Ne 17M / 02/ 08

Size: px
Start display at page:

Download "Ne 17M / 02/ 08"

Transcription

1 Ne 17M / 02/ 08

2 Z N=20 sd pf 2 pf 2ħω 26 Ne 30 Ne 2 +, 4 + R 4/2 32 Ne 32 Ne δ 33 Na 1 32 Ne 32 Ne RI 240 MeV 32 Ne SAMURAI CsI(Na) CATANA 33 Na 1 32 Ne (3) kev, 2077(13) kev R 4/ Ne Ne δ 1.77(7) fm 32 Ne 30 Ne R 4/2 = 2.82, δ = ± 0.07 fm

3 Abstract In the island of inversion area (N 20, Z 10-12), it is known that the neutron magic number N=20 disappears and nuclei strongly deform. Theoretically, it is suggested that the energy gap between the sd shell and the pf shell is reduced in this region, and the 2ħω configuration in which the two neutrons occupy pf shell, dominates the ground state. Though the change in the shell structure plays an important role in the appearance of the island of inversion, it is not fully understood yet how the shell structure changes as the neutron number increases. Recent studies have revealed that island of inversion is expanded forwards the neutron-rich side, resulting that the deformation region spreads wider than the island of inversion. It is important to systematically investigate the change in the deformation of nuclei with the increase in the neutron number. In neon isotopes, the excitation energies of 2 + and 4 + states decreases and the energy ratio between the 2 + and 4 + states (R 4/2 ) increases from 26 Ne to 30 Ne showing the development of the nuclear deformation. Currently there are few available experimental data for 32 Ne, which is the most neutron-rich neon isotope in island of inversion, because of the experimental difficulty. In this study, we performed an in-beam γ-ray spectroscopy of 32 Ne by one proton removal reaction of 33 Na and inelastic scattering of 32 Ne on a carbon target to study excited states and derive quadrupole deformation length δ of 32 Ne. The experiments were carried out at RI Beam Factory at RIKEN, which provides high intense 32 Ne and 33 Na beams. The secondary beams of 32 Ne and 33 Na with 240 MeV/nucleon were produced by a projectile fragmentation reaction of 48 Ca on a beryllium target. Outgoing particles were detected using the SAMURAI spectrometer to identify the reaction channels. De-excitation γ rays were measured using the CsI(Na) scintillator array, CATANA. The excitation energies of the and 4+ 1 states of 32 Ne were measured to be 676(3) kev and 2077(3) kev, respectively, in the one proton removal reaction of 33 Na. The energy ratio R 4/2 =3.07 is close to R 4/2 =3.33(for rigid rotor), suggesting strong quadrupole deformation. The angular distribution of the transition in the inelastic scattering of 32 Ne was obtained and compared with the DWBA(Distorted-wave Born Approximation) calculation. The deformation length δ = 1.77(7) fm was obtained for 32 Ne, indicating the larger deformation than 30 Ne (R 4/2 = 2.82, δ = ± 0.07 fm). iii

4 BigRIPS SAMURAI SBT ICB BDC1, CATANA FDC SAMURAI FDC HODF NeuLAND, NEBULA Z A/Z Z A/Z i

5 BDC Ne Ne Ecis A 46 Appendix 46 A.1 CATANA CsI(Na) A.2 SAMURAI ii

6 A A A A A A iii

7 N= , 4+ 1 R 4/ ħω, 2ħω δ θ Na BigRIPS SAMURAI ICB BDC CATANA type1( ) type2( ) type3( ) CATANA FDC SAMURAI FDC HODF T OF F 3 F 7 (ns) T OF F 7 F 13 (ns) T OF F 3 F 7 (ns) T OF F 7 F 13 (ns) F13Q ICB E F13Q ICB E ( 31 Ne, C ) ( 31 Ne, C ) ( 32 Ne, C ) Z ( 31 Ne, C ) A/Z ( 31 Ne, C ) HODF24 Q ( 31 Ne, C ) 33 Na iv

8 4.12 ( 32 Ne, C ) 32 Ne Z ( 31 Ne, C 33 Na ) A/Z ( 31 Ne, C 33 Na ) X bdc2 X (calc) bdc2 (mm) Y bdc2 Y (calc) bdc2 (mm) θ beam,x θ beam,y β tgt ( 31 Ne 30 Ne) ( 31 Ne 30 Ne) ( 31 Ne 30 Ne) Na 32 Ne kev 33 Na 32 Ne E dep E sim Ne1401 kev E sim HODF HODF24 x θx lab (rad) θy lab (rad) ( 6 < θ lab < 8 mrad ) Ne Ne Ne Ne Ne ,4+ 1 R4/ δ A A A v

9 1.1 30,32 Ne 0ħω, 2ħω, 4ħω BigRIPS (A/Z Z=10 ) (A/Z Z=10 ) (X tgt, Y tgt ) (θ beam,x, θ beam,y ) β tgt vi

