PowerPoint プレゼンテーション
|
|
|
- きみお じゅふく
- 6 years ago
- Views:
Transcription
1 二次元空間 Fujita-Ogawa モデルの数値解法の開発 第 56 回土木計画学研究発表会 秋本克哉, 赤松隆 東北大学 情報科学研究科 1
2 研究の背景 (1) 中心市街地空洞化の問題 中心市街地の活性化が求められる 都心形成現象を説明する理論が必要 Fujita and Ogawa [FO] (1982) モデル 企業と消費者が立地競争する 企業が複数の都心に集積する立地パターンが均衡解となるメカニズムを示した 居住地区 業務地区 問題点 一次元空間では複数都心が創発する可能性は示されたが二次元空間では集積パターンは未解明 均衡解の安定性は検証されていない 2
3 研究の背景 (2) 最近の FO モデルに関する研究 (Osawa and Akamatsu (2016)) 一次元空間を想定 業務地区 居住地区 中心に業務地区, その周りに居住地区をもつ空間を単位空間とすると, 安定な均衡解は, 規則性をもつ単位空間の集合である 単位空間 単位空間 パラメータ平面で, さまざまな集積パターンが安定な均衡解として創発する 複数都心パターン 二次元空間 FO モデルでは, 安定な均衡解がどのような集積パターンであるのか不明 3
4 二次元空間 FO モデルを分析した研究 (1) 同心円周状パターンを仮定した理論研究 (Ogawa and Fujita (1989), Lucas and Rossi-Hansberg (2002), Kantor et al. (2014)) 業務地区 居住地区 Osawa and Akamatsu (2016) の結果から, 同心円周状パターンは安定な均衡解ではないと考えられる 4
5 二次元空間 FO モデルを分析した研究 (2) シミュレーションに基づく研究 (Delloye et al.(2015)) FO モデルと同様のモデル構造 Agent-based simulation によって立地パターンを計算 Osawa and Akamatsu (2016) の結果と同様, 複数都心に分かれた集積パターン 業務地区 居住地区 問題点 低い空間解像度 ( 都市を表現する格子の細かさ ) では, 集積パターンが正確にはわからない 立地パターンが均衡条件を満たしている保証がない 二次元空間 FO モデルの均衡解を高解像度で求めたい! 5
6 FO モデルの均衡解を求める際の問題点 数値計算による方法を用いた場合 集積パターンを正確に調べるためには, 高解像度にする必要がある 大規模な相補性問題を解かなくてはならない 例えば立地点数が 10 6 の場合, 未知変数の個数は立地点数 2 = のオーダー 必要な計算量と記憶容量が膨大で工夫が必要! 6
7 研究の目的 二次元空間 FO モデルの均衡解を高解像度で効率的に求めるアルゴリズムを開発し, その有効性を検証する 研究のアプローチ FO モデルと等価な最適化問題の構築 効率的に求めるための方法 :Benders Decomposition アルゴリズムで必要とされる演算および記憶させる要素数を大幅に削減 数値実験によって, アルゴリズムの有効性を示す 均衡解の計算 7
8 二次元空間 FO モデルの基本設定 空間 二次元空間 K 個の離散的な立地点集合から構成される 立地主体の行動 消費者 : 居住地 勤務地を選択し, 効用最大化行動を行う 企業 : 立地点を選択し, 利潤最大化行動を行う 8
9 均衡条件 空間均衡条件と市場均衡条件から構成される 消費者 : 効用最大化 通勤パターン 労働市場の需給均衡賃金 労働 企業 : 利潤最大化 立地パターン 土地市場の需給均衡消費者の地代土地居住地 勤務地選択不在地主 土地 企業の立地選択 すべての未知変数を同時に求めなくてはならない の要素数が極めて大きい 9
10 必要な記憶容量と計算量 空間解像度と必要な記憶容量の関係 地点数 1GB 以上 地点数 1TB 以上 2 10 消費者の通勤パターン は地点数 の 要素数を持つ 2 10 さらに, 膨大な計算量が必要! の要素のうちすべてを演算および記憶させずに済むアルゴリズムを提案する 10
11 等価な最適化問題 命題 :FO モデルは次の最適化問題と等価である 生産関数 コミュニケーション費用に対応通勤費用に対応 総企業数制約 土地制約 労働制約 総消費者数制約 11
12 提案アルゴリズム (1) に関するサブ問題とに関するマスター問題に分解 ( Benders Decomposition ) する マスター問題 ( が未知変数 ) サブ問題 ( が未知変数 ) Hitchcock 型問題工夫を施せば容易に解くことができる 収束性を保証するため, ポテンシャル問題に Frank-Wolfe 法を適用し, 線形近似する 12
