),., π k = /E k [T k ] > 0 (k S). π = (π j ). 3. Fubii s)q ij (s) =. j S( 3.2 Fatou Lebsgue. [], ( ), (Applicatos of Probability Thoery; Other Topics),,,. 4. (Rui problem) A, B 2, a, b,., A, B,. A 0 < p <., q = p., 0,. A P A.,, P P = 0,..,. 4. () p = /2. P A = b a + b, P B = a a + b. (2) p /2. r := q/p = /p ( ). P A = ra r a+b r a+b, P B = ra r a+b. (3), P = 0,,,,. a A u a.,. u a = pu a+ + qu a (a ), u 0 =, u a+b = 0. (4) 4.. 8
20 , 2. 0,,, a + b, B, 0.,,. Y, A,, A Y =. Y =, i.e., P (Y = ) = p, P (Y = ) = q. X 0 = a, X = X 0 + Y k ( ), A. T 0 = if{ 0; X = 0}, T a+b = if{ 0; X = a + b}, u a = P a (T 0 < T a+b ) = P (T a < T a+b X 0 = a)., Y = ± X = a ±, P a (T 0 < T a+b ) = P a (T 0 < T a+b Y = )P a (Y = ) + P a (T 0 < T a+b Y = )P a (Y = ), (4), a,, a + b, = P a+ (T 0 < T a+b )P (Y = ) + P a (T 0 < T a+b )P (Y = ). u u 0 = u a+ u a = (q/p)(u a u a ) = r a (u u 0). { r k (u u 0) (r = ) (u u 0) = r (u r u 0 ) (r ), = a + b,, u 0 =, u a+b = 0, u u 0 = /(a + b) if r =, = ( r)/( r a+b ) if r., u a = a/(a + b) = b/(a + b) if r =, = ( r a )/( r a+b ) = (r a r a+b )/( r a+b ) if r.., N, B b, v a = E a [N] A a, A. v = + pv + + qv ( a a + b ), v 0 = v a+b = 0., v a = ab (r = ), {(a + b) } ra p q r a+b a (r ). r =, (v a+ v a ) (v a v a ) + 2 = 0, v a = v a v a (a ), v a+ v a + 2 = 0. a =, v + v + 2 = 0., v + = v 2 = v 2. (v 0 = 0.) v + = + v k = ( + )(v )., v = (v ( ))., 0 = v a+b = (a + b)(v (a + b )) v = a + b., v a = a(v (a )) = ab. 9
21 r. p v a+ + = q v a, pv + = qv, v = /(q p)., p( v a+ v) = q( v a v). v a+ v = (q/p)( v a v) = r a ( v v)., v a v = r a (v v). (v 0 = 0.) v a = a v a = av + a r k (v v) = av + ra (v v). r, 0 = v a+b = (a + b)v + ra+b r (v v), v v = (a + b)v r r a+b v a = av (a + b)v ( ra r = v a (a + b) ) ra. a+b r a+b r =,, p = q = /2, a =, b = 00, A P A = 00/0, 00, /2. 4.2,, 3,,.,, 2,.,,,.,,, /3,, 2, /2., 2,,,.,,. /3,, 2/3., /2, 3, /3,,,, 2,, 2/3.,, ( ).,,,,,..,. (,,,.) 4.3 (Prisoer s Dilemma),, 2, (i), 2 2 (ii),, 0 20
22 (iii) 2, 5, 2, 5.,,, A, B, C 3, 2,.,., A B C B, A, 2/3 /2. A,,,,,,.,,,,,.,,, B,, A C, A., C,,, A,.,,,, A,,,,, A 0. 2
(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi
I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,
(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law
I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................
(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t
6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A
.. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.
III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T
III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)
‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í
Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I
V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V
I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)
II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3
II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )
1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct
27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
I
I [email protected] 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (
. 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1
2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =
ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a
populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2
(2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
linearal1.dvi
19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352
量子力学 問題
3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,
20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b
1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
「産業上利用することができる発明」の審査の運用指針(案)
1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)
(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47
4 Typeset by Akio Namba usig Powerdot. / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 (radom variable):
1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +
( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n
ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.
23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%
() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (
3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................
Kullback-Leibler
Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1
( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S
v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i
1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [
16 B
16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..
a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552
3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz
1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x
Grushin 2MA16039T
Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,
n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m
1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N
SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ
SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )
数学Ⅱ演習(足助・09夏)
II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w
X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.
1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
() 3 3 2 5 3 6 4 2 5 4 2 (; ) () 8 2 4 0 0 2 ex. 3 n n =, 2,, 20 : 3 2 : 9 3 : 27 4 : 8 5 : 243 6 : 729 7 : 287 8 : 656 9 : 9683 0 : 59049 : 7747 2 : 5344 3 : 594323 4 : 4782969 5 : 4348907 6 : 4304672
S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt
S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............
読めば必ずわかる 分散分析の基礎 第2版
2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)
2
1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
untitled
i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z
B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
IA [email protected] Last updated: January,......................................................................................................................................................................................
入試の軌跡
4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf
ver Web
ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3