10 1 [1] N = 8, 20 [2],[3] N=16 [4] 1.1 N = 20, island of inversion [5] 1.1 Z(7 13 N N=20 2ħω [6] 1.2 N=20 1f 7/2 1d 3/2 1d 3/2 N = 20 1f 7/2 1d 3/ f 7/2 2ħω 1

11 1.2 N=20 1f 7/2 1d 3/2 2ħω 1.1 (, big island of deformation)[7] N=26 38 Mg [8] 32 Ne ( ) 2009 [9] 2019 [10] (12) kev (15) kev , 4+ 1 R 4/2 N, 2 + 1, 4+ 1 R 4/2 R 4/2 2 E(I) = I(I + 1)ħ2 2I (1.0.1) R 4/2 3.3 I I R 4/2 34,36,38 Mg N=12,14,16 R 4/2 3 R 4/2 N= Ne R 4/2 = 2.99(6) [11] 2

12 , 4+ 1 R 4/2 [10] (MeV) (MeV) R 4/2 EKK(extended Kuo-Krenciglowa) [11] 0ħω, 2ħω 1.4 0ħω, 2ħω [12] 2ħω N= % N N=26 0ħω 2ħω 50% 1.4 Mg 0ħω, 2ħω [12] N( A) 0ħω, 2ħω 2ħω 0ħω SDPF-M SDPF-M+p 1/2 0ħω, 2ħω, 4ħω ,32 Ne 0ħω, 2ħω, 4ħω (%) 2 SDPF-M[13] EKK 3

13 [11] 32 Ne 2ħω 30 Ne EKK 32 Ne 2 +, 4 + 2ħω, 4ħω EKK ( 1.3) 32 Ne ,32 Ne 0ħω, 2ħω, 4ħω (%)[10] SDPF-M[13] EKK[11] 0ħω 2ħω 4ħω 0ħω 2ħω 4ħω 30 Ne Ne δ 1.5 [14] δ β δ = Rβ (R = r 0 A 1/3 ) N = δ N = 24 2 (AMPGCM[15], SDPF-M[13] N = 22( 32 Ne) 1.5 (a) (b) δ [14] N δ(fm) δ p.p δ C AMPGCM[15]( ) SDPF-M[13]( ) 0ħω 32 Ne 33 Na 1 32 Ne 32 Ne 32 Ne RI 240 MeV 32 Ne SAMURAI 4

14 CsI(Na) CATANA 32 Ne

15 ( kev kev ) % E lab γ E lab γ = Eγ cm 1 γ(1 β cos θ) (2.1.1) E cm γ θ 2.1 γ, β v c γ = 1 1 β 2, β = v c (2.1.2) θ θ CATANA 100 θ 2.1 θ 60% v θ 6

16 Na 1 1d 3/ Ne (spectroscopic factor) Na (Distored-wave Born Approximation, DWBA DWBA 7

17 RI (RIBF) 2 BigRIPS 31 Ne, 32 Ne 3.1 RI BigRIPS SAMURAI BigRIPS SRC 345 MeV 48 Ca F0 ( ) 15 mm Be 33 Na 32 Ne BigRIPS(Big RI Particle Separator)[16] 3.1 BigRIPS 3.1 BigRIPS 345 MeV/u 48 Ca F0 Be 15 mm 32 Ne BigRIPS SAMURAI F7,F13 TOF F5 Bρ F13 ICB E F3,F5,F7 3 mm F mm 2 ( PMT ) F7 F13 TOF F5 8

18 X ( Bρ = Bρ X ) D (3.1.1) Bρ D = 3300 mm Bρ BigRIPS 31 Ne, 32 Ne 2 31 Ne 32 Ne F1 (Al) (mm) 8 10 F5 (Al) (mm) 5 5 F1 (mm) ±120 ±100 F2 (mm) ±5 ±8 F5 (mm) ±110 ±50 F7 (mm) ±5 ±20 D1 (Tm) D2 (Tm) SAMURAI BigRIPS SAMURAI Superconducting Analyzer for MUlti-particle from RAdio Isotope Beam [17] 3.2 SAMURAI, 2.15 g/cm 2 SAMURAI HODF24 (NeuLAND,NEBULA) SAMURAI FDC1,2 CATANA 9

19 3.2 SAMURAI SBT BDC SAMURAI HODF24 (NeuLAND,NEBULA) SAMURAI FDC1,2 CATANA SAMURAI SBT SBT(Scintillator for Beam Trigger) F13 F7-F13 TOF ICB ICB(Ion Chamber for Beam) F13 E 1 P10 (Ar90%,CH 4 10%) 3.3 ICB 3.3 ICB mm 10

20 BDC1,2 BDC(Beam Drift Chamber) BDC1 BDC BDC (X,X ) (Y,Y ) 8 (XX YY XX YY ) X(Y) X (Y ) 2.5 mm 16 5 mm 50 torr i-c 4 H BDC mm CATANA CATANA CAesium iodide array for γ-ray Transition in Atomic Nuclei at high isospin Asymmetry 3.5 CATANA,, CsI(Na) 1,2 ( ) 3,4 ( ) 5 CATANA CsI(Na) θ 10 ϕ 18 CATANA 3 ( 3.5 (type1) (type2) (type3)) 3.6,3.7, CATANA 11