13 提案アルゴリズム (2) Hitchcock 型問題の効率的解法 着眼点 : 非零の要素が極めて少なく, その要素番号と値のみ記憶させ操作すればよい 最適解はシンプレックスの端点であり, 制約条件の本数 ( ) と非零の要素数が等しい n 要素数 ( ) 記憶させる要素 汎用の数理計画パッケージでは, アルゴリズムで記憶させ操作する要素数はK 2 個 必要な計算量や記憶容量を大幅に削減 13
14 logt アルゴリズムの有効性の検証 実験条件 正方形格子を想定し, 比較ベンチマーク :MATLAB の最適化ツールの linprog 線形近似問題を解く際の問題のサイズ ( 地点数 K) とCPU time( 秒 )Tの関係 パッケージ 本アルゴリズム log K 4 CPU time を 1/1000 に削減し, 必要とされる解像度まで解くことができた : 最悪 : 平均 : 最善 必要とされる解像度 14
15 得られた均衡立地パターン 空間パターンの推移 の増加に伴い様々な極数の多極パターンが得られた 業務地区居住地区 通勤圏の境界 一次元空間 FO モデルの結果と定性的に類似 他にも様々なパターンが創発すると考えられる 15
16 おわりに FO モデルの均衡解を求めるための方法を提案した FO モデルと等価な最適化問題を構築した Benders Decomposition の考え方を用いて, 等価な最適化問題の効率的解法を提案した 数値実験によって本アルゴリズムの有効性を示した パッケージでは解くことができない, 必要とされる解像度まで解くことができた 計算時間を 1/1000 に削減 今後の課題 二次元空間 FO モデルの均衡解の特性の解明 16
17 参考文献 1 Masahisa Fujita and Hideaki Ogawa. Multiple equilibria and structural transition of non-monocentric urban configurations. Regional science and urban economics, Vol. 12, No. 2, pp , Ogawa, H. and Fujita, M. Equilibrium land use patterns in a nonmonocentric city. Journal of Regional Science, 20(4), Fujita, M. and Thisse, J.-F. Spatial duopoly and residential structure. Journal of Urban Economics,30(1),
18 参考文献 2 Berliant, M., Peng, S.-K., and Wang, P. Production externalities and urban configuration. Journal of Economic Theory, 104(2), Minoru Osawa. Monocentric and polycentric patterns in the space economy: A unification of intra-urban and inter-regional theories Hiroshi Ogawa and Masahisa Fujita. Nonmonocentric urban configurations in a two-dimensional space. Environment and planning A, Vol. 21, No. 3, pp ,
19 参考文献 3 Robert E Lucas and Esteban Rossi-Hansberg. On the internal structure of cities. Econometrica,Vol. 70, No. 4, pp , Yuval Kantor, Piet Rietveld, and Jos van Ommeren. Towards a general theory of mixed zones: The role of congestion. Journal of Urban Economics, Vol. 83, pp , Justin Delloye, Dominique Peeters, and Isabelle Thomas. On the morphology of a growing city: A heuristic experiment merging static economics with dynamic geography. PloS one, Vol. 10, No. 8, p. e ,