21 3.5 CATANA,, CsI(Na) 3.2 θ( )

22 図 3.6 結晶 type1(青色) の図面 図 3.7 結晶 type2(水色) の図面 図 3.9 CATANA の写真 (ビームラインに設置前) 13 図 3.8 結晶 type3(緑色) の図面

23 85 mm 12 mm(2.15 g/cm 2 ) , mm FDC1 FDC1(Forward Drift Chamber 1) 3.12 FDC1 (0 ) X,X ±30 U,U V,V 3 14 (XX UU VV XX UU VV XX ) X(U,V) X (U,V ) 5 mm mm 50 torr i-c 4 H FDC1 mm 14

24 SAMURAI SAMURAI SAMURAI 2.9T 3.13 SAMURAI 3.13 SAMURAI mm FDC2 FDC2(Forward Drift Chamber 2) SAMURAI 3.14 FDC2 FDC (0 ) X,X ±30 U,U V,V 3 14 (XX UU VV XX UU VV XX ) X(U,V) X (U,V ) 10 mm mm 1 He+50%C 2 H 6 15

25 図 3.14 FDC2 の概略図 単位は mm HODF24 HODF24(HODoscope for Fragment 24) はプラスチックシンチレータ (長さ 1200 mm, 幅 100mm, 厚さ 10mm) 24 本 から構成される 図 3.15 に HODF24 の概略図を示す プラスチックシンチレータの上下には PMT が取り付けられてい る FDC2 の後方に設置され エネルギー損失 E と飛行時間 TOF を測定することにより Z の識別を行った 図 3.15 HODF24 の概略図 単位は mm NeuLAND, NEBULA NeuLAND と NEBULA は SAMURAI 磁石下流に設置された中性子検出器である NeuLAND はプラスチックシンチ レータ (50 mm 50 mm 2500 mm) が 400 本 (8 層) と VETO シンチレータ 8 本 NEBULA は 2 種類のプラスチックシ 16

26 (120 mm 120 mm 1800 mm, 10 mm 320 mm 1900 mm) 120 (4 ) 24 (2, VETO) Beam SBT1,2 PMT 3.3 Run No. 31 Ne 230 MeV/u C Beam Ne 240 MeV/u Empty Beam Ne 240 MeV/u C Beam Ne 250 MeV/u Empty Beam

27 4 Z ( ) Y X Z Y Z Z β ( E) Z (log ( 2mec2 I β 2 ) log (1 β 2 ) β 2 ) (4.1.1) I ICB m e β F7 F13 T OF F 7 F 13 F L F 7 F 13 (Flight Length) β = F L F 7 F 13 T OF F 7 F 13 c (4.1.2) T OF F 7 F 13 = t F 13 t F 7 F7,F13 t F 7, t F 13 PMT A/Z A/Z A Z = ebρ m u cβγ m µ e Bρ (4.1.3) F3 F7 T OF F 3 F 7 F7 F13 T OF F 7 F 13 SBT Q F 13 ICB E ICB T OF F 3 F 7 (ns) T OF F 7 F 13 (ns)

28 TOF T OF F 3 F 7 T OF F 3 F 7 ±3σ T OF F 3 F 7 T OF F 3 F T OF F 3 F 7(ns) T OF F 7 F 13(ns) 4.2 T OF F 3 F 7(ns) T OF F 7 F 13(ns) Q F 13 E ICB 4.3 TOF Q F 13 E ICB 3σ Q F 13 E ICB F13Q ICB E 4.4 F13Q ICB E Ne C A/Z 5.0% Ne C

29 4.5 ( 31 Ne, C ) 4.6 ( 31 Ne, C ) 4.7 ( 32 Ne, C ) Ne 32 Ne ( (%)) ( (%)) 34 Na (9.4%) 33 Na (21.0%) (21.1%) 32 Na (28.6%) (0.5%) 32 Ne (0.4%) (23.4%) 31 Ne (2.9%) (19.7%) 30 Ne (40.7%) (15.5%) 31 F (0.04%) 29 F (1.1%) (9.3%) 20

30 4.8, y (Z),x (A/Z) σ Z ( 31 Ne, C ) 4.9 A/Z ( 31 Ne, C ) 4.2 (A/Z Z=10 ) 31 Ne,C 32 Ne,C σ σ Z= Z= Z= A/Z= A/Z= A/Z= Z Z HODF24 Q 4.10 HOF24 ID12 (ns) Q Z=10 1 (Q = p 0 + p 1 t) Q Q cor Q corr = Q p 0 + p 1 t (4.1.4) Q cor Z Q cor Z Z = p 0 + p 1 Q coor + p 2 Q 2 corr (4.1.5) Q cor Z 21