20 付録 : 関連研究 1 一次元空間 FO モデルの拡張 Berliant et al. (2002), Berliant and Wang (2008) 知識のスピルオーバー効果を導入し利潤関数を一般化 Fujita (1988), Liu and Fujita (1991) 独占的競争モデルに拡張 Lucas and Rossi-Hansberg (2002) など 企業行動や消費者行動を一般化 20
21 付録 : 関連研究 2 Fujita and Ogawa (1982) と異なるアプローチ Heikkila and Wang (2009), Delloye et al. (2015) シミュレーションによって, 集積パターンを計算した Osawa and Akamatsu (2016) FO モデルがポテンシャル ゲームであることを用いて, 確率安定な均衡解を明らかにした 21
22 付録 : ポテンシャル関数の非凸性 ポテンシャル関数 : の非凸性は が負定値であるのかどうかに依存 : は負定値 は一意 : は負定値ではない は一意でない ( 複数均衡が存在 ) 22
23 付録 : スパース行列を用いた場合の実験 実験条件 線形近似問題を解くための問題のサイズ ( 立地点数 K) と CPU 処理時間 ( 秒 )T の関係 正方形格子を想定し, さまざまな条件 ( パラメータ t など ) で実験 比較ベンチマーク :MATLABの最適化ツールの linprog ( アルゴリズムはシンプレックス法 ) CPU: Intel Core i7-4930k 3.40GHz, メモリ : 16GB 実験結果 までしか解くことができず, 必要とされる解像度で解くことはできなかった 23
24 付録 :Hitchcock 型問題アルゴリズム 24
25 付録 : 消費者行動 効用最大化行動 地点 j での賃金 地点 (i, j) 間の通勤費用 地点 i の地代 (t: パラメータ ) 消費者は, 直接効用 U(z,s) を最大化するように合成財需要量 z と土地消費量 ( 定数 ) を選択する より消費者は合成財需要量を最大化するように地点を選択する 25
26 付録 : 企業行動 利潤最大化行動 一定量の消費土地面積と労働需要 L を用いて財を生産する 利潤を最大化するように, 地点を選択する : 生産関数 コミュニケーション費用 : 空間割引関数 (τ: パラメータ ) 26
27 付録 : 均衡条件 空間均衡条件 : 均衡効用 : 均衡利潤 市場均衡条件 27
28 付録 : 最適化問題への変換 (1) 補題 : 企業立地パターンを与件とすれば, 均衡条件は Hitchcock 型問題と等価である 消費者行動には外部性が含まれていないため, 均衡状態は社会的最適状態である を与件とした最適地代と最適賃金が求まる 28
29 付録 : 最適化問題への変換 (2) ポテンシャルゲーム 定義 : 下記の性質を満たす関数が存在する集団ゲーム : 利得関数 : 命題 : 利得関数に対するポテンシャル : をもつ, のみを未知変数としたポテンシャルゲームとなる 29
30 付録 :FO モデルの等価最適化問題の証明 KKT 条件から等価性を証明する 企業についての空間均衡条件 消費者についての空間均衡条件 総企業数制約 総消費者数制約 土地市場の需給均衡条件 労働市場の需給均衡条件 30
31 付録 : 必要な記憶容量と計算量 精度よく均衡解を求めるために必要な空間解像度 例えば, 正方形格子の場合, 最低でも一辺あたり百等分 = 地点数 必要な記憶容量と計算量 消費者の通勤パターンは地点数であるの要素数を持ち,1GB 以上の記憶容量と膨大な計算量が必要 の要素のうちすべてを演算および記憶させずに済むアルゴリズムを提案する 31
32 付録 : 実験条件 実験条件 問題のサイズ ( 立地点数 K) と CPU 処理時間 ( 秒 )T の関係 正方形格子を想定し, さまざまな条件 ( パラメータ t など ) で実験 比較ベンチマーク :MATLAB の最適化ツールの linprog ( アルゴリズムはシンプレックス法 ) CPU: Intel Core i7-4930k 3.40GHz, メモリ : 16GB 32
33 付録 : 均衡解の局所安定性について 本アルゴリズムで解いた解は局所最適解である FO モデルはポテンシャル ゲームなので, ポテンシャル極小点は局所安定性を満たす 33
34 付録 : 前スライドの証明 回目の繰り返しにおける解と改訂方向の凸結合を で与える, ここで, はステップサイズ とすると, ( 等号成立はのみ ) であり, となるように降下方向を決めた場合, は単調減少で常にが成立する 34