31 4.10 HODF24 (ns) Q A/Z A/Z Bρ FDC1,2 Bρ Bρ = (i,j,k,l,m,n)=(3,2,3,2,3,3) (i,j,k,l,m,n)=0 C ijklmn X i fdc1y j fdc1 θk x,fdc1θ l y,fdc1x m fdc2θ n x,fdc2 (4.1.6) C Geant4 Bρ FDC1 FDC2 HODF24 F L ROOT TMultiDimFit X fdc1, Y fdc1, θ x,fdc1, θ y,fdc1, X fdc2, θ x,fdc2 Bρ 4.11,4.12 A/Z Z Ne C 33 Na Ne C 32 Ne 4.13, y (Z),x (A/Z) 4.3 σ 22

32 4.11 ( 31 Ne, C ) 33 Na 4.12 ( 32 Ne, C ) 32 Ne 4.13 Z ( 31 Ne, C 33 Na ) 4.14 A/Z ( 31 Ne, C 33 Na ) 4.3 (A/Z Z=10 ) 31 Ne,C 32 Ne,C σ σ Z= Z= Z= A/Z= A/Z= A/Z=

33 4.2 x,y BDC2 31 Ne BDC2 BDC1,BDC2,FDC1 BDC1,BDC2,FDC1 x,y,z X bdc1, Y bdc1, Z bdc1, X bdc2, Y bdc2, Z bdc2, X fdc1, Y fdc1, Z fdc1, BDC2 X bdc1 X fdc1 X (calc) bdc2 BDC2 X bdc2 X (calc) bdc mm mm X bdc2 Y bdc2 Y bdc2 Y (calc) bdc Y bdc mm 4.15 X bdc2 X (calc) bdc2 (mm) 4.16 Y bdc2 Y (calc) bdc2 (mm) X tgt, Y tgt 4.17 X tgt, Y tgt X bdc1 X bdc2 Y bdc1 Y bdc2 ( 40 mm ) Xtgt 2 + Ytgt 2 < 40 mm X tgt σ -1.1 mm, 6.2 mm Y tgt σ -0.9 mm, 5.2 mm 24

34 4.17 x(mm) y(mm) θ beam,x, θ beam,y ( ) Xbdc2 X bdc1 θ beam,x = arctan Z bdc2 Z bdc2 ( ) Ybdc2 Y bdc1 θ beam,y = arctan Z bdc2 Z bdc2 (4.2.7) (4.2.8) θ beam,x, θ beam,y (rad) 4.18, Ne θ beam,x σ 0.0 mrad, 3.2 mrad θ beam,y σ 0.4 mrad, 4.2 mrad 4.18 θ beam,x (rad) 4.19 θ beam,y (rad) 25

35 β tgt β tgt Ne 30 Ne σ 0.61, β tgt (X tgt, Y tgt) (θ beam,x, θ beam,y ) β tgt 31 Ne,C σ X tgt (mm) Y tgt (mm) θ beam,x (mrad) θ beam,y (mrad) β tgt ( 137 Cs, 22 Na, 60 Co, 88 Y) ID=10 (ch) (kev)

36 1 (kev) 4.5 (kev) 137 Cs Na 511, Co 1173, Y 898, (kev) θ β tgt θ Ne 30 Ne 800 kev P. Fallon [27] 30 Ne g.s. 27

37 4.22 ( 31 Ne 30 Ne) 4.23 ( 31 Ne 30 Ne) ( ) ( ) Ne 30 Ne ( ) 4.24 ( 4.23)

38 4.24 ( 31 Ne 30 Ne) ( 4.23) Ne 33 Na 32 Ne (3) kev 1401(13) kev 2 I. Murray [10] g.s. 709(12) kev (15) kev Na 32 Ne 28,30,32 Ne kev θ Z +10 mm 29

39 30 Ne Ne (2) kev 689(4) kev +15 kev Ne ( ) 1280(4) kev 1304(3) kev [26] 30 Ne ( ) 774(2) kev 792(4) kev [27], 800(7) kev [14] 32 Ne ( ) 676(3) kev 709(12) kev [10], 722(7) kev [9] 32 Ne ( ) 1401(13) kev 1410(15) kev [10] kev 676 kev ( ) 2077 kev 676 kev 33 Na 32 Ne 1401±3σ kev 4.26 σ 1401 kev ±3σ kev 700 kev 676 kev 1401 kev kev 33 Na 32 Ne Na 32 Ne 4 + σ( 33 Na 32 Ne(4 + )) σ( 33 Na 32 Ne(4 + )) = p0/ϵ frag N (us) 33 Na A t N 0 (4.3.9) N (us) 33 Na 33 Na ϵ frag p 0 30

40 32 Ne 4 + A = 12(g/mol) t = 2.15(g/cm 2 ) N 0 = (mol 1 ) N (us) 33 Na = Ne 4 + Geant4 Geant4 E dep 1000 kev 10 E dep (kev) kev E γ ( 4.5 ) σ i a i, b i a i σ i (E γ ) = 2 2 ln 2 Ebi γ (4.3.10) a i 2.35 Ebi γ (4.3.11) σ i (E γ ) ID=10 a i b i (ID=10) (kev) σ(kev) E dep E dep σ i (E dep ) E sim 4.28 E sim (kev)