35 付録 : 均衡解の計算例 (1) 一極パターン 35
36 付録 : 均衡解の計算例 (2) 二極パターン 36
37 付録 : 均衡解の計算例 (3) 四極パターン (1) 37
38 付録 : 均衡解の計算例 (4) 四極パターン (2) 38
39 付録 : 均衡解の計算例 (5) Christaller パターン 39
40 付録 : 均衡解の計算例 (6) 十二極パターン 40
04-04 第 57 回土木計画学研究発表会 講演集 vs
04-04 vs. 1 2 1 980-8579 6-6-06 E-mail: [email protected] 2 980-8579 6-6-06 E-mail: [email protected] Fujita and Ogawa(1982) Fujita and Ogawa Key Words: agglomeration economy,
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
Microsoft PowerPoint - mp11-02.pptx
数理計画法第 2 回 塩浦昭義情報科学研究科准教授 [email protected] http://www.dais.is.tohoku.ac.jp/~shioura/teaching 前回の復習 数理計画とは? 数理計画 ( 復習 ) 数理計画問題とは? 狭義には : 数理 ( 数学 ) を使って計画を立てるための問題 広義には : 与えられた評価尺度に関して最も良い解を求める問題
<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63>
2. 厚生経済学の ( 第 ) 基本定理 2 203 年 4 月 7 日 ( 水曜 3 限 )/8 本章では 純粋交換経済において厚生経済学の ( 第 ) 基本定理 が成立することを示す なお より一般的な生産技術のケースについては 4.5 補論 2 で議論する 2. 予算集合と最適消費点 ( 完全 ) 競争市場で達成される資源配分がパレート効率的であることを示すための準備として 個人の最適化行動を検討する
Microsoft PowerPoint - mp11-06.pptx
数理計画法第 6 回 塩浦昭義情報科学研究科准教授 [email protected] http://www.dais.is.tohoku.ac.jp/~shioura/teaching 第 5 章組合せ計画 5.2 分枝限定法 組合せ計画問題 組合せ計画問題とは : 有限個の もの の組合せの中から, 目的関数を最小または最大にする組合せを見つける問題 例 1: 整数計画問題全般
131 はじめに エコノミア 第 64 巻第 1 号 (2013 年 5 月 ), 頁 [Economia Vol. 64 No.1(May 2013),pp ]
131 はじめに 2011 3 11 2 3.11 3.11 3.11 2 3.11 3.11 3.11 エコノミア 第 64 巻第 1 号 (2013 年 5 月 ),131--143 頁 [Economia Vol. 64 No.1(May 2013),pp.131-143] 132 1. 地域経済学研究と現実からの乖離 (1)2 つの地域経済学 NAFTA EU 2 1990 2007 2008
FEM原理講座 (サンプルテキスト)
サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体
memo
数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) [email protected].~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
高次元データ スパース正則化学習法 最適化手法 proximal point algorithm 確率最適化手法 2
正則化学習法における最適化手法 鈴木大慈東京大学情報理工学系研究科数理情報学専攻 2013/2/18@ 九州大学伊都キャンパス文部科学省委託事業数学協働プログラム 最適化ワークショップ : 拡がっていく最適化 1 高次元データ スパース正則化学習法 最適化手法 proximal point algorithm 確率最適化手法 2 問題設定スパース正則化学習 3 高次元線形判別 物体認識 音声認識 自然言語処理
Microsoft Word - NumericalComputation.docx
数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.
Microsoft PowerPoint - mp13-07.pptx
数理計画法 ( 数理最適化 ) 第 7 回 ネットワーク最適化 最大流問題と増加路アルゴリズム 担当 : 塩浦昭義 ( 情報科学研究科准教授 ) [email protected] ネットワーク最適化問題 ( 無向, 有向 ) グラフ 頂点 (verex, 接点, 点 ) が枝 (edge, 辺, 線 ) で結ばれたもの ネットワーク 頂点や枝に数値データ ( 距離, コストなど ) が付加されたもの
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
ボルツマンマシンの高速化
1. はじめに ボルツマン学習と平均場近似 山梨大学工学部宗久研究室 G04MK016 鳥居圭太 ボルツマンマシンは学習可能な相互結合型ネットワー クの代表的なものである. ボルツマンマシンには, 学習のための統計平均を取る必要があり, 結果を求めるまでに長い時間がかかってしまうという欠点がある. そこで, 学習の高速化のために, 統計を取る2つのステップについて, 以下のことを行う. まず1つ目のステップでは,
微分方程式による現象記述と解きかた
微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
アルゴリズムとデータ構造
講義 アルゴリズムとデータ構造 第 2 回アルゴリズムと計算量 大学院情報科学研究科情報理工学専攻情報知識ネットワーク研究室喜田拓也 講義資料 2018/5/23 今日の内容 アルゴリズムの計算量とは? 漸近的計算量オーダーの計算の方法最悪計算量と平均計算量 ポイント オーダー記法 ビッグオー (O), ビッグオメガ (Ω), ビッグシータ (Θ) 2 お風呂スケジューリング問題 お風呂に入る順番を決めよう!
PowerPoint Presentation
3. 国民所得 : どこから来てどこへ行くのか (1) 基礎マクロ経済学 1 概要 1. 今回のねらい 2. 長期と短期 3. 経済諸部門の相互関係 4. 供給の決定 5. 生産関数の典型的仮定 6. 企業の利潤最大化行動 7. 完全競争市場における企業利潤 8. 確認問題 基礎マクロ経済学 2 1. 今回のねらい ここまでの講義では GDP 消費者物 価指数 失業とは何かについて学んだ 今回から数回を使って
Microsoft Word - thesis.doc
剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル
行列、ベクトル
行列 (Mtri) と行列式 (Determinnt). 行列 (Mtri) の演算. 和 差 積.. 行列とは.. 行列の和差 ( 加減算 ).. 行列の積 ( 乗算 ). 転置行列 対称行列 正方行列. 単位行列. 行列式 (Determinnt) と逆行列. 行列式. 逆行列. 多元一次連立方程式のコンピュータによる解法. コンピュータによる逆行列の計算.. 定数項の異なる複数の方程式.. 逆行列の計算
航空機の運動方程式
可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,
l = 若年期の労働供給量, c + = 老年期の消費量, w = 賃金率, s = 貯蓄量, r + = 資本の レンタル料 ( 貯蓄からの純収益率,δ = 資産の減耗率である. 上記の最適化問題を解くと以下の式が得られる. l =Ψ ( c +, c Ψ + φ ただし Ψ である. (4 +
第 6 章生産における外部効果とサンスポット均衡 - 現実的な外部性の度合いと局所的な非決定性 - 本章では生産における外部性 (Exernaliies in producion をライヒリンの世代重複モデル (Overlapping generaions model に導入する. ラムゼー型の最適成長モデル (Represenaive agen s model では労働の需要曲線と供給曲線が誤った形で交わるような非現実的な強い外部性を仮定しなければ,
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している
Microsoft PowerPoint - 9.pptx
9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍
集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu
集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models, Transportation Research Part
2015年度 信州大・医系数学
05 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 放物線 y = a + b + c ( a > 0) を C とし, 直線 y = -を l とする () 放物線 C が点 (, ) で直線 l と接し, かつ 軸と共有点をもつための a, b, c が満 たす必要十分条件を求めよ () a = 8 のとき, () の条件のもとで, 放物線 C と直線 l および 軸とで囲まれた部
Graduate School of Policy and Management, Doshisha University 53 動学的資本税協調と公的資本形成 あらまし Zodrow and Mieszkowski 1986 Wilson 1986 Batina はじめに Zodr
Graduate School of Policy and Management, Doshisha University 53 動学的資本税協調と公的資本形成 あらまし Zodrow and Mieszkowski 1986 Wilson 1986 Batina 2009 1. はじめに Zodrow and Mieszkowski 1986 Wilson 1986 Tax Competition
(Microsoft PowerPoint - \221\34613\211\361)
計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.