41 kev E dep (kev) E dep kev E sim(kev) E sim E dep σ i( ) 32 Ne 100 γ E γ 1401keV z β z σ X 0.0 mm σ 5.3 mm Y 0.0 mm σ 7.6 mm Z mm E sim Ne 1401 kev E sim (kev) ( 100 ) 32

42 F sim (E γ ) p 0, p 1, p 2 p 0 F sim (E γ ) + exp (p 1 + p 2 E γ ) (4.3.12) Ne 4 + p 0 = (kev) (FDC1,2 HODF24) FDC1,2 FDC1,2 HODF24 Z=10 FDC1,2 Z= FDC1 FDC FDC1,FDC2 100%, 97.2% HODF24 HODF24 2 ( ) 4.32 Z 4.33 HODF24 x (mm) 32 Ne FDC2 x = 300, 400(mm) HODF24 4 mm 4 mm HODF24 HODF HODF24 32 Ne 98.0% ϵ frag 32 Ne ϵ frag = = % 33

43 4.32 HODF24 2 Z 4.33 HODF24 x (mm) HODF24 33 Na 32 Ne 4 + σ( 33 Na 32 Ne(4 + )) σ( 33 Na 32 Ne(4 + )) = p0/ϵ frag N (us) 33 Na A t N 0 (4.3.13) = / (g/mol) (g/cm 2 ) (mol 1 ) (4.3.14) = 1.29 (mb) (4.3.15) 34

44 beam BDC1 BDC2 (X bdc1, Y bdc1, X bdc2, Y bdc2,) frag FDC1 (X tgt, Y tgt, X fdc2, Y fdc2,) θ lab beam frag θ lab σ θ lab 31 Ne θ lab x θx lab, θy lab 4.34, 4.35 θ lab x x σ θ lab x σ θ lab = 2.2 mrad σ y θ lab = 3.1 mrad, θy lab (rad) = 2.2 mrad y 4.34 θx lab (rad) 4.35 θy lab (rad) Ne 32 Ne θ lab 2 mrad E γ 774 kev β 0.61, X 0.0 mm σ 5.3 mm Y 0.0 mm σ 7.6 mm Z mm < θ lab < 8mrad 35

45 4.36 ( 6 < θ lab < 8 mrad ) (kev) p 0 dσ dω = p 0 A 1 (4.4.16) N (us) t N 30 0 W bin 2π sin θ lab Ne N (us) 30 Ne 30 Ne A=12 g/mol t=2.15 g/cm 2 N 0 = mol 1 N (us) 30 Ne = W bin = 2 mrad Ne θ lab (deg) dσ dω (mb/sr) 36

46 Ne θ lab (deg) dσ dω (mb/sr) 32 Ne 32 Ne Ne A = 12 g/mol t = 2.15 g/cm 2 N 0 = mol 1 N (us) 32 Ne = W bin = 3 mrad Ne θ lab (deg) dσ dω (mb/sr) Ne Ecis97 Ecis97[18] δ Ecis97 ( ) δ 37

47 Ecis97 T. Furumoto Global Optical Potential[19],[20] G-Matrix (CEG07[21],[22]) Global Density[23] folding Ecis97 U(r, E) U(r, E) = V V (r, E) V D (r, E) iw V (r, E) iw D (r, E) (4.4.17) [24] r E V i, W i (i = V, D) V, D V V (r, E) = V V (E)f(r, R V, a V ) (4.4.18) V D (r, E) = 4a D V D (E) d dr f(r, R D, a D ) (4.4.19) W V (r, E) = W V (E)f(r, R V, a V ) (4.4.20) W D (r, E) = 4a D W D (E) d dr f(r, R D, a D ) (4.4.21) V i (E), W i (E) (i = V, D) f(r, V i, a i ) (i = V, D) Woods-Saxon 1 f(r, R i, a i ) = 1 + exp ( r ai R i ) (4.4.22) R i, a i (i = V, D) diffuseness ,4.40 (fm) (MeV) Global Optical Potential[19],[20] 240 MeV/u 32 Ne 4.39 (fm) (MeV) [20] 4.40 (fm) (MeV) [20] 38

48 230 MeV/u 30 Ne 240 MeV/u 32 Ne Ne (230MeV/u) 32 Ne (240MeV/u) V V (MeV) R V (fm) a V (fm) V D (MeV) R D (fm) a D (fm) W V (MeV) R V (fm) a V (fm) W D (MeV) R D (fm) a D (fm) Ecis97 tan θ Lab = 1 sin θ CM γ g cos θ CM + β g /β CM (4.4.23) ( ) Lab ( dω γ 2 g (β g /β CM + cos θ CM ) 2 + sin 2 θ CM) 3/2 = dω γ g (1 + cos θ CM β g /β CM ) (4.4.24) ( ) θ CM, θ Lab β g, γ g v g β g = vg c, γ 1 g = 1 β 2 g 4.42 ( ) 39