データ解析
データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第
様々なミクロ計量モデル†
担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル
Microsoft PowerPoint - H22制御工学I-2回.ppt
制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し
Microsoft Word - 補論3.2
補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は
2011年度 大阪大・理系数学
0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ
ミクロ経済学Ⅰ
労働需要 労働力を雇う側の意思決定 労働力を雇うのは企業と仮定 企業は利潤を最大化する 利潤最大化する企業は どのように労働力を需要するか? まず 一定の生産量を生産する際の 費用最小化問題から考察する 企業の費用最小化 複数の生産要素を用いて生産活動を行なう企業を想定 min C( w, r; y) = wl + rk LK, subject to FKL (, ) y Cwr (, ; y) 費用関数
画像解析論(2) 講義内容
画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い
Microsoft Word - 非線形計画法 原稿
非線形計画法条件付き最適化問題は目的関数と制約条件で示すが この中に一つでも 次式でないものが含まれる問題を総称して非線形計画法いう 非線形計画問題は 多くの分野で研究されているが 複雑性により十分汎用的なものは確立されておらず 限定的なものに限り幾つかの提案がなされている ここでは簡単な解法について紹介する. 制約なし極値問題 単純問題の解法 変数で表される関数 の極値は を解くことによって求められる
調和系工学 ゲーム理論編
ゲーム理論第三部 知的都市基盤工学 5 月 30 日 ( 水 5 限 (6:30~8:0 再掲 : 囚人のジレンマ 囚人のジレンマの利得行列 協調 (Cooperte:C プレイヤー 裏切 (Deect:D ( 協調 = 黙秘 裏切 = 自白 プレイヤー C 3,3 4, D,4, 右がプレイヤー の利得左がプレイヤー の利得 ナッシュ均衡点 プレイヤーの合理的な意思決定の結果 (C,C はナッシュ均衡ではない
ハートレー近似(Hartree aproximation)
ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と
情報システム評価学 ー整数計画法ー
情報システム評価学 ー整数計画法ー 第 1 回目 : 整数計画法とは? 塩浦昭義東北大学大学院情報科学研究科准教授 この講義について 授業の HP: http://www.dais.is.tohoku.ac.jp/~shioura/teaching/dais08/ 授業に関する連絡, および講義資料等はこちらを参照 教員への連絡先 : shioura (AT) dais.is.tohoku.ac.jp
以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ
以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する
Microsoft PowerPoint - 13economics5_2.pptx
経済学概論資料 5(2) 改訂版 吉川卓也 6.3 寡占 1. 寡占と複占 寡占とは ある産業で財 サービスを供給する企業の数が少数しかなく それぞれの企業が価格支配力をある程度もっており 他の企業の行動によって影響される状態をいう 寡占のなかで 企業数が2の場合を複占という たとえば 日本ではビール産業は事実上 4 社の寡占である 外国では多数の企業が生産をおこなっている 2 他方で 日本酒の市場は多くのメーカーが競合している
モデリングとは
コンピュータグラフィックス基礎 第 5 回曲線 曲面の表現 ベジェ曲線 金森由博 学習の目標 滑らかな曲線を扱う方法を学習する パラメトリック曲線について理解する 広く一般的に使われているベジェ曲線を理解する 制御点を入力することで ベジェ曲線を描画するアプリケーションの開発を行えるようになる C++ 言語の便利な機能を使えるようになる 要素数が可変な配列としての std::vector の活用 計算機による曲線の表現
Microsoft Word - 201hyouka-tangen-1.doc
数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見
Excelを用いた行列演算
を用いた行列演算 ( 統計専門課程国民 県民経済計算の受講に向けて ) 総務省統計研究研修所 この教材の内容について計量経済学における多くの経済モデルは連立方程式を用いて記述されています この教材は こうした科目の演習においてそうした連立方程式の計算をExcelで行う際の技能を補足するものです 冒頭 そもそもどういう場面で連立方程式が登場するのかについて概括的に触れ なぜ この教材で連立方程式の解法について事前に学んでおく必要があるのか理解していただこうと思います