49 4.41 [ ] dσ dω (θ exp) = exp 2π 0 dϕ π 0 [ ] ) dσ sin θdθ dω (θ) 1 ( cal 2πσ 2 exp α2 2σ 2 (4.4.25) [ dσ dω (θ)] σ cal σ = 3.1 mrad α sin 2 α 2 = sin2 θ exp 2 + sin2 θ 2 2 sin θ exp 2 sin θ 2 ( sin θ exp 2 sin θ 2 + cos θ exp 2 cos θ ) 2 sin ϕ (4.4.26)

50 Ne 4.43 δ = 1.62(2) fm 30 Ne δ S. Michimasa [14] δ = ± 0.07 fm P. Doornenbal [25] δ = 1.98(11) fm 2 + ( ) σ(2 + 1 )=14.4(14) mb 12.7(3) mb Ne 32 Ne 4.44 δ = 1.77(7) fm Ne 41

51 5 32 Ne 2 (676,1401 kev) 32 Ne 5.1 kev 5.1 EKK [11] SDPF-M[13] 32 Ne 676 kev,2077 kev 2 2 +, kev 2077 kev 2 +, Ne kev EKK [11] SDPF-M[13] 676 kev 2077 kev 2 +, R 4/2 = ,4+ 1 R 4/2 EKK 32 Ne (N=22) 26 Ne (N=16) 30 Ne (N=20) 2 +, 4 + R 4/2 30 Ne (N=20) Z=20 32 Ne 30 Ne R 4/2 EKK 42

52 ,4+ 1 R4/ ( ) 4+ 1 ( ) (kev) R 4/2 EKK 32 Ne (N=22) δ Ne N= Ne 28 Ne 30 Ne δ R 4/2 N=20 32 Ne δ 2 N = δ δ 32 Ne 34 Ne 43

53 5.3 δ δ(fm) SDPF-M[13], AMPGCM[15] 32 Ne (N=22) 44

54 6 32 Ne δ 33 Na 1 32 Ne 32 Ne RI 240 MeV 32 Ne SAMURAI CsI(Na) CATANA 33 Na 1 2 (676(3) kev, 1401(13) kev) , R 4/ Ne Ne δ 1.77(7) fm 32 Ne 30 Ne R 4/2 = 2.82, δ = ± 0.07 fm ( ) 45

55 A A.1 CATANA CsI(Na) 100 ( ) A.1 A.2 A.1 A.2 CsI(Na) CATANA 3 ( A.1 (type1) (type2) (type3) 3 3.6, 3.7, 3.8) 1 mm 85 mm 12 mm(2.15 g/cm 2 ) , mm 2 mm ( )7.92 cm ( )8.26 cm CATANA 140cm 46

56 A.2 SAMURAI T. Tomai Photogrammetry System A.3 A.3 SAMURAI mm 47

57 A.3 Distored-wave Born Approximation DWBA [28],[29],[30] A.3.1 X(a,b)Y dσ dω = M axm by (2πħ 2 ) 2 k b k a T 2 (8.3.1) M ax, M by (a+x) (b+y) k a, k b a,b T V T = exp ( i k b r ) Y V X exp (+i k a r ) d r (8.3.2) exp ( i k b r ), exp (+i k b r ) { ħ2 2 + U( } r ) ψ i ( r ) = E i ψ i ( r ) (8.3.3) 2M i ψ i ( k i, r ) T = ψby ( k b, r ) Y V X ψax( k a, r ) d r (8.3.4) A.3.2 X(a,a )X dσ dω = M ax 2 k a (2πħ 2 ) 2 T 2 (8.3.5) k a T = ψa X ( k a, r ) X V X ψax( k a, r ) d r (8.3.6) ( R 0 ) { R(θ, ϕ) = R } α lm Yl m (θ, ϕ) lm (8.3.7) Yl m (θ, ϕ) U(r, R(θ, ϕ)) U(r, R(θ, ϕ)) = U(r, R 0 ) + R 0 { lm α lm Y m l (θ, ϕ) } du dr 0 + (8.3.8) 48

58 2 V coup V coup = U(r, R(θ, ϕ)) U(r, R 0 ) (8.3.9) 1 ( ) V coup (1) du = R 0 α lm Yl m (θ, ϕ) dr 0 lm (8.3.10) α lm iħ z mħ ( ) b + lm, b lm α lm = β l ( blm + ( 1) m b + ) 2l + 1 lm (8.3.11) β l α lm 1 (ħω) βl 2 = 0 l α lm 2 0 m= l (8.3.12) X V (1) X = 1ħω, l l V (1) 0, 0 + (8.3.13) ( ) β l du = R 0 Yl m (θ, ϕ)ψ ax (8.3.14) 2l + 1 dr 0 dσ dω = M 2 ax (2πħ 2 ) 2 k a k a β 2 l 2l + 1 ( ) ψa du X R 0 Yl m (θ, ϕ)ψ ax d r dr 0 2 (8.3.15) β 2 l l β l β δ 49