<4D F736F F F696E74202D2091E6824F82538FCD8CEB82E88C9F8F6F814592F990B382CC8CB4979D82BB82CC82505F D E95848D8682CC90B69
第 章 誤り検出 訂正の原理 その ブロック符号とその復号 安達文幸 目次 誤り訂正符号化を用いる伝送系誤り検出符号誤り検出 訂正符号 7, ハミング符号, ハミング符号生成行列, パリティ検査行列の一般形符号の生成行列符号の生成行列とパリティ検査行列の関係符号の訂正能力符号多項式 安達 : コミュニケーション符号理論 安達 : コミュニケーション符号理論 誤り訂正符号化を用いる伝送系 伝送システム
DVIOUT-SS_Ma
第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり
リードタイムが変動する在庫管理モデルの安定性解析 西平 w(k)= u(k-l(k)) ( 2 ) となる このモデルに対して, メモリーレスフィードバック u(k)= Kx(k) (3) を施すことを考える また, 本稿では内部安定性を考えるため, 外生信号 d(k)= 0とすると, システム (
山形大学人文学部研究年報第 14 号 (2017.2)125-130 研究ノートリードタイムが変動する在庫管理モデルの安定性解析 スイッチドシステムとしての考察 山形大学人文学部法経政策学科 西平直史 1. はじめに 在庫管理問題において, リードタイムの存在がしばしば問題を難しくすることがある リードタイムとは, 供給が必要になった時点と実際に供給が行われる時点との差であり, 生産活動や輸送活動などに要する時間のことである
従業員の融通を許した シフトスケジューリング問題
フードコートにおけるアルバイト従業員の勤務シフト作成に関する研究 東京理科大学工学部第一部経営工学科 4 年 沼田研究室 4410072 日野駿 2014/01/31 卒研審査会 1 目次 1. はじめに 2. 問題 3. 定式化 4. 求解実験 5. 結果と考察 6. まとめと今後の課題参考文献 2014/01/31 卒研審査会 2 1. はじめに 1.1. 研究背景 (1) 飲食店は, 大部分の従業員をアルバイトで構成
2004年度経済政策(第1回)
2018 年度前期 ミクロ経済学概論 ( 第 7 回 ) 萩原史朗 ( 地域文化学科地域社会講座 ) 研究室 : 教育文化学部 3 号館 3-330 E-mail:[email protected] ミクロ経済学概論 ( 第 7 回 ) 1 ミクロ経済学のフローチャート 経済主体が多数の場合 ミクロ経済学 価格理論 経済主体が少数の場合 消費者の効用最大化 需要曲線 企業の利潤最大化
umeda_1118web(2).pptx
選択的ノード破壊による ネットワーク分断に耐性のある 最適ネットワーク設計 関西学院大学理工学部情報科学科 松井知美 巳波弘佳 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 0 / 20 現実のネットワーク 現実世界のネットワークの分析技術の進展! ネットワークのデータ収集の効率化 高速化! 膨大な量のデータを解析できる コンピュータ能力の向上! インターネット! WWWハイパーリンク構造
PowerPoint プレゼンテーション
製品競争下での インストア広告サービスの 戦略的効果 慶應義塾大学大学院松林研究室 M2 小林春輝 目次 1. はじめに 2. モデルの定式化 3. 分析 考察 4. 結論 はじめに ICT の著しい発展 多様な消費者ニーズを把握しやすくなり 製品開発に活用 メーカー企業に製品ラインナップを拡大させるインセンティブを与え熾烈な品揃え競争 市場に存在する過剰な製品数 はじめに このメーカー内のそれぞれの製品を比較検討
Microsoft PowerPoint - DA2_2017.pptx
1// 小テスト内容 データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (I) 1 1 第 章の構成. 単一始点最短路問題 単一始点最短路問題とは 単一始点最短路問題の考え方 単一始点最短路問題を解くつのアルゴリズム ベルマン フォードのアルゴリズム トポロジカル ソートによる解法 ダイクストラのアルゴリズム 1 1 単一始点最短路問題とは 単一始点最短路問題とは 前提 : 重み付き有向グラフ
Microsoft PowerPoint - DA2_2018.pptx
1//1 データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (I). 単一始点最短路問題 第 章の構成 単一始点最短路問題とは 単一始点最短路問題の考え方 単一始点最短路問題を解くつのアルゴリズム ベルマン フォードのアルゴリズム トポロジカル ソートによる解法 ダイクストラのアルゴリズム 単一始点最短路問題とは 単一始点最短路問題とは 前提 : 重み付き有向グラフ 特定の開始頂点 から任意の頂点
Microsoft PowerPoint - H17-5時限(パターン認識).ppt
パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を
チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用
チェビシェフ多項式の 変数への拡張と公開鍵暗号 Ell 暗号 への応用 Ⅰ. チェビシェフ Chbhv Chbhv の多項式 より であるから よって ここで とおくと coθ iθ coθ iθ iθ coθcoθ 4 4 iθ iθ iθ iθ iθ i θ i θ i θ i θ co θ co θ} co θ coθcoθ co θ coθ coθ したがって が成り立つ この漸化式と であることより
4 月 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プロ
4 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プログラミング技術 工業 333 実教出版 ) 共通 : 科目 プログラミング技術 のオリエンテーション プログラミング技術は
航空機の運動方程式
オブザーバ 状態フィードバックにはすべての状態変数の値が必要であった. しかしながら, システムの外部から観測できるのは出力だけであり, すべての状態変数が観測できるとは限らない. そこで, 制御対象システムの状態変数を, システムのモデルに基づいてその入出力信号から推定する方法を考える.. オブザーバとは 次元 m 入力 r 出力線形時不変システム x Ax Bu y Cx () の状態変数ベクトル
Microsoft PowerPoint - CSA_B3_EX2.pptx
Computer Science A Hardware Design Excise 2 Handout V2.01 May 27 th.,2019 CSAHW Computer Science A, Meiji University CSA_B3_EX2.pptx 32 Slides Renji Mikami 1 CSAHW2 ハード演習内容 2.1 二次元空間でのベクトルの直交 2.2 Reserved
PowerPoint Presentation
応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,
例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (
第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表
オートマトン 形式言語及び演習 3. 正規表現 酒井正彦 正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語
オートマトン 形式言語及び演習 3. 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ とは ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械 : 言語を記号列で定義 - 記述しやすい ( ユーザフレンドリ ) 例 :01 + 10 - UNIX の grep コマンド - UNIX の
Microsoft PowerPoint - H21生物計算化学2.ppt
演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A
CLEFIA_ISEC発表
128 ビットブロック暗号 CLEFIA 白井太三 渋谷香士 秋下徹 盛合志帆 岩田哲 ソニー株式会社 名古屋大学 目次 背景 アルゴリズム仕様 設計方針 安全性評価 実装性能評価 まとめ 2 背景 AES プロジェクト開始 (1997~) から 10 年 AES プロジェクト 攻撃法の進化 代数攻撃 関連鍵攻撃 新しい攻撃法への対策 暗号設計法の進化 IC カード, RFID などのアプリケーション拡大
2018年度 岡山大・理系数学
08 岡山大学 ( 理系 ) 前期日程問題 解答解説のページへ 関数 f ( x) = ( + x) x について, 以下の問いに答えよ () f ( x ) = 0 を満たす x の値を求めよ () 曲線 y = f ( x ) について, 原点を通るすべての接線の方程式を求めよ (3) 曲線 y = f ( x ) について, 原点を通る接線のうち, 接点の x 座標が最大のものを L とする
Microsoft PowerPoint - qcomp.ppt [互換モード]
量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??
PowerPoint プレゼンテーション
回転型クレーン / 倒立振子の制御 回転型クレーンの制御 状態方程式 コントローラ設計 ( 極配置法 ) コントローラ設計 ( 最適レギュレータ ) 回転型倒立振子の制御 状態方程式 コントローラ設計 コントローラの形式 : 状態フィードバック P-D コントローラ アームの P-D 振子の P-D 目標値 状態フィードバック制御 回転型クレーン コントローラ で 状態フィードバック制御 回転型クレーン