59 A.4 (z, ρ, ϕ) X,a 2 ( X 32 Ne a 12 C ) c = ħ = 1 m i (i=x,a) β i, p Lab i, Ei Lab (i=x,a) β g β a = 0 β g = mγ Xβ X + mγ a β a m X γ X + m a γ a (8.4.1) = p Lab X EX Lab + m a (8.4.2) β g p CM X, ECM X ) ( ) γg γ g β g ( E CM X p CM X = ) ( E Lab X γ g β g γ g p Lab X (8.4.3) 1 γ g = 1 β 2 g A.4.1 z, ρ p Lab X,z, plab X,ρ θlab tan θ Lab = plab X,ρ p Lab X,z (8.4.4) E Lab X p Lab X,z p Lab X,ρ = γ g γ g β g 0 γ g β g γ g E CM X p CM X,z p CM X,ρ (8.4.5) θ CM tan θ Lab = 1 γ g sin θ CM cos θ CM + β g /β CM (8.4.6) A.4.2 dσ ( ) Lab dσ dω Lab = dω z ( ) ϕ CM = ϕ Lab dω = sin θdθdϕ ( ) CM dσ dω CM (8.4.7) dω dω CM dω Lab = sin θcm dθ CM sin θ Lab dθ Lab (8.4.8) = d(cos θcm ) d(cos θ Lab ) 50 (8.4.9)

60 8.4.6 cos θ CM 1 tan θ Lab cos 3 θ Lab d(cos θcm ) d(cos θ Lab ) = 1 (cos θ CM β g /β CM + 1) γ g sin θ CM (cos θ CM + β g /β CM ) (8.4.10) ( d(cos θ CM ) γ 2 d(cos θ Lab ) = g (β g /β CM + cos θ CM ) 2 + sin 2 θ CM) 3/2 γ g (1 + cos θ CM β g /β CM ) (8.4.11) ( ) Lab dσ = d(cos ( θcm ) dσ dω d(cos θ Lab ) dω ( γ 2 g (β g /β CM + cos θ CM ) 2 + sin 2 θ CM) 3/2 = ) CM (8.4.12) γ g (1 + cos θ CM β g /β CM ) ( ) CM dσ (8.4.13) dω 51

61 [1] T. Otsuka et al. PRL 105, (2010) [2] H. Iwasaki et al., Eur. Phys. J. A13, (2002) [3] T. Motobayashi et al., Phys. Lett. B 346,9 (1995) [4] A. Ozawa et al. Phys. Rev. Lett. 84, 5493 (2000) [5] E.K. Warburton et al., Phys. Rev. C 41, 1147 (1990). [6] Y. Utsuno et al., Phys. Rev. C 60, (1999). [7] E. Caurier, et al. Phys. Rev. C 90, (2014) [8] P. Doornenbal et al., Phys. Rev. Lett. 111, (2013) [9] P. Doornenbal et al., Phys. Rev. Lett. 103, (2009) [10] I. Murray et al., Phys. Rev. C 99, (R) (2019) [11] N. Tsunoda et al.,physrevc (2017) [12] N. Kobayashi et al., PRL 112, (2014) [13] Y. Utsuno, Phys. Rev. C 60, [14] S. Michimasa et al., Phys. Rev. C 89, (2014) [15] R. Rodríguez-Guzmán, Nucl. Phys, A 709 (2002) [16] T. Kubo et al. aoi/ribf/reference/bigrips NIM published.pdf [17] T. Kobayashi et al, Nucl.Instr.Meth.B 317, (2013) [18] J. Raynal, Coupled channel code ECIS97, also Notes on ECIS94 (unpublished). [19] T. Furumoto, Phys. Rev. C 85, (2012) [20] takenori.furumoto/ [21] T. Furumoto et al., Phys. Rev. C78, (2008) [22] T. Furumoto et al., Phys. Rev. C80, (2009) [23] L. C. Chamon et. al., Phys. Rev. C66, (2002) [24] A. J. Koning et. al., Nucler Physics A 713 (2003) [25] P. Doornenbal et al., Phys. Rev. C 93, (2016) [26] P. Fallon et.al., J. Phys.: Conf. Ser. 49, 165 (2006) [27] P. Fallon et.al., Phys. Rev. C 81, (2010) [28],, (1971) [29] T. Sugimoto,Doctor thesis, Invariant-mass Spectroscopy of the Neutron Drip-line Nucleus 14 Be [30] B.,

62 53

untitled

untitled N0 N8 N0 N8 N0 * 49MeV/nuceon β 0.3c γ Hgh Z Target Pb Equvaent Photon Method 0 d σ dωde σ π γ γ π E 3 γ [!! ] dnπ σ dω π γ Eγ c h C.A.Bertuan and G.Baur Phys.Rep.63,99 988. J.D. Jackson Cassca Eectrodynamcs

More information

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

untitled

untitled TOF ENMA JAEA-RMS) TOF Pre-scission JAERI-RMS (m-state 16 O + 27 Al 150MeV d TOF Nucl. Phys. A444, 349-364 (1985). l = m d Pre-scission Scission 10-19 (Post_scission) (Pre-scission) Proton_fission Alpha_fission

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 14 m) ( 10 10 m) 2., 3 1 =reaction-text20181101b.tex

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

rcnp01may-2

rcnp01may-2 E22 RCP Ring-Cyclotron 97 953 K beam K-atom HF X K, +,K + e,e K + -spectroscopy OK U U I= First-order -exchange - coupling I= U LS U LS Meson-exchange model /5/ I= Symmetric LS Anti-symmetric LS ( σ Λ

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

natMg+86Krの反応による生成核からのβ線の測定とGEANTによるシミュレーションとの比較

natMg+86Krの反応による生成核からのβ線の測定とGEANTによるシミュレーションとの比較 nat Mg+ 86 Kr の反応による生成核からの β 線の測定と GEANT によるシミュレーションとの比較 田尻邦彦倉健一朗 下田研究室 目次 実験の目的 nat Mg+ 86 Kr 生成核からの β 線の測定 @RCNP 実験方法 実験結果 GEANT によるシミュレーション 解析 結果 まとめ 今後の課題 実験の目的 偏極した中性子過剰 Na アイソトープの β-γ-γ 同時測定実験を TRIUMF

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

N=Z E α =400 MeV α

N=Z E α =400 MeV α N=Z E α =400 MeV α 203 29 2 α + 2 C 0 + (RCNP) 2 C 6 O 24 Mg 28 Si 40 Ca E α = 400 MeV α folding model DWBA 3 Contents Chapter Introduction 5 Chapter 2 Experimental setup 9 2. Beam line...................................

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

4 i

4 i 22 Quantum error correction and its simulation 1135071 2011 3 1 4 i Abstract Quantum error correction and its simulation Hiroko Dehare Researches in quantum information theory and technology, that mix

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

放射線化学, 97, 29 (2014)

放射線化学, 97, 29 (2014) 20 5 Absorption spectra of biomolecules over wide energy range are very important to study their radiation effects in terms of the optical approximation proposed by Platzman. Using synchrotron radiation

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

LEPS

LEPS LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Abstract strongly interacting massive particles (SIMPs, X) Big Bang (BBN) X heavy colored

More information

From Evans Application Notes

From Evans Application Notes 3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2

More information

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be Gogny hard core spin-isospin property @ RCNP (Mar. 22 24, 2004) Collaborator: M. Sato (Chiba U, ) ( ) global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, 014316

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

PowerPoint Presentation

PowerPoint Presentation JAERI-ISOL 20MV Tandem Accelerator Tokai site of JAEA JAERI-ISOL 200916, 7 80 85 90 95 00 05 10 ISOL : Isotope Separator On-Line 198012 RI 121 La β/γ La, Ba 144 Ce, 143 Pr hfs Q β log [i(mo + )/i(m + )]

More information

% 1% SEM-EDX - X Si Ca SEM-EDX SIMS ppm % M M T 100 % 100 % Ba 1 % 91 % 9 % 9 % 1 % 87 % 13 % 13 % 1 % 64 % 36 % 36 % 1 % 34 46

% 1% SEM-EDX - X Si Ca SEM-EDX SIMS ppm % M M T 100 % 100 % Ba 1 % 91 % 9 % 9 % 1 % 87 % 13 % 13 % 1 % 64 % 36 % 36 % 1 % 34 46 Review on Hair Analysis in the Wakayama Arsenic Case Jun KAWAI Department of Materials Science and Engineering, Kyoto University Sakyo-ku, Kyoto 606-8501, Japan Received 6 December 2014, Revised 29 December

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

untitled

untitled --- = ---- 16 Z 8 0 8 8 0 Big Bang 8 8 s-process 50 r-process 8 50 N r-process s-process Hydrogen 71% Helium 8% Others 1.9% Heay 4-4% lements(>ni p-process (γ process? r-process s-process Big Bang H,He

More information

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

EOS and Collision Dynamics Energy of nuclear matter E(ρ, δ)/a = E(ρ, )/A + E sym (ρ)δ 2 δ = (ρ n ρ p )/ρ 1 6 E(ρ, ) (Symmetric matter ρ n = ρ p ) E sy

EOS and Collision Dynamics Energy of nuclear matter E(ρ, δ)/a = E(ρ, )/A + E sym (ρ)δ 2 δ = (ρ n ρ p )/ρ 1 6 E(ρ, ) (Symmetric matter ρ n = ρ p ) E sy Nuclear collision dynamics and the equation of state We want to measure EOS. Measure T, P and ρ of matter... Prepare matter in the state we want to measure HI collisions What are taking place in collisions?

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

mt_4.dvi

mt_4.dvi ( ) 2006 1 PI 1 1 1.1................................. 1 1.2................................... 1 2 2 2.1...................................... 2 2.1.1.......................... 2 2.1.2..............................

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information